JPH111764A - Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance - Google Patents

Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance

Info

Publication number
JPH111764A
JPH111764A JP15231597A JP15231597A JPH111764A JP H111764 A JPH111764 A JP H111764A JP 15231597 A JP15231597 A JP 15231597A JP 15231597 A JP15231597 A JP 15231597A JP H111764 A JPH111764 A JP H111764A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
coating layer
depth
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15231597A
Other languages
Japanese (ja)
Inventor
Toshikatsu Sudo
俊克 須藤
Tetsuya Tanaka
徹也 田中
Keiichi Sakurai
恵一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15231597A priority Critical patent/JPH111764A/en
Publication of JPH111764A publication Critical patent/JPH111764A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide, having a hard coating layer excellent in wear resistance. SOLUTION: The coated cemented carbide tool is formed by coating, by physical vapor deposition, the surface of a base material of tungsten-carbide-base cemented carbide or a base material of titanium-carbonitride-type cermet, to 1-10 μm average layer thickness, with a hard coating layer of sigle or double layer constituted of either or both of a (Ti, Al)N layer and a (Ti, Al)CN layer which have formulae (Ti1-x Alx )N and (Ti1-x Alx )C1-y Ny [where the symbols (x) and (y) stand, respectively, for 0.3-0.7 and 0.5-0.99, by atomic ratio], respectively, for the formation of arc ion plating. At this time, an oxygen-implanted layer irradiated with oxygen ion is formed at least on the ridgeline of cutting edge of the coated cemented carbide tool, over the depth in the range between a position at a depth of 0.5 μm from the surface and a position at a depth of 50% of the average layer thickness of the hard coating layer, measured by the depth on the cutting face side and/or the depth on the flank side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層がす
ぐれた耐摩耗性を有し、したがって例えば鋼などの連続
切削や断続切削で長期に亘ってすぐれた切削性能を発揮
し、工具寿命の延命化を可能ならしめる表面被覆超硬合
金製切削工具(以下、被覆超硬工具と云う)に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a hard coating layer having excellent wear resistance, and therefore, exhibits excellent cutting performance over a long period of time in continuous cutting or interrupted cutting of, for example, steel, and has a long tool life. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter, referred to as a coated cemented carbide tool) capable of extending the life.

【0002】[0002]

【従来の技術】従来、一般に、例えば図1に概略説明図
で示される物理蒸着装置の1種であるアークイオンプレ
ーティング装置を用い、ヒータで装置内を、例えば雰囲
気を20mtorrの真空として、500℃の温度に加
熱した状態で、アノード電極と所定組成を有するTi−
Al合金がセットされたカソード電極(蒸発源)との間
に、例えば電圧:35V、電流:90Aの条件でアーク
放電を発生させ、同時に装置内に反応ガスとして窒素ガ
ス、または窒素ガスとメタンガスを導入し、一方炭化タ
ングステン(以下、WCで示す)基超硬合金または炭窒
化チタン(以下、TiCNで示す)基サーメットからな
る基体(以下、これらを総称して超硬基体と云う)に
は、例えばー200Vのバイアス電圧を印加した条件
で、前記超硬合金基体の表面に、例えば特開昭62−5
6565号公報に記載されるように、TiとAlの複合
窒化物[以下、(Ti,Al)Nで示す]および複合炭
窒化物[以下、(Ti,Al)CNで示す]のうちのい
ずれか、あるいは両方で構成された単層または複層の硬
質被覆層を1〜10μmの平均層厚で蒸着することによ
り被覆超硬工具を製造することが知られている。また、
これらの被覆超硬工具が、例えば鋼などの連続切削や断
続切削に用いられることも良く知られるところである。
2. Description of the Related Art Conventionally, in general, for example, an arc ion plating apparatus, which is a kind of physical vapor deposition apparatus schematically shown in FIG. 1, is used, and the inside of the apparatus is heated to 500 mtorr, for example, with a heater at 500 mtorr. In the state heated to a temperature of ° C., the anode electrode and Ti-
An arc discharge is generated between the cathode electrode (evaporation source) on which the Al alloy is set, for example, under the conditions of a voltage: 35 V and a current: 90 A, and at the same time, nitrogen gas or nitrogen gas and methane gas as a reaction gas in the apparatus. On the other hand, a substrate made of a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a cermet based on titanium carbonitride (hereinafter, referred to as TiCN) (hereinafter, these are collectively referred to as a cemented carbide substrate) include: For example, under the condition that a bias voltage of -200 V is applied, the surface of the cemented carbide substrate is
As described in Japanese Patent No. 6565, any one of a composite nitride of Ti and Al [hereinafter, referred to as (Ti, Al) N] and a composite carbonitride [hereinafter, referred to as (Ti, Al) CN] It is known to produce coated cemented carbide tools by depositing a single or multiple hard coating layers composed of one or both, with an average layer thickness of 1 to 10 μm. Also,
It is well known that these coated carbide tools are used for continuous cutting or interrupted cutting of steel, for example.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削装置
のFA化はめざましく、かつ切削加工の低コスト化に対
する要求も強く、これに伴い、切削工具には使用寿命の
延命化が強く望まれているが、上記の従来被覆超硬工具
は、これらの要求に十分満足に対応できるだけの耐摩耗
性を具備するものではなく、したがってより一段と長い
使用寿命を示す被覆超硬工具の開発が望まれている。
On the other hand, in recent years, the use of FA in cutting devices has been remarkable, and there has been a strong demand for lowering the cost of cutting. Accordingly, it has been strongly desired that cutting tools have a longer service life. However, the above-mentioned conventional coated carbide tools do not have sufficient wear resistance to meet these requirements, and therefore, there is a demand for the development of a coated carbide tool having a longer service life. ing.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具を構成
する硬質被覆層に着目し、特にこれの耐摩耗性向上を図
るべく研を行った結果、上記の従来被覆超硬工具の硬質
被覆層を構成する(Ti,Al)N層および(Ti,A
l)CN層を、上記の通り図3に例示されるアークイオ
ンプレーティング装置を用いて形成するに際して、その
条件を、 雰囲気圧力(真空度):5〜30mtorr、 雰囲気温度:300〜700℃、 アーク放電電流:80〜100A、 アーク放電電圧:10〜50V、 基体へのバイアス電圧:−150〜−300V、 として、組成式:(Ti1-x Alx )Nおよび同(Ti
1-x Alx )C1-y y(ただし、原子比で、xは0.
3〜0.7、yは0.5〜0.99を示す)を満足する
(Ti,Al)N層および(Ti,Al)CN層を形成
し、ついで、上記組成式を満足する(Ti,Al)N層
および/または(Ti,Al)CN層で構成された単層
または複層の硬質被覆層を1〜10μmの平均層厚で蒸
着してなる被覆超硬工具の少なくともすくい面と逃げ面
の交わる切刃稜線部(以下、単に切刃稜線部という)、
すなわち切刃稜線部、切刃稜線部とすくい面、切刃稜線
部と逃げ面、あるいは切刃稜線部とすくい面と逃げ面
に、電子衝撃型(熱陰極型、Kaufman型、バケッ
ト型)や冷陰極型、さらに高周波放電型などのイオン銃
を用いて、酸素イオン照射を行って、すくい面側深さお
よび/または逃げ面側深さで測定して、表面から0.5
μmから上記硬質被覆層の平均層厚の50%までの範囲
内の深さに亘って酸素イオン照射酸素注入層を形成する
と、この結果の被覆超硬工具はすぐれた耐摩耗性を具備
するようになり、長期にわたってすぐれた切削性能を発
揮するという研究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, attention was paid to the hard coating layer constituting the above-mentioned conventional coated carbide tool, and as a result of conducting a study especially to improve the wear resistance of the hard coating layer, the hard coating layer of the above-mentioned conventionally coated carbide tool was obtained. (Ti, Al) N layer and (Ti, A)
l) When forming the CN layer using the arc ion plating apparatus illustrated in FIG. 3 as described above, the conditions are as follows: atmosphere pressure (degree of vacuum): 5 to 30 mtorr, atmosphere temperature: 300 to 700 ° C. Arc discharge current: 80 to 100 A, arc discharge voltage: 10 to 50 V, bias voltage to the substrate: -150 to -300 V, and the composition formula: (Ti 1-x Al x ) N and (Ti 1-x Al x ) N
1-x Al x ) C 1-y N y (where x is 0.
(Ti, Al) N layer and (Ti, Al) CN layer satisfying 3 to 0.7, y indicates 0.5 to 0.99, and then satisfying the above composition formula (Ti , Al) N layer and / or (Ti, Al) CN layer, at least a rake face of a coated carbide tool formed by depositing a single or multiple hard coating layers with an average layer thickness of 1 to 10 μm. Cutting edge ridge line where the flank intersects (hereinafter simply referred to as cutting edge ridge line),
In other words, an electron impact type (hot cathode type, Kaufman type, bucket type) or Oxygen ion irradiation is performed using an ion gun such as a cold cathode type or a high frequency discharge type, and measured at the rake face side depth and / or the flank side depth, and 0.5
Forming the oxygen-implanted oxygen implanted layer over a depth in the range of from .mu.m to 50% of the average layer thickness of the hard coating layer, the resulting coated carbide tool will have excellent wear resistance. , And obtained research results that demonstrate excellent cutting performance over a long period of time.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、アークイオン
プレーティング形成の組成式:(Ti1-x Alx )Nお
よび同(Ti1-x Alx )C1-y y (ただし、原子比
で、xは0.3〜0.7、yは0.5〜0.99を示
す)を有する(Ti,Al)N層および(Ti,Al)
CN層のうちのいずれか、または両方で構成された単層
または複層からなる硬質被覆層を1〜10μmの平均層
厚で物理蒸着してなる被覆超硬工具にして、前記被覆超
硬工具の少なくとも切刃稜線部に、すくい面側深さおよ
び/または逃げ面側深さで測定して、表面から0.5μ
mから上記硬質被覆層の平均層厚の50%までの範囲内
の深さに亘って酸素イオン照射酸素注入層を形成してな
る、硬質被覆層がすぐれた耐摩耗性を有する被覆超硬工
具に特徴を有するものである。
The present invention has been made on the basis of the above research results, and has a composition formula of (Ti 1-x Al x ) N and (Ti 1-x Al x ) N for forming an arc ion plating on the surface of a cemented carbide substrate. (Ti, Al) N layer having 1-x Al x ) C 1-y N y (where x represents 0.3 to 0.7 and y represents 0.5 to 0.99 in atomic ratio) And (Ti, Al)
A hard coated layer consisting of a single layer or multiple layers composed of one or both of the CN layers is physically coated with an average layer thickness of 1 to 10 μm to form a coated carbide tool, and the coated carbide tool is provided. 0.5 μm from the surface, measured at least on the rake face side and / or the flank face depth
The hard coated layer has excellent wear resistance, and is formed by forming an oxygen-implanted oxygen-implanted layer over a depth ranging from m to 50% of the average thickness of the hard coated layer. It is characterized by the following.

【0006】なお、この発明の被覆超硬工具において、
硬質被覆層を構成する(Ti,Al)Nおよび(Ti,
Al)CNにおけるAlはTiCNに対して硬さを高
め、もって耐摩耗性を向上させるために固溶するもので
あり、したがって組成式:(Ti1-x Alx )Nおよび
同(Ti1-x Alx )C1-y y のx値が0.3未満で
は所望の耐摩耗性を確保することができず、一方その値
が0.7を越えると、切刃に欠けやチッピングが発生し
易くなると云う理由によりx値を0.3〜0.7(原子
比)と定めたのである。また、(Ti,Al)CN層に
おけるC成分には、硬さを向上させる作用があるので、
(Ti,Al)CN層は上記(Ti,Al)N層に比し
て相対的に高い硬さをもつが、この場合C成分の割合が
0.01未満、すなわちy値が0.99を越えると所定
の硬さ向上効果が得られず、一方C成分の割合が0.5
を越える、すなわちy値が0.5未満になると靭性が急
激に低下するようになることから、y値を0.5〜0.
99、望ましくは0.55〜0.9と定めた。硬質被覆
層の平均層厚を1〜10μmとしたのは、その層厚が1
μm未満では所望のすぐれた耐摩耗性を確保することが
できず、一方その層厚が10μmを越えると切刃に欠け
やチッピングが発生し易くなると云う理由によるもので
ある。同じく硬質被覆層に形成される酸素イオン照射酸
素注入層の深さを0.5μm〜硬質被覆層の平均層厚の
50%としたのは、その深さが0.5μm未満では、所
望の耐摩耗性向上効果が得られず、一方その深さが硬質
被覆層の平均層厚の50%をこえると、硬質被覆層に脆
化傾向が現れるようになって切刃に欠けやチッピングが
発生し易くなると云う理由によるものである。さらに、
この発明の被覆超硬工具に、これの使用前および使用後
の識別を容易にするために、最表面層として金色の色調
を有する窒化チタン(TiN)層を0.1〜1μmの平
均層厚で蒸着してもよい。
[0006] In the coated carbide tool of the present invention,
(Ti, Al) N and (Ti,
Al increases the hardness against TiCN in Al) CN, has been is intended to be formed as a solid solution in order to improve the wear resistance, thus the composition formula: (Ti 1-x Al x ) N and the (Ti 1- If the x value of xAl x ) C 1-y N y is less than 0.3, the desired wear resistance cannot be ensured. On the other hand, if the value exceeds 0.7, chipping or chipping of the cutting edge may occur. The x value was determined to be 0.3 to 0.7 (atomic ratio) for the reason that it is likely to occur. In addition, since the C component in the (Ti, Al) CN layer has an effect of improving hardness,
The (Ti, Al) CN layer has a relatively high hardness as compared with the (Ti, Al) N layer. In this case, the ratio of the C component is less than 0.01, that is, the y value is 0.99. If it exceeds, the predetermined hardness improving effect cannot be obtained, while the proportion of the C component is 0.5%.
When the y value exceeds 0.5, that is, when the y value is less than 0.5, the toughness rapidly decreases.
99, preferably 0.55 to 0.9. The reason why the average layer thickness of the hard coating layer is 1 to 10 μm is that the layer thickness is 1
If the thickness is less than μm, the desired excellent wear resistance cannot be ensured, while if the thickness exceeds 10 μm, chipping or chipping is likely to occur in the cutting edge. Similarly, the depth of the oxygen ion-irradiated oxygen-implanted layer formed in the hard coating layer is set to 0.5 μm to 50% of the average layer thickness of the hard coating layer. If the effect of improving the abrasion cannot be obtained, and if the depth exceeds 50% of the average thickness of the hard coating layer, the hard coating layer tends to become brittle and chipping or chipping of the cutting edge occurs. This is because it becomes easier. further,
In order to facilitate the discrimination before and after use of the coated carbide tool of the present invention, a titanium nitride (TiN) layer having a golden color tone as an outermost surface layer has an average layer thickness of 0.1 to 1 μm. May be deposited.

【0007】[0007]

【発明の実施の形態】ついで、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、い
ずれも1〜3μmの平均粒径を有するWC粉末、TiC
粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉
末、Cr3 2 粉末、TiN粉末、TaN粉末、および
Co粉末を用意し、これら原料粉末を、表1に示される
配合組成に配合し、ボールミルで72時間湿式混合し、
乾燥した後、1.5ton/cm2 の圧力で圧粉体にプ
レス成形し、この圧粉体を真空中、温度:1400℃に
1時間保持の条件で焼結し、焼結後、切刃部分にR:
0.05のホーニング加工を施してISO規格・SPG
A120408のチップ形状をもったWC基超硬合金製
の超硬基体A1〜A10を形成した。また、原料粉末と
して、いずれも0.5〜2μmの平均粒径を有するTi
CN(重量比でTiC/TiN=50/50)粉末、M
2 C粉末、ZrC粉末、NbC粉末、TaC粉末、W
C粉末、Co粉末、およびNi粉末を用意し、これら原
料粉末を、表2に示される配合組成に配合し、ボールミ
ルで24時間湿式混合し、乾燥した後、1ton/cm
2 の圧力で圧粉体にプレス成形し、この圧粉体を10t
orrの窒素雰囲気中、温度:1540℃に1時間保持
の条件で焼結し、焼結後、切刃部分にR:0.03のホ
ーニング加工を施してISO規格・SEKN1203A
FEN1のチップ形状をもったTiCN系サーメット製
の超硬基体B1〜B6を形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. WC powder, TiC having an average particle diameter of 1 to 3 μm,
Powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder were prepared, and these raw material powders were blended in the composition shown in Table 1 to form a ball mill. For 72 hours,
After drying, it is pressed into a green compact at a pressure of 1.5 ton / cm 2 , and the green compact is sintered in a vacuum at a temperature of 1400 ° C. for 1 hour, and after sintering, the cutting edge is cut. R in part:
Honing process of 0.05 and ISO standard / SPG
Carbide substrates A1 to A10 made of a WC-based cemented carbide having a chip shape of A120408 were formed. In addition, as raw material powder, Ti having an average particle size of 0.5 to 2 μm is used.
CN (TiC / TiN = 50/50 by weight ratio) powder, M
o 2 C powder, ZrC powder, NbC powder, TaC powder, W
A C powder, a Co powder, and a Ni powder were prepared, and these raw material powders were blended in the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then dried at 1 ton / cm.
Press molding into a green compact at a pressure of 2
In a nitrogen atmosphere of orr, sintering is performed at a temperature of 1540 ° C. for 1 hour, and after sintering, a honing process of R: 0.03 is performed on a cutting edge portion, and ISO standard SEKN1203A is applied.
Carbide substrates B1 to B6 made of TiCN-based cermet having a chip shape of FEN1 were formed.

【0008】ついで、これら超硬基体A1〜A10およ
びB1〜B6を、アセトン中で超音波洗浄し、乾燥した
状態で、それぞれ図1に例示される通常のアークイオン
プレーティング装置に装入し、一方カソード電極(蒸発
源)として種々の成分組成をもったTi−Al合金を装
着し、装置内を排気して1×10-5torrの真空に保
持しながら、ヒーターで装置内を500℃に加熱した
後、Arガスを装置内に導入して1×10-3torrの
Ar雰囲気とし、この状態で超硬基体に−800vのバ
イアス電圧を印加して超硬基体表面をArガスボンバー
ト洗浄し、ついで装置内に反応ガスとして窒素ガス、ま
たは窒素ガスとメタンガスを導入して5×10-3tor
rの反応雰囲気とすると共に、前記超硬基体に印加する
バイアス電圧を−200vに下げて、前記カソード電極
とアノード電極との間にアーク放電を発生させ、もって
前記超硬基体A1〜A10およびB1〜B6のそれぞれ
の表面に、表3、4に示される組成および平均層厚をも
った硬質被覆層を蒸着することにより従来被覆超硬工具
1〜24をそれぞれ製造した。
Next, these super-hard substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and each is charged into a usual arc ion plating apparatus illustrated in FIG. On the other hand, Ti-Al alloys having various component compositions were mounted as a cathode electrode (evaporation source), and the inside of the apparatus was evacuated and kept at a vacuum of 1 × 10 -5 torr while the inside of the apparatus was heated to 500 ° C. After heating, an Ar gas was introduced into the apparatus to form an Ar atmosphere of 1 × 10 −3 torr, and in this state, a −800 V bias voltage was applied to the superhard substrate to clean the surface of the superhard substrate by Ar gas bombardment. Then, nitrogen gas or nitrogen gas and methane gas are introduced into the apparatus as a reaction gas to supply 5 × 10 −3 torr.
r and reducing the bias voltage applied to the cemented carbide substrate to -200 V to generate an arc discharge between the cathode electrode and the anode electrode, thereby forming the cemented carbide substrates A1 to A10 and B1. Conventionally coated carbide tools 1 to 24 were produced by depositing a hard coating layer having the composition and average layer thickness shown in Tables 3 and 4 on the surfaces of B6 to B6, respectively.

【0009】ついで、この結果得られた従来被覆超硬工
具1〜24のそれぞれの切刃稜線部、あるいは切刃稜線
部とすくい面および/または逃げ面に、電子衝撃型(バ
ケット型)イオン銃を用いて、酸素イオン照射を行っ
て、すくい面側深さおよび/または逃げ面側深さで測定
して、表5に示される深さの酸素イオン照射酸素注入層
を形成することにより本発明被覆超硬工具1〜24をそ
れぞれ製造した。なお、酸素注入層の深さは、オージェ
分析装置を用いて、工具縦断面を表面から内部に向けて
直角に酸素濃度分布を測定し、この測定結果をもって現
した。
Then, an electron impact type (bucket type) ion gun is applied to each of the cutting edge ridges of the conventional coated carbide tools 1 to 24 or the rake face and / or flank of the cutting edge. The present invention is carried out by forming an oxygen ion-irradiated oxygen-implanted layer having a depth shown in Table 5 by performing oxygen ion irradiation to measure the rake face side depth and / or flank side depth using Coated carbide tools 1 to 24 were manufactured respectively. The depth of the oxygen-injected layer was determined by using an Auger analyzer and measuring the oxygen concentration distribution at a right angle with the longitudinal section of the tool directed from the surface toward the inside.

【0010】つぎに、この結果得られた本発明被覆超硬
工具1〜18および従来被覆超硬工具1〜18について
は、 被削材:JIS・S45Cの角材、 切削速度:200m/min.、 切込み:2.5mm、 送り:0.25mm/刃、 の条件での炭素鋼の乾式断続切削(フライス切削)試験
を行ない、また本発明被覆超硬工具19〜24および従
来被覆超硬工具19〜24については、 被削材:JIS・SNCM439の角材、 切削速度:330m/min.、 切込み:2mm.、 送り:0.15mm/刃、 の条件での合金鋼の乾式断続切削(フライス切削)試験
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が
0.2mmに至るまでの切削時間を測定した。これらの
測定結果を表6に示した。
Next, the coated carbide tools 1 to 18 of the present invention and the conventional coated carbide tools 1 to 18 obtained as a result are as follows: work material: square material of JIS S45C; cutting speed: 200 m / min. , Depth of cut: 2.5 mm, feed: 0.25 mm / tooth, a dry interrupted cutting (milling) test of carbon steel was performed, and the coated carbide tools 19 to 24 of the present invention and the conventionally coated carbide tools 19 Work material: square bar of JIS SNCM439, Cutting speed: 330 m / min. , Depth of cut: 2 mm. , Feed: 0.15 mm / tooth, a dry intermittent cutting (milling) test of alloy steel was performed under the following conditions. In any cutting test, the cutting time until the flank wear width of the cutting edge reached 0.2 mm was determined. It was measured. Table 6 shows the measurement results.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【表5】 [Table 5]

【0016】[0016]

【表6】 [Table 6]

【0017】[0017]

【発明の効果】表3〜6に示される結果から、本発明被
覆超硬工具1〜24は、いずれも酸素イオン照射酸素注
入層の形成によって従来被覆超硬工具1〜24に比して
すぐれた耐摩耗性を発揮し、長い使用寿命を示すことが
明らかである。上述のように、この発明の被覆超硬工具
は、この種の従来被覆超硬工具に比して長い使用寿命を
示すので、切削装置のFA化および切削加工の低コスト
化に十分満足に対応することができるものである。
From the results shown in Tables 3 to 6, all of the coated carbide tools 1 to 24 of the present invention are superior to the conventional coated carbide tools 1 to 24 due to the formation of the oxygen ion-irradiated oxygen implanted layer. It is evident that it exhibits excellent wear resistance and exhibits a long service life. As described above, the coated carbide tool of the present invention has a longer service life than this type of conventional coated carbide tool, and therefore sufficiently satisfies the use of FA in a cutting device and a reduction in the cost of cutting. Is what you can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アークイオンプレーティング装置の概略説明図
である。
FIG. 1 is a schematic explanatory view of an arc ion plating apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、アークイオン
プレーティング形成の組成式:(Ti1-x Alx )Nお
よび同(Ti1-x Alx )C1-y y (ただし、原子比
で、xは0.3〜0.7、yは0.5〜0.99を示
す)を有するTiとAlの複合窒化物およびTiとAl
の複合炭窒化物のうちのいずれかで構成された単層また
は両方で構成された複層からなる硬質被覆層を1〜10
μmの平均層厚で物理蒸着してなる表面被覆超硬合金製
切削工具にして、 上記表面被覆超硬合金製切削工具の少なくともすくい面
と逃げ面の交わる切刃稜線部に、すくい面側深さおよび
/または逃げ面側深さで測定して、表面から0.5μm
から上記硬質被覆層の平均層厚の50%までの範囲内の
深さに亘って酸素イオン照射酸素注入層を形成したこと
を特徴とする硬質被覆層がすぐれた耐摩耗性を有する表
面被覆超硬合金製切削工具。
1. A composition formula for forming an arc ion plating on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate: (Ti 1-x Al x ) N and (Ti 1-x Al x) ) Ti and Al composite nitride and Ti and Al having C 1-y N y (where x represents 0.3 to 0.7 and y represents 0.5 to 0.99 in atomic ratio)
Hard coating layer consisting of a single layer composed of any one of the composite carbonitrides or a multilayer composed of both
A surface-coated cemented carbide cutting tool formed by physical vapor deposition with an average layer thickness of μm, and at least the cutting edge ridge line where the rake face and the flank intersect, the rake face side depth of the surface-coated cemented carbide cutting tool. 0.5 μm from the surface, measured at the flank and / or flank depth
A hard coating layer having excellent wear resistance, characterized in that the oxygen coating layer is formed by oxygen ion irradiation over a depth ranging from 50 to 50% of the average layer thickness of the hard coating layer. Hard alloy cutting tool.
JP15231597A 1997-06-10 1997-06-10 Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance Withdrawn JPH111764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15231597A JPH111764A (en) 1997-06-10 1997-06-10 Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15231597A JPH111764A (en) 1997-06-10 1997-06-10 Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance

Publications (1)

Publication Number Publication Date
JPH111764A true JPH111764A (en) 1999-01-06

Family

ID=15537847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15231597A Withdrawn JPH111764A (en) 1997-06-10 1997-06-10 Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance

Country Status (1)

Country Link
JP (1) JPH111764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466536B1 (en) * 2002-05-10 2005-01-15 한국원자력연구소 Method for surface treating hair clippers by ion irradiation
JP2006015451A (en) * 2004-07-01 2006-01-19 Mitsubishi Materials Corp Method of manufacturing surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high speed cutting
JP2006021276A (en) * 2004-07-08 2006-01-26 Mitsubishi Materials Corp Method of manufacturing of surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting work of high hardness steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466536B1 (en) * 2002-05-10 2005-01-15 한국원자력연구소 Method for surface treating hair clippers by ion irradiation
JP2006015451A (en) * 2004-07-01 2006-01-19 Mitsubishi Materials Corp Method of manufacturing surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high speed cutting
JP4535249B2 (en) * 2004-07-01 2010-09-01 三菱マテリアル株式会社 Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP2006021276A (en) * 2004-07-08 2006-01-26 Mitsubishi Materials Corp Method of manufacturing of surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting work of high hardness steel
JP4535250B2 (en) * 2004-07-08 2010-09-01 三菱マテリアル株式会社 Manufacturing method of surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of hardened steel

Similar Documents

Publication Publication Date Title
JP3451877B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3844285B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3454148B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JPH111764A (en) Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance
JP3451878B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3451857B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3536593B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JP2001162411A (en) Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance
JP3397058B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2003048104A (en) Surface coated cemented carbide cutting tool having wear resistance coating layer exhibiting superior heat resisting plastic deformation property
JP3397060B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3397063B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3397054B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP2001322007A (en) Surface coated cemented carbide cutting tool with excellent wear resistance
JP2002273604A (en) Surface coat carbonitride titanium thermet made throwaway cutting tip with cutting edge part to display excellent chipping resistance in high speed heavy cutting work
JPH1180931A (en) Cutting tool made of surface coated cemented carbide, excellent in chipping resistance
JPH10251830A (en) Surface coated cemented carbide-cutting tool having excellent chipping resistance in physical vapor-deposited coating layer
JPH11804A (en) Cutting tool made of surface-coated hard sintered material excellent in pitching resistance
JPH10251829A (en) Surface coated cemented carbide cutting tool having excellent chipping resistance in hard coating layer
JPH1180930A (en) Cutting tool made of surface coated cemented carbide, excellent in chipping resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907