JP4535250B2 - Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel - Google Patents

Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel Download PDF

Info

Publication number
JP4535250B2
JP4535250B2 JP2004201587A JP2004201587A JP4535250B2 JP 4535250 B2 JP4535250 B2 JP 4535250B2 JP 2004201587 A JP2004201587 A JP 2004201587A JP 2004201587 A JP2004201587 A JP 2004201587A JP 4535250 B2 JP4535250 B2 JP 4535250B2
Authority
JP
Japan
Prior art keywords
coating layer
cutting
cathode electrode
layer
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004201587A
Other languages
Japanese (ja)
Other versions
JP2006021276A (en
Inventor
暁裕 近藤
裕介 田中
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004201587A priority Critical patent/JP4535250B2/en
Publication of JP2006021276A publication Critical patent/JP2006021276A/en
Application granted granted Critical
Publication of JP4535250B2 publication Critical patent/JP4535250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示す表面被覆超硬合金製切削工具(以下、被覆超硬工具という)の製造方法に関するものである。   The present invention is a surface coating that exhibits excellent wear resistance and excellent cutting performance over a long period of time, especially in high-speed cutting of hardened steel such as alloy tool steel and hardened material of bearing steel. The present invention relates to a method for manufacturing a cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、上記の被覆超硬工具が、
(a)例えば図2(a)に概略平面図、同(b)に概略正面図で示される、物理蒸着装置の1種であるアークイオンプレーティング装置、すなわち、中央部に回転テーブルを設け、前記回転テーブルの外周に沿って、カソード電極(蒸発源)として硬質被覆層形成用Ti−Al−Si合金、同じくカソード電極(蒸発源)として潤滑被覆層形成用金属Zrを設けたアークイオンプレーティング装置を用い、
(b)上記回転テーブル上に炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体を装着し、
(c)まず、ヒータで装置内を、例えば500℃の温度に加熱した状態で、Arガスを装置内に導入して10PaのArガス雰囲気とし、前記超硬基体には、例えば−800Vのバイアス電圧を印加して、前記超硬基体表面をArガスボンバード洗浄処理し、
(d)ついで、硬質被覆層形成用カソード電極(蒸発源)として装着された所定組成を有するTi−Al−Si合金とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)、
を満足するTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層からなる硬質被覆層を1〜10μmの平均層厚で蒸着形成し、
(e)さらに、上記超硬基体への直流バイアス電圧(−100V)は同じくしたままで、前記潤滑被覆層形成用のカソード電極(蒸発源)として配置した金属Zrとアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして酸素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、上記硬質被覆層に重ねて、酸化ジルコニウム(以下、ZrOで示す)層からなる潤滑被覆層を0.5〜5μmの平均層厚で蒸着形成する、
以上(a)〜(e)の工程で製造されることも知られており、前記(Ti,Al,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Siによって一段の耐熱性向上効果を有し、これに加えてすぐれた潤滑性を有する上記ZrO層と相俟って、この結果製造された被覆超硬工具は、特に上記の高硬度鋼などの被削材の連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
特開2000−233324号公報 特開2002−254204号公報
In addition, the above coated carbide tool,
(A) For example, an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown in a schematic plan view in FIG. 2A and a schematic front view in FIG. Arc ion plating provided with a Ti—Al—Si alloy for forming a hard coating layer as a cathode electrode (evaporation source) and a metal Zr for forming a lubricating coating layer as a cathode electrode (evaporation source) along the outer periphery of the rotary table. Using the device,
(B) A cemented carbide substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is mounted on the rotary table,
(C) First, Ar gas is introduced into the apparatus with a heater heated to, for example, a temperature of 500 ° C. to form an Ar gas atmosphere of 10 Pa, and the carbide substrate has a bias of −800 V, for example. A voltage is applied, and the surface of the carbide substrate is cleaned with Ar gas bombardment,
(D) Next, an arc discharge is generated between, for example, a current of 90 A between the Ti—Al—Si alloy having a predetermined composition mounted as a hard coating layer forming cathode electrode (evaporation source) and the anode electrode. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, on the surface of the carbide substrate, for example, a bias voltage of −100 V is applied to the carbide substrate.
Composition formula: (Ti 1- (X + Z) Al X Si Z ) N (wherein, X is 0.45 to 0.70, Z is 0.01 to 0.15 in atomic ratio),
A hard coating layer composed of a composite nitride of Ti, Al and Si [hereinafter referred to as (Ti, Al, Si) N] layer satisfying the following conditions:
(E) Furthermore, the DC bias voltage (-100 V) to the cemented carbide substrate remains the same, and the metal Zr disposed as the cathode electrode (evaporation source) for forming the lubricating coating layer and the anode electrode, For example, arc discharge is generated under the condition of current: 90 A, and oxygen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, a bias voltage of, for example, −100 V is applied to the cemented carbide substrate. The lubricating coating layer composed of a zirconium oxide (hereinafter referred to as ZrO 2 ) layer is deposited on the hard coating layer with an average layer thickness of 0.5 to 5 μm.
It is also known that the above (a) to (e) are manufactured, and the (Ti, Al, Si) N layer has high temperature hardness and heat resistance due to Al as a constituent component, and high temperature strength due to the Ti. In addition, the coated carbide tool produced as a result of the above-mentioned ZrO 2 layer having the effect of improving heat resistance by the same Si and additionally having excellent lubricity, in particular, It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of a work material such as the above-mentioned high hardness steel.
JP 2000-233324 A JP 2002-254204 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、上記の高硬度鋼などの切削加工を通常の切削加工条件で行う場合には問題はないが、これを高速切削加工条件で行うのに用いると、特に潤滑被覆層であるZrO層の摩耗進行が速く、短時間で摩滅し、以後の切削加工は潤滑効果の伴なわない状態で、硬質被覆層である(Ti,Al,Si)N層単独での切削加工を余儀なくされるようになるため、前記硬質被覆層の摩耗も急激に加速し、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In the coated carbide tool, there is no problem when the above-mentioned high-hardness steel or the like is cut under normal cutting conditions. Wear progress of a certain ZrO 2 layer is fast, it wears out in a short time, and the subsequent cutting work is in a state without a lubricating effect, and the cutting process with a (Ti, Al, Si) N layer alone, which is a hard coating layer, is performed. Since it is unavoidable, the wear of the hard coating layer is also accelerated rapidly, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に上記の高硬度鋼などの高速切削加工で硬質被覆層が長期に亘ってすぐれた耐摩耗性を発揮する被覆超硬工具を製造すべく、特に上記の従来被覆超硬工具の製造方法に着目し、研究を行った結果、
(a)上記の従来被覆超硬工具の製造方法においては、潤滑被覆層であるZrO層は、例えば図2に示されるアークイオンプレーティング装置を用い、カソード電極(蒸発源)として設置した金属Zrとアノード電極との間に発生させたアーク放電でZrイオンを放出し、同時に装置内に反応ガスとして導入した酸素ガスと反応させることにより形成されるが、これをカソード電極(蒸発源)として金属Zrを備えたスパッタリング装置を用い、かつ装置内に反応ガスとして、Arガスと酸素ガスを導入して、装置内雰囲気を、酸素ガスがArガスとの合量に占める割合で10〜30容量%を占める混合ガス雰囲気とした条件で形成すると、前記Arガスがスパッタを著しく活性化し、前記金属ZrからスパッタされたZrイオンはきわめて高い放出密度で、かつ強力なイオンとして放出されるようになり、この結果形成されたZrO層は、著しく強靭化したものとなり、高硬度鋼などの高速切削加工でも摩耗進行が著しく抑制されるようになるので、長期に亘って硬質被覆層である(Ti,Al,Si)N層と共存して、すぐれた切削性能を発揮するようになること。
In view of the above, the inventors of the present invention produce a coated carbide tool in which a hard coating layer exhibits excellent wear resistance over a long period of time, particularly in high-speed cutting processing of the above-described high-hardness steel or the like. Therefore, as a result of conducting research, paying particular attention to the above-mentioned conventional coated carbide tool manufacturing method,
(A) In the above-described conventional coated carbide tool manufacturing method, the ZrO 2 layer, which is a lubricating coating layer, is a metal installed as a cathode electrode (evaporation source) using, for example, an arc ion plating apparatus shown in FIG. It is formed by releasing Zr ions by arc discharge generated between Zr and the anode electrode, and at the same time reacting with oxygen gas introduced as a reaction gas in the apparatus. This is used as a cathode electrode (evaporation source). Using a sputtering apparatus equipped with metal Zr, and introducing Ar gas and oxygen gas as reaction gases into the apparatus, the atmosphere in the apparatus is 10 to 30 volumes in the proportion of the total amount of oxygen gas and Ar gas. %, The Ar gas remarkably activates sputtering, and the Zr ions sputtered from the metal Zr As a result, the formed ZrO 2 layer is remarkably toughened and the progress of wear is remarkably suppressed even in high-speed cutting such as high-hardness steel. As a result, it will coexist with the hard coating layer (Ti, Al, Si) N layer over a long period of time and will exhibit excellent cutting performance.

(b)上記の従来被覆超硬工具の製造方法においては、上記超硬基体表面をArガスボンバード洗浄処理していたが、カソード電極として金属Crを用い、これとアノード電極との間のアーク放電で発生したCrイオンで上記超硬基体表面をCrボンバード洗浄処理すると、前記超硬基体表面に対する硬質被覆層である(Ti,Al,Si)N層の密着性が、前記Tiボンバード洗浄処理した場合に比して一段と向上するようになること。
以上(a)および(b)に示される研究結果を得たのである。
(B) In the above-described conventional coated carbide tool manufacturing method, the surface of the carbide substrate was cleaned with Ar gas bombardment, but metal Cr was used as the cathode electrode, and arc discharge between this and the anode electrode When the carbide substrate surface is Cr bombarded with the Cr ions generated in step 1, the adhesion of the (Ti, Al, Si) N layer, which is a hard coating layer, to the carbide substrate surface is the Ti bombarded cleaning treatment. To be improved further compared to.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
(a)例えば図1(a)に概略平面図、同(b)に概略正面図で示される蒸着装置、すなわち、中央部に回転テーブルを設け、前記回転テーブルの外側に、カソード電極(蒸発源)としてTi−Al−Si合金を備えた硬質被覆層形成用アーク放電装置およびカソード電極(蒸発源)として金属Zrを備えた潤滑被覆層形成用スパッタリング装置、さらにカソード電極として金属Crを備えた超硬基体表面ボンバード洗浄用アーク放電装置を設けた蒸着装置を用い、
(b)上記蒸着装置の回転テーブル上に、WC基超硬合金またはTiCN基サーメットで構成された超硬基体を装着し、
(c)まず、上記超硬基体表面ボンバード洗浄用アーク放電装置のカソード電極である金属Crとアノード電極との間にアーク放電を発生させて、上記超硬基体表面をCrボンバード洗浄処理し、
(d)ついで、上記蒸着装置内の雰囲気を窒素ガス雰囲気とすると共に、上記硬質被覆層形成用アーク放電装置のカソード電極であるTi−Al−Si合金とアノード電極との間にアーク放電を発生させて、上記超硬基体の表面に、
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)、
を満足する(Ti,Al,Si)N層からなる硬質被覆層を1〜10μmの平均層厚で形成し、
(e)さらに、上記蒸着装置内の雰囲気を、酸素ガスを10〜30容量%の割合で含有し、残りがArガスからなる酸化性ガス雰囲気とすると共に、上記潤滑被覆層形成用スパッタリング装置のカソード電極である金属Zrにスパッタを発生させて、上記硬質被覆層に重ねて、ZrO層からなる潤滑被覆層を0.5〜5μmの平均層厚で形成する、
以上(a)〜(e)の工程で、高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具を製造する方法に特徴を有するものである。
This invention was made based on the above research results,
(A) For example, a vapor deposition apparatus shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. 1B, that is, a rotary table is provided at the center, and a cathode electrode (evaporation source) is provided outside the rotary table. ) As an arc discharge device for forming a hard coating layer comprising a Ti—Al—Si alloy and a sputtering device for forming a lubricating coating layer comprising a metal Zr as a cathode electrode (evaporation source), and an ultra-compound comprising a metal Cr as a cathode electrode. Using a vapor deposition device provided with an arc discharge device for cleaning a bombarded surface of a hard substrate,
(B) A cemented carbide substrate made of WC-based cemented carbide or TiCN-based cermet is mounted on the rotary table of the vapor deposition apparatus,
(C) First, an arc discharge is generated between the metal Cr, which is a cathode electrode of the carbide substrate surface bombardment cleaning arc discharge device, and an anode electrode, and the carbide substrate surface is subjected to a Cr bombardment cleaning treatment.
(D) Next, the atmosphere in the vapor deposition apparatus is changed to a nitrogen gas atmosphere, and arc discharge is generated between the Ti-Al-Si alloy, which is the cathode electrode of the arc discharge apparatus for forming the hard coating layer, and the anode electrode. Let the surface of the carbide substrate,
Composition formula: (Ti 1- (X + Z) Al X Si Z ) N (wherein, X is 0.45 to 0.70, Z is 0.01 to 0.15 in atomic ratio),
A hard coating layer composed of a (Ti, Al, Si) N layer satisfying the following conditions is formed with an average layer thickness of 1 to 10 μm:
(E) Furthermore, the atmosphere in the vapor deposition apparatus contains an oxygen gas at a ratio of 10 to 30% by volume, and the remainder is an oxidizing gas atmosphere made of Ar gas. Sputtering is generated on the metal Zr that is the cathode electrode, and a lubricating coating layer composed of a ZrO 2 layer is formed with an average layer thickness of 0.5 to 5 μm on the hard coating layer.
The above-described steps (a) to (e) are characterized by a method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of high-hardness steel. is there.

つぎに、この発明の被覆超硬工具の製造方法において、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層の組成および平均層厚
硬質被覆層を構成する(Ti,Al,Si)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には高温強度を向上させ、さらに同Si成分にはAlとの共存において一段と耐熱性を向上させる作用があるが、Alの割合を示すX値がTiとSiとの合量に占める割合(原子比、以下同じ)で0.45未満になると、相対的にTiの割合が多くなり過ぎて、すぐれた高温硬さと耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、摩耗が発生し易くなることから、X値を0.45〜0.70と定めた。
また、Siの割合を示すZ値がTiとAlの合量に占める割合で、0.01未満では、所望の耐熱性向上効果が得られず、一方同Z値が0.15を超えると、高温強度が低下するようになることから、Z値を0.01〜0.15と定めた。
さらに、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が10μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
Next, the reason why numerical values are limited as described above in the method for manufacturing a coated carbide tool of the present invention will be described.
(A) Composition and average layer thickness of the hard coating layer The Al component in the (Ti, Al, Si) N layer constituting the hard coating layer improves high temperature hardness and heat resistance, while the Ti component has high temperature strength. Furthermore, the Si component has the effect of further improving the heat resistance in the coexistence with Al, but the ratio of the X value indicating the proportion of Al to the total amount of Ti and Si (atomic ratio, the same applies hereinafter) When the ratio is less than 0.45, the proportion of Ti is relatively increased, and excellent high-temperature hardness and heat resistance cannot be ensured, and wear progresses rapidly, while the proportion of Al When the X value indicating 0.70 exceeds 0.70, the ratio of Ti becomes relatively small, the high-temperature strength rapidly decreases, and wear easily occurs. .70.
Moreover, if the Z value indicating the proportion of Si is a proportion of the total amount of Ti and Al, and less than 0.01, the desired heat resistance improvement effect cannot be obtained, while if the Z value exceeds 0.15, Since the high-temperature strength is lowered, the Z value is determined to be 0.01 to 0.15.
Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 10 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 1 to 10 μm.

(b)潤滑被覆層の形成条件
上記の通り、潤滑被覆層を構成するZrO層は、カソード電極(蒸発源)として金属Zrを備えたスパッタリング装置を用い、かつ装置内雰囲気を、酸素ガスがArガスとの合量に占める割合で10〜30容量%を占める混合ガス雰囲気とした条件で形成され、かかる条件での形成によって、スパッタ作用が著しく活性化し、この結果層はすぐれた強靭性を具備するようになり、高硬度鋼などの高速切削加工でも摩耗進行が抑制されることから、長期に亘って硬質被覆層である(Ti,Al,Si)N層と共存して、これの耐摩耗性向上に寄与する作用を発揮するが、この場合前記混合ガス雰囲気における酸素ガスの割合が10容量%未満になると、Zrイオンに対する酸素の供給が不十分となって、組成的に安定したZrO層の形成が困難となり、これは層特性不均一の原因となり、一方同酸素ガスの割合が30容量%を越えると、Arガスの割合が70容量%未満となってしまい、Arガスによるスパッタ作用の活性化が不十分となり、層の十分な強靭化が図れないことから、前記混合ガス雰囲気における酸素ガスの割合を10〜30容量%と定めた。
(B) Conditions for forming the lubricating coating layer As described above, the ZrO 2 layer constituting the lubricating coating layer uses a sputtering apparatus equipped with metal Zr as a cathode electrode (evaporation source), and the atmosphere in the apparatus is oxygen gas. It is formed in a mixed gas atmosphere that occupies 10 to 30% by volume as a proportion of the total amount with Ar gas. By forming under such conditions, the sputtering action is remarkably activated, and as a result, the layer has excellent toughness. Since the wear progress is suppressed even in high-speed cutting such as high-hardness steel, it can coexist with the (Ti, Al, Si) N layer that is a hard coating layer for a long time. In this case, when the ratio of the oxygen gas in the mixed gas atmosphere is less than 10% by volume, the supply of oxygen to the Zr ions is insufficient, and the compositional Formation of stable ZrO 2 layer becomes difficult, which causes the layer properties inhomogeneous, whereas when the ratio of the oxygen gas exceeds 30 vol%, the percentage of Ar gas becomes less than 70 volume%, Ar Since the activation of the sputtering effect by the gas becomes insufficient and the layer cannot be sufficiently toughened, the ratio of oxygen gas in the mixed gas atmosphere was determined to be 10 to 30% by volume.

(c)潤滑被覆層の平均層厚
潤滑被覆層を構成するZrO層は、上記の通り高硬度鋼などの高速切削加工でもすぐれた潤滑性を長期に亘って発揮し、硬質被覆層である前記(Ti,Al,Si)N層の耐摩耗性向上に寄与する作用を有するが、その平均層厚が0.5μm未満では、前記作用を十分に発揮することができず、一方その平均層厚が5μmを越えて厚くなり過ぎると、偏摩耗の原因となる熱塑性変形を起こし易くなり、摩耗が促進されるようになることから、その平均層厚を0.5〜5μmと定めた。
(C) Average layer thickness of the lubricating coating layer The ZrO 2 layer constituting the lubricating coating layer is a hard coating layer that exhibits excellent lubricity over a long period of time even in high-speed cutting such as high-hardness steel as described above. The (Ti, Al, Si) N layer has an effect of contributing to the improvement of wear resistance. However, when the average layer thickness is less than 0.5 μm, the above-mentioned effect cannot be sufficiently exhibited, whereas the average layer If the thickness exceeds 5 μm and becomes too thick, it becomes easy to cause thermoplastic deformation causing uneven wear, and wear is promoted, so the average layer thickness is set to 0.5 to 5 μm.

この発明の方法によれば、高硬度鋼などの高速切削加工でも潤滑被覆層であるZrO層がすぐれた耐摩耗性を発揮する被覆超硬工具を製造することができ、したがってこの結果製造された被覆超硬工具は、硬質被覆層を構成する(Ti,Al,Si)N層のCrボンバード洗浄処理による超硬基体表面に対する密着性向上効果と相俟って、特に高硬度鋼などの高速切削加工ですぐれた耐摩耗性を長期に亘って発揮するものである。 According to the method of the present invention, it is possible to manufacture a coated carbide tool in which the ZrO 2 layer, which is a lubricating coating layer, exhibits excellent wear resistance even in high-speed cutting such as high-hardness steel. Coated carbide tools, especially the high-speed steel such as high-hardness steel, combined with the effect of improving the adhesion of the (Ti, Al, Si) N layer constituting the hard coating layer to the surface of the carbide substrate by the Cr bombard cleaning process It exhibits excellent wear resistance over a long period of time in cutting.

つぎに、この発明の被覆超硬工具の製造方法を実施例により具体的に説明する。   Next, the method for producing the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメットの超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cermet carbide substrates B-1 to B-6 having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置、すなわち、中央部に回転テーブルを設け、前記回転テーブルの外側に、一方側にカソード電極(蒸発源)として所定の組成を有する硬質被覆層形成用Ti−Al−Si合金を備えたアーク放電装置に配置し、他方側にカソード電極(蒸発源)として潤滑被覆層形成用金属Zrを備えたスパッタリング装置を対向配置し、さらにカソード電極としてボンバード洗浄用金属Crを備えたアーク放電装置を配置した蒸着装置の前記回転テーブル上に、中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄処理し、
(c)上記のボンバード洗浄用金属Crのカソード電極とアノード電極との間のアーク放電を停止し、装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層として蒸着形成し、
(d)ついで、上記の硬質被覆層形成用Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、超硬基体への直流バイアス電圧(−100V)は同じくしたままで、前記スパッタリング装置のカソード電極(蒸発源)として配置した金属Zrに、スパッタ出力:3kWの条件でスパッタリングを開始し、同時に前記蒸着装置内に反応ガスとしてArガスと酸素ガスを導入して、装置内雰囲気を、窒素雰囲気に代って、表3に示される組成を有する3Paの酸化性ガス雰囲気とし、もって同じく表3に示される目標層厚のZrO層を潤滑被覆層として上記硬質被覆層に重ねて蒸着形成することにより、本発明方法1〜16を実施し、被覆超硬工具としての表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the vapor deposition apparatus shown in FIG. That is, in an arc discharge device provided with a rotary table in the center and a Ti—Al—Si alloy for forming a hard coating layer having a predetermined composition as a cathode electrode (evaporation source) on the outer side of the rotary table. A vapor deposition apparatus in which a sputtering apparatus having a lubricating coating layer forming metal Zr as a cathode electrode (evaporation source) is arranged oppositely on the other side, and an arc discharge apparatus having a bombard cleaning metal Cr as a cathode electrode. Is mounted along the outer periphery of the rotary table at a position spaced a predetermined distance in the radial direction from the central axis,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the metal Cr of the cathode electrode and the anode electrode to generate an arc discharge, and the carbide substrate surface is subjected to a Cr bombardment cleaning treatment,
(C) The arc discharge between the cathode electrode and the anode electrode of the bombard cleaning metal Cr described above is stopped, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa, and on the rotary table A DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating at the same time, and a current of 100 A is passed between the Ti—Al—Si alloy of the cathode electrode and the anode electrode to generate arc discharge, Thus, a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 3 is vapor-deposited as a hard coating layer on the surface of the cemented carbide substrate,
(D) Next, the arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Si alloy for forming the hard coating layer is stopped, and the DC bias voltage (−100 V) to the carbide substrate remains the same. In the metal Zr arranged as the cathode electrode (evaporation source) of the sputtering apparatus, sputtering was started under the condition of sputtering output: 3 kW, and at the same time, Ar gas and oxygen gas were introduced as reaction gases into the vapor deposition apparatus, The atmosphere in the apparatus is changed to a 3 Pa oxidizing gas atmosphere having the composition shown in Table 3 in place of the nitrogen atmosphere, and the hard coating is made with the ZrO 2 layer having the target layer thickness shown in Table 3 as the lubricating coating layer. By carrying out vapor deposition formation over the layers, the present invention methods 1 to 16 are carried out, and a surface-coated carbide throwaway tip (hereinafter referred to as the present invention coating) as a coated carbide tool. Chips) 1 to 16 were produced.

また、比較の目的で、
(a)上記の超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置、すなわち、中央部に回転テーブルを設け、前記回転テーブルの外側に、一方側にカソード電極(蒸発源)として所定の組成を有する硬質被覆層形成用Ti−Al−Si合金を配置し、他方側にカソード電極(蒸発源)として潤滑被覆層形成用金属Zrを対向配置したアークイオンプレーティング装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのArガス雰囲気とし、前記超硬基体に−800Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をArガスボンバード洗浄処理し、
(c)ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層として蒸着形成し、
(d)上記超硬基体への直流バイアス電圧(−100V)は同じくしたままで、前記潤滑被覆層形成用のカソード電極(蒸発源)として配置した金属Zrとアノード電極との間に、付加電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして酸素ガスを導入して、2Paの反応雰囲気とし、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件で、同じく表3に示される目標層厚のZrO層を潤滑被覆層として上記硬質被覆層に重ねて蒸着形成することにより従来方法1〜16を実施し、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
For comparison purposes,
(A) The above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 are ultrasonically cleaned in acetone and dried, and each is an arc ion plating apparatus shown in FIG. That is, a rotary table is provided in the center, a Ti—Al—Si alloy for forming a hard coating layer having a predetermined composition as a cathode electrode (evaporation source) is arranged on one side outside the rotary table, and the other side is arranged. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the arc ion plating apparatus in which the metal Zr for forming the lubricating coating layer is disposed as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus was evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus was heated to 500 ° C. with a heater, and then Ar gas was introduced into the apparatus to form an Ar gas atmosphere of 10 Pa. A DC bias voltage of −800 V is applied to the cemented carbide substrate, and a current of 100 A is passed between the metal Ti and the anode electrode of the cathode electrode to generate an arc discharge, whereby the surface of the cemented carbide substrate is Ar gas bombarded. Cleaning,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to −100 V, and the cathode electrode of the Ti—Al—Si alloy Arc discharge is generated between the anode substrate and the anode electrode, so that the target compositions and target layer thicknesses shown in Table 4 are formed on the surfaces of the carbide substrates A-1 to A-10 and B-1 to B-6, respectively. (Ti, Al, Si) N layer is vapor-deposited as a hard coating layer,
(D) The direct current bias voltage (-100 V) to the cemented carbide substrate remains the same, and an additional current is applied between the metal Zr disposed as the cathode electrode (evaporation source) for forming the lubricating coating layer and the anode electrode. : An arc discharge was generated under the condition of 90 A, and simultaneously oxygen gas was introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa. On the other hand, a bias voltage of −100 V was applied to the cemented carbide substrate, Similarly, conventional methods 1 to 16 were carried out by depositing a ZrO 2 layer having a target layer thickness shown in Table 3 on the hard coating layer as a lubricating coating layer, and performing conventional surface coating super-hardening as a conventional coated carbide tool. Hard throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SNCM439(硬さ:HRC50)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:60m/min.、
切り込み:1mm、
送り:0.1mm/rev.、
切削時間:5分、
の条件(切削条件A)での高硬度鋼の乾式断続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:JIS・SUJ2(硬さ:HRC52)の丸棒、
切削速度:45m/min.、
切り込み:0.7mm、
送り:0.1mm/rev.、
切削時間:5分、
の条件(切削条件B)での高硬度鋼の乾式連続高速切削加工試験(通常の切削速度は20m/min.)、
被削材:JIS・SKD11(硬さ:HRC58)の丸棒、
切削速度:40m/min.、
切り込み:0.6mm、
送り:0.1mm/rev.、
切削時間:5分、
の条件(切削条件C)での高硬度鋼の乾式連続高速切削加工試験(通常の切削速度は20m/min.)を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS / SNCM439 (Hardness: HRC50) lengthwise equidistant 4 round bars with vertical grooves,
Cutting speed: 60 m / min. ,
Cutting depth: 1mm,
Feed: 0.1 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test of high hardness steel under the conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: JIS / SUJ2 (Hardness: HRC52) round bar,
Cutting speed: 45 m / min. ,
Cutting depth: 0.7mm,
Feed: 0.1 mm / rev. ,
Cutting time: 5 minutes
Dry continuous high-speed cutting test of high hardness steel under the conditions (cutting condition B) (normal cutting speed is 20 m / min.),
Work material: JIS · SKD11 (hardness: HRC58) round bar,
Cutting speed: 40 m / min. ,
Cutting depth: 0.6mm,
Feed: 0.1 mm / rev. ,
Cutting time: 5 minutes
A dry continuous high-speed cutting test (normal cutting speed is 20 m / min.) Of high hardness steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any high-speed cutting test. . The measurement results are shown in Table 5.

Figure 0004535250
Figure 0004535250

Figure 0004535250
Figure 0004535250

Figure 0004535250
Figure 0004535250

Figure 0004535250
Figure 0004535250

Figure 0004535250
Figure 0004535250

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、潤滑被覆層であるZrO層形成時の装置内雰囲気を表7に示される組成の酸化性ガス雰囲気とする以外は、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層と、同じく表7に示される目標層厚のZrO層からなる潤滑被覆層を蒸着形成する本発明方法17〜24を実施し、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)17〜24をそれぞれ製造した。 Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then placed in the vapor deposition apparatus shown in FIG. The target composition and target layer thickness shown in Table 7 (with the same conditions as in Example 1 above) except that the atmosphere in the apparatus when forming a certain ZrO 2 layer is an oxidizing gas atmosphere having the composition shown in Table 7 ( The present invention methods 17 to 24 are carried out by depositing a hard coating layer composed of a Ti, Al, Si) N layer and a lubricating coating layer composed of a ZrO 2 layer having a target layer thickness similarly shown in Table 7, The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 17 to 24 of the present invention as carbide tools were produced, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層と、同じく表7に示される目標層厚のZrO層からなる潤滑被覆層を蒸着形成する従来方法17〜24を実施し、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)17〜24をそれぞれ製造した。 For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. The hard coating layer composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness also shown in Table 7 under the same conditions as in Example 1 and the target layer thickness also shown in Table 7 Conventional methods 17-24 for vapor-depositing a lubricating coating layer composed of ZrO 2 layers were carried out to produce conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 17-24 as conventional coated carbide tools, respectively. did.

つぎに、この結果得られた本発明被覆エンドミル17〜24および従来被覆エンドミル17〜24のうち、本発明被覆エンドミル17〜19および従来被覆エンドミル17〜19については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCM415(硬さ:HRC51)の板材、
切削速度:80m/min.、
溝深さ(切り込み):0.2mm、
テーブル送り:240mm/分、
の条件での高硬度鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆エンドミル20〜22および従来被覆エンドミル20〜22については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD61(硬さ:HRC53)の板材、
切削速度:80m/min.、
溝深さ(切り込み):0.4mm、
テーブル送り:200mm/分、
の条件での高硬度鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆エンドミル23,24および従来被覆エンドミル23,24については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD11(硬さ:HRC58)の板材、
切削速度:40m/min.、
溝深さ(切り込み):0.8mm、
テーブル送り:45mm/分、
の条件での高硬度鋼の乾式高速溝切削加工試験(通常の切削速度は20m/min.)をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present coated end mills 17 to 24 and the conventional coated end mills 17 to 24 obtained as a result, the present coated end mills 17 to 19 and the conventional coated end mills 17 to 19 are as follows.
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCM415 (hardness: HRC51) plate,
Cutting speed: 80 m / min. ,
Groove depth (cut): 0.2 mm,
Table feed: 240 mm / min,
With respect to the high-hardness steel dry high-speed grooving test (normal cutting speed is 40 m / min.), The coated end mills 20 to 22 and the conventional coated end mills 20 to 22
Work material-Plane: 100 mm x 250 mm, JIS SKD61 (hardness: HRC53) plate material with dimensions of 50 mm,
Cutting speed: 80 m / min. ,
Groove depth (cut): 0.4 mm,
Table feed: 200 mm / min,
With respect to the high-hardness steel dry high-speed grooving test (normal cutting speed is 40 m / min.), The present coated end mills 23 and 24 and the conventional coated end mills 23 and 24,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS · SKD11 (hardness: HRC58) plate material,
Cutting speed: 40 m / min. ,
Groove depth (cut): 0.8 mm,
Table feed: 45mm / min,
Each of the dry high-speed grooving tests (normal cutting speed is 20 m / min.) Of high-hardness steel under the above conditions, and the flank wear width of the outer peripheral edge of the cutting edge is used in any high-speed grooving test. The length of the cutting groove up to 0.1 mm, which is a standard of life, was measured. The measurement results are shown in Table 7, respectively.

Figure 0004535250
Figure 0004535250

Figure 0004535250
Figure 0004535250

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層と、同じく表8に示される目標層厚のZrO層からなる潤滑被覆層を蒸着形成する本発明方法25〜32を実施し、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)25〜32をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1 above, the hard coating layer composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8, and the target layer thickness also shown in Table 8 implementing the method of the present invention 25 to 32 for depositing form a lubricating coating layer made of ZrO 2 layer, the present invention surface-coated cemented carbide drills of the present invention coated cemented carbide (hereinafter, referred to as the present invention cover the drill) 25 32 were produced respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al,Si)N層からなる硬質被覆層と、同じく表8に示される目標層厚のZrO層からなる潤滑被覆層を蒸着形成する従来方法25〜32を実施し、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)25〜32をそれぞれ製造した。 For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. A hard coating layer composed of a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 was charged in the apparatus. A conventional surface-coated carbide drill (hereinafter referred to as a conventional coated drill) is used as a conventional coated carbide tool by performing the conventional methods 25 to 32 for vapor-depositing a lubricating coating layer composed of a ZrO 2 layer having the target layer thickness shown. 25-32 were produced respectively.

つぎに、この結果得られた上記本発明被覆ドリル25〜32および従来被覆ドリル25〜32のうち、本発明被覆ドリル25〜27および従来被覆ドリル25〜27については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUJ2(硬さ:HRC52)の板材、
切削速度:50m/min.、
送り:0.1mm/rev.、
穴深さ:8mm、
の条件での高硬度鋼の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)、本発明被覆ドリル28〜30および従来被覆ドリル28〜30については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD61(硬さ:HRC53)の板材、
切削速度:60m/min.、
送り:0.12mm/rev、
穴深さ:16mm、
の条件での高硬度鋼の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆ドリル31,32および従来被覆ドリル31,32については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD11(硬さ:HRC58)の板材、
切削速度:50m/min.、
送り:0.2mm/rev、
穴深さ:32mm、
の条件での高硬度鋼の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 25 to 32 and the conventional coated drills 25 to 32 obtained as a result, the present invention coated drills 25 to 27 and the conventional coated drills 25 to 27 are:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardness: HRC52) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.1 mm / rev. ,
Hole depth: 8mm,
With respect to the high-hardness steel wet high speed drilling test (normal cutting speed is 20 m / min.), The present invention coated drills 28-30 and the conventional coated drills 28-30,
Work material-Plane: 100 mm x 250 mm, JIS SKD61 (hardness: HRC53) plate material with dimensions of 50 mm,
Cutting speed: 60 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 16mm,
For high-hardness steel wet high speed drilling cutting test (normal cutting speed is 25 m / min.), Coated drills 31, 32 of the present invention and conventional coated drills 31, 32,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS · SKD11 (hardness: HRC58) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 32mm,
Wet high speed drilling test of high hardness steel under normal conditions (normal cutting speed is 25m / min.), And any wet high speed drilling test (using water soluble cutting oil) The number of drilling processes until the flank wear width was 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 0004535250
Figure 0004535250

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル17〜24、および本発明被覆ドリル25〜32の硬質被覆層を構成する(Ti,Al,Si)N層(硬質被覆層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル17〜24、および従来被覆ドリル25〜32の(Ti,Al,Si)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   The hard coating layers of the present coated chips 1-16, the present coated end mills 17-24, and the present coated drills 25-32 as the present coated carbide tool obtained as a result (Ti, Al, Si) ) Composition of N layer (hard coating layer) and (Ti, Al, Si) N layer of conventional coated chips 1-16, conventional coated end mills 17-24, and conventional coated drills 25-32 as conventional coated carbide tools When the composition of the hard coating layer made of was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層および潤滑被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the cross-sectional measurement was carried out using the scanning electron microscope for the average layer thickness of said hard coating layer and lubrication coating layer, all showed the average value (average value of five places) substantially the same as target layer thickness. .

表3〜8に示される結果から、本発明方法1〜32で製造された本発明被覆超硬工具は、いずれも高硬度鋼の高速切削加工でも潤滑被覆層であるZrO層がすぐれた耐摩耗性を発揮し、硬質被覆層の(Ti,Al,Si)N層と共存した状態を長期に亘って保持することから、すぐれた耐摩耗性を示すのに対して、従来方法1〜32で製造された従来被覆超硬工具においては、いずれも潤滑被覆層であるZrO層の摩耗がきわめて速く、硬質被覆層である前記(Ti,Al,Si)N層単独での切削加工を余儀なくされることから、摩耗進行は著しく加速され、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, the coated carbide tools of the present invention manufactured by the methods 1 to 32 of the present invention have excellent resistance to ZrO 2 as a lubricating coating layer even in high-speed cutting of high hardness steel. The conventional methods 1 to 32 show excellent wear resistance because they exhibit wearability and maintain a coexistence state with the (Ti, Al, Si) N layer of the hard coating layer over a long period of time. In the conventional coated cemented carbide tool manufactured by 1), the wear of the ZrO 2 layer, which is a lubricating coating layer, is extremely fast, and it is inevitable to perform cutting with the (Ti, Al, Si) N layer alone, which is a hard coating layer. Thus, it is clear that the progress of wear is remarkably accelerated and the service life is reached in a relatively short time.

上述のように、この発明の方法によれば、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼などの高速切削加工に用いた場合にも、すぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示す被覆超硬工具を製造することができ、切削加工の省力化および省エネ化、さらに低コスト化に寄与するものである。   As described above, according to the method of the present invention, not only cutting under normal cutting conditions such as various types of steel and cast iron, but particularly high-hardness steel such as hardened material of alloy tool steel and bearing steel, etc. Even when used for high-speed cutting, it is possible to produce coated carbide tools that exhibit excellent wear resistance and excellent cutting performance over a long period of time. It contributes to cost reduction.

本発明方法を実施するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for implementing this invention method is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。A normal arc ion plating apparatus is shown, (a) is a schematic plan view, and (b) is a schematic front view.

Claims (1)

(a)中央部に回転テーブルを設け、前記回転テーブルの外側に、カソード電極(蒸発源)としてTi−Al−Si合金を備えた硬質被覆層形成用アーク放電装置およびカソード電極(蒸発源)として金属Zrを備えた潤滑被覆層形成用スパッタリング装置、さらにカソード電極として金属Crを備えた超硬基体表面ボンバード洗浄用アーク放電装置を設けた蒸着装置を用い、
(b)上記蒸着装置の回転テーブル上に炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体を装着し、
(c)まず、上記超硬基体表面ボンバード洗浄用アーク放電装置のカソード電極である金属Crとアノード電極との間にアーク放電を発生させて、上記超硬基体表面をCrボンバード洗浄処理し、
(d)ついで、上記蒸着装置内の雰囲気を窒素ガス雰囲気とすると共に、上記硬質被覆層形成用アーク放電装置のカソード電極であるTi−Al−Si合金とアノード電極との間にアーク放電を発生させて、上記超硬基体の表面に、
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.45〜0.70、Zは0.01〜0.15を示す)、
を満足するTiとAlとSiの複合窒化物層からなる硬質被覆層を1〜10μmの平均層厚で形成し、
(e)さらに、上記蒸着装置内の雰囲気を、酸素ガスを10〜30容量%の割合で含有し、残りがArガスからなる酸化性ガス雰囲気とすると共に、上記潤滑被覆層形成用スパッタリング装置のカソード電極である金属Zrにスパッタを発生させて、上記硬質被覆層に重ねて、酸化ジルコニウム層からなる潤滑被覆層を0.5〜5μmの平均層厚で形成する、
以上(a)〜(e)の工程で構成したことを特徴とする、高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具の製造方法。
(A) An arc discharge device for forming a hard coating layer and a cathode electrode (evaporation source) provided with a rotary table in the center and a Ti—Al—Si alloy as a cathode electrode (evaporation source) outside the rotary table. Using a sputtering apparatus for forming a lubricating coating layer provided with metal Zr, and a vapor deposition apparatus provided with an arc discharge device for cleaning a carbide substrate surface bombardment provided with metal Cr as a cathode electrode,
(B) A cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet is mounted on the rotary table of the vapor deposition apparatus,
(C) First, an arc discharge is generated between the metal Cr, which is a cathode electrode of the carbide substrate surface bombardment cleaning arc discharge device, and an anode electrode, and the carbide substrate surface is subjected to a Cr bombardment cleaning treatment.
(D) Next, the atmosphere in the vapor deposition apparatus is changed to a nitrogen gas atmosphere, and arc discharge is generated between the Ti-Al-Si alloy, which is the cathode electrode of the arc discharge apparatus for forming the hard coating layer, and the anode electrode. Let the surface of the carbide substrate,
Composition formula: (Ti 1- (X + Z) Al X Si Z ) N (wherein, X is 0.45 to 0.70, Z is 0.01 to 0.15 in atomic ratio),
Forming a hard coating layer composed of a composite nitride layer of Ti, Al, and Si satisfying the conditions with an average layer thickness of 1 to 10 μm,
(E) Furthermore, the atmosphere in the vapor deposition apparatus contains an oxygen gas at a ratio of 10 to 30% by volume, and the remainder is an oxidizing gas atmosphere made of Ar gas. Sputtering is generated on the metal Zr that is the cathode electrode, and a lubricating coating layer made of a zirconium oxide layer is formed with an average layer thickness of 0.5 to 5 μm on the hard coating layer.
A method for producing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting of high-hardness steel, characterized by comprising the steps (a) to (e) above .
JP2004201587A 2004-07-08 2004-07-08 Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel Expired - Fee Related JP4535250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201587A JP4535250B2 (en) 2004-07-08 2004-07-08 Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201587A JP4535250B2 (en) 2004-07-08 2004-07-08 Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel

Publications (2)

Publication Number Publication Date
JP2006021276A JP2006021276A (en) 2006-01-26
JP4535250B2 true JP4535250B2 (en) 2010-09-01

Family

ID=35794921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201587A Expired - Fee Related JP4535250B2 (en) 2004-07-08 2004-07-08 Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel

Country Status (1)

Country Link
JP (1) JP4535250B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535255B2 (en) * 2004-09-07 2010-09-01 三菱マテリアル株式会社 Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP4776033B2 (en) * 2006-07-05 2011-09-21 柿原工業株式会社 Method for producing decorative plated product using resin conductivity by sputtering
US9962771B2 (en) * 2014-06-06 2018-05-08 Sumitomo Electric Hardmetal Corp. Surface-coated tool and method of manufacturing the same
JP6385233B2 (en) * 2014-10-10 2018-09-05 日立金属株式会社 Coated cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111764A (en) * 1997-06-10 1999-01-06 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JP2000054114A (en) * 1998-08-06 2000-02-22 Sumitomo Metal Mining Co Ltd Film structure excellent in heat and wear resistance
JP2002513087A (en) * 1998-04-29 2002-05-08 ユナキス・トレーディング・アクチェンゲゼルシャフト Tools or mechanical parts and methods for increasing the wear resistance of such parts
JP2003291005A (en) * 2002-04-01 2003-10-14 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance in high-speed heavy cutting condition
JP4244377B2 (en) * 2003-06-05 2009-03-25 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111764A (en) * 1997-06-10 1999-01-06 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JP2002513087A (en) * 1998-04-29 2002-05-08 ユナキス・トレーディング・アクチェンゲゼルシャフト Tools or mechanical parts and methods for increasing the wear resistance of such parts
JP2000054114A (en) * 1998-08-06 2000-02-22 Sumitomo Metal Mining Co Ltd Film structure excellent in heat and wear resistance
JP2003291005A (en) * 2002-04-01 2003-10-14 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance in high-speed heavy cutting condition
JP4244377B2 (en) * 2003-06-05 2009-03-25 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Also Published As

Publication number Publication date
JP2006021276A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4535250B2 (en) Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4389152B2 (en) Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008260097A (en) Surface-coated cutting tool
JP4535254B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in a high-speed cutting process.
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4158191B2 (en) A method of forming a hard coating layer on the surface of a cutting tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4320714B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4257512B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4535250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

LAPS Cancellation because of no payment of annual fees