JP2003136302A - Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting - Google Patents

Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting

Info

Publication number
JP2003136302A
JP2003136302A JP2001332805A JP2001332805A JP2003136302A JP 2003136302 A JP2003136302 A JP 2003136302A JP 2001332805 A JP2001332805 A JP 2001332805A JP 2001332805 A JP2001332805 A JP 2001332805A JP 2003136302 A JP2003136302 A JP 2003136302A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
hard coating
coating layer
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001332805A
Other languages
Japanese (ja)
Other versions
JP3693001B2 (en
Inventor
Kazunori Sato
和則 佐藤
Akihiro Kondou
暁裕 近藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
MMC Kobelco Tool Co Ltd
Original Assignee
Mitsubishi Materials Corp
MMC Kobelco Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, MMC Kobelco Tool Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2001332805A priority Critical patent/JP3693001B2/en
Publication of JP2003136302A publication Critical patent/JP2003136302A/en
Application granted granted Critical
Publication of JP3693001B2 publication Critical patent/JP3693001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer exerting excellent wear resistance in high-speed cutting. SOLUTION: This surface coated cemented carbide cutting tool is made by physically depositing the hard coating layer made of (b) a Ti-Al composite nitride layer which has average layer thickness of 2 to 15 μm, satisfies a composition formula: (Ti1- YAlY)N (Y shows 0.4 to 0.6 in an atomic ratio), shows a maximum peak on (200) plane by a measurement by an X-ray diffractometer using Cu-Kα rays and shows an X-ray diffraction pattern having the half-width of 2θand <=0.6 degrees of the maximum peak, on the surface of a tungsten carbide group cemented carbide base body or a titanium carbonitride group cermet base body, via a crystal orientation history layer made of (a) a Ti-Al composite carbide layer which has average layer thickness of 0.05 to 0.5 μm, satisfies a composition formula: (Ti1- XAlX)C (X shows 0.05 to 0.20 in the atomic ratio), shows a maximum peak on (200) plane by a measurement by the X-ray diffractometer using Cu-Kα rays and shows an X-ray diffraction pattern having the half-width of 2θ and <=0.6 degrees of the maximum peak.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、硬質被覆層がす
ぐれた高温特性を有し、したがって各種の鋼や鋳鉄など
の高熱発生を伴う高速切削加工で、すぐれた耐摩耗性を
発揮する表面被覆超硬合金製切削工具(以下、被覆超硬
工具という)に関するものである。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、切削工具として、炭化タングステン
(以下、WCで示す)基超硬合金または炭窒化チタン
(以下、TiCNで示す)基サーメットからなる基体
(以下、これらを総称して超硬基体と云う)の表面に、
組成式:(Ti1-YAlY)N(ただし、原子比で、Yは
0.4〜0.6を示す)を満足するTi−Al複合窒化
物[以下、(Ti,Al)Nで示す]層からなる硬質被
覆層を2〜15μmの平均層厚で物理蒸着してなる被覆
超硬工具が知られており、これが各種の鋼や鋳鉄などの
連続切削や断続切削加工に用いられることも良く知られ
るところである。 【0004】さらに、上記の被覆超硬工具が、例えば図
3に概略説明図で示される物理蒸着装置の1種であるア
ークイオンプレーティング装置に上記の超硬基体を装入
し、ヒータで装置内を、例えば雰囲気を1.3×10-3
Paの真空として、500℃の温度に加熱した状態で、
アノード電極と所定組成を有するTi−Al合金がセッ
トされたカソード電極(蒸発源)との間に、例えば電
圧:35V、電流:90Aの条件でアーク放電を発生さ
せ、同時に装置内に反応ガスとして窒素ガスを導入し、
一方上記超硬基体には、例えば−200Vのバイアス電
圧を印加した条件で、前記超硬基体の表面に、上記(T
i,Al)N層からなる硬質被覆層を蒸着することによ
り製造されることも知られている。 【0005】 【発明が解決しようとする課題】近年の切削加工装置の
高性能化はめざましく、一方で切削加工に対する省力化
および省エネ化、さらに低コスト化の要求は強く、これ
に伴い、切削加工は高速化の傾向にあるが、上記の従来
被覆超硬工具においては、これを通常の切削加工条件で
用いた場合には問題はないが、これを高い発熱を伴う高
速切削条件用いた場合には、硬質被覆層の摩耗進行が促
進され、比較的短時間で使用寿命に至るのが現状であ
る。 【0006】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高速切削加工ですぐれた耐摩耗
性を発揮する被覆超硬工具を開発すべく、特に上記の従
来被覆超硬工具を構成する硬質被覆層に着目し、研究を
行った結果、 (a)上記の従来被覆超硬工具を構成する(Ti,A
l)N層からなる硬質被覆層は、Cu−Kα線を用いた
X線回折装置による測定で、図2に例示される通り(2
00)面に最高ピークが現われ、かつ前記最高ピークの
半価幅が2θ(横軸)で0.9度以上であるX線回折パ
ターンを示すが、この硬質被覆層を超硬基体表面に物理
蒸着形成するに先だって、予め組成式:(Ti1-X
X)Cただし、原子比で、Xは0.05〜0.20を
示す)を満足するTi−Al複合炭化物[以下、(T
i,Al)Cで示す]層をきわめて薄い0.05〜0.
5μmの平均層厚で蒸着形成しておくと、前記(Ti,
Al)C層は、(200)面に高配向し、前記(20
0)結晶面のピークの半価幅が2θで0.6度以下のX
線回折パターンを示すので、これの上に物理蒸着され
た、本来X線回折パターンの(200)面におけるピー
クの半価幅が2θで0.9度以上であるX線回折パター
ンを示す前記(Ti,Al)N層も、図1に例示される
通り前記(Ti,Al)C層による結晶配向履歴効果に
よって前記(200)面のピークの半価幅が2θで0.
6度以下の高配向X線回折パターンを示すようになるこ
と。 【0007】(b)X線回折パターンの(200)面に
おけるピークの半価幅が2θで0.6度以下を示す高配
向の(Ti,Al)N層は、同ピークの半価幅が同0.
9度以上の(Ti,Al)N層に比して高温特性(高温
耐酸化性および高温硬さ)にすぐれているので、前記高
配向の(Ti,Al)N層からなる硬質被覆層を超硬基
体表面に物理蒸着してなる被覆超硬工具は、高い発熱を
伴う鋼や軟鋼などの高速切削加工ですぐれた耐摩耗性を
発揮するようになること。以上(a)および(b)に示
される研究結果を得たのである。 【0008】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、(a)0.0
5〜0.5μmの平均層厚を有し、かつ、組成式:(T
1-XAlX)Cただし、原子比で、Xは0.05〜0.
20を示す)を満足満足し、さらに、Cu−Kα線を用
いたX線回折装置による測定で、(200)面に最高ピ
ークが現われ、かつ前記最高ピークの半価幅が2θで
0.6度以下であるX線回折パターンを示す(Ti,A
l)C層からなる結晶配向履歴層を介して、(b)2〜
15μmの平均層厚を有し、組成式:(Ti1-YAlY
N(ただし、原子比で、Yは0.4〜0.6を示す)を
満足し、同じくCu−Kα線を用いたX線回折装置によ
る測定で、(200)面に最高ピークが現われ、かつ前
記最高ピークの半価幅が2θで0.6度以下であるX線
回折パターンを示す(Ti,Al)N層からなる硬質被
覆層を物理蒸着してなる、高速切削加工で硬質被覆層が
すぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有す
るものである。 【0009】つぎに、この発明の被覆超硬工具におい
て、これを構成する結晶配向履歴層および硬質被覆層の
組成および平均層厚を上記の通りに限定した理由を説明
する。 (a)結晶配向履歴層[(Ti,Al)C層] (Ti,Al)C層におけるAlには、層の(200)
面を切刃のすくい面および逃げ面に対して垂直方向に配
向する作用があるが、Alの割合が原子比で0.05未
満では、(200)面への配向が不十分で、(200)
面に現われる最高ピークの半価幅を2θで0.6度以下
に高配向させることができず、一方その割合が同じく
0.20を越えても、結晶配向が乱れるようになって、
(200)面を高配向させることが困難になることか
ら、その割合を0.05〜0.20と定めた。また、そ
の平均層厚が0.05μm未満では、(Ti,Al)C
層の本来有する(200)面の高配向性を硬質被覆層に
転化する結晶配向履歴効果を十分に発揮させることがで
きず、一方この結晶配向履歴効果は0.5μmまでの平
均層厚で十分であることから、その平均層厚を0.05
〜0.5μmと定めた。 【0010】(b)硬質被覆層[(Ti,Al)N層] (Ti,Al)N層のAlは、高靭性を有するTiN層
の硬さおよび耐熱性を高め、もって耐摩耗性を向上させ
る目的で含有するが、その割合がTiとの合量に占める
割合(原子比)で0.4未満では所望の耐摩耗性向上効
果が得られず、一方その割合が同じく0.6を越える
と、切刃にチッピング(微小欠け)などが発生し易くな
ることから、その割合を0.4〜0.6と定めた。ま
た、その平均層厚が2μm未満では、所望の耐摩耗性を
確保することができず、一方その平均層厚が15μmを
越えると、切刃にチッピングが発生し易くなることか
ら、その平均層厚を2〜15μmと定めた。さらに、X
線回折パターンの(200)面に現われる最高ピークの
半価幅:0.6度以下(2θ)は、試験結果に基づいて
経験的に定めたものであり、したがって前記半価幅が
0.6度以下の場合に、特に高速切削加工ですぐれた耐
摩耗性を発揮し、前記半価幅が0.6度を越えて大きく
なる、すなわち(200)面の配向性が低下するように
なると、所望の耐摩耗性を確保することができなくな
る、という理由によるものである。 【0011】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、ZrC粉末、V
C粉末、TaC粉末、NbC粉末、Cr3 2 粉末、T
iN粉末、TaN粉末、およびCo粉末を用意し、これ
ら原料粉末を、表1に示される配合組成に配合し、ボー
ルミルで72時間湿式混合し、乾燥した後、100MP
a の圧力で圧粉体にプレス成形し、この圧粉体を6P
aの真空中、温度:1400℃に1時間保持の条件で焼
結し、焼結後、切刃部分にR:0.05のホーニング加
工を施してISO規格・CNMG120408のチップ
形状をもったWC基超硬合金製の超硬基体A1〜A10
を形成した。 【0012】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。 【0013】ついで、これら超硬基体A1〜A10およ
びB1〜B6を、アセトン中で超音波洗浄し、乾燥した
状態で、それぞれ図3に例示される通常のアークイオン
プレーティング装置に装入し、一方カソード電極(蒸発
源)として種々の成分組成をもった結晶配向履歴層形成
用Ti−Al合金および硬質被覆層形成用Ti−Al合
金を装着し、装置内を排気して0.5Paの真空に保持
しながら、ヒーターで装置内を500℃に加熱した後、
Arガスを装置内に導入して10PaのAr雰囲気と
し、この状態で超硬基体に−800Vのバイアス電圧を
印加して超硬基体表面をArガスボンバート洗浄し、つ
いでArガスの導入を止めた状態で、前記超硬基体に印
加するバイアス電圧を−100Vに下げ、かつ装置内に
反応ガスとしてメタンガスを導入して3.5Paの反応
雰囲気とすると共に、前記カソード電極(結晶配向履歴
層形成用Ti−Al合金)とアノード電極との間にアー
ク放電を発生させ、もって前記超硬基体A1〜A10お
よびB1〜B6のそれぞれの表面に、表3,4に示され
る目標組成および目標層厚の結晶配向履歴層[(Ti,
Al)C層]を形成し、引き続いて装置内に反応ガスと
して窒素ガスを導入して3.5Paの反応雰囲気とする
と共に、前記超硬基体に印加するバイアス電圧を−30
Vに下げて、前記カソード電極(硬質被覆層形成用Ti
−Al合金)とアノード電極との間にアーク放電を発生
させ、もって同じく表3,4に示される目標組成および
目標層厚の硬質被覆層[(Ti,Al)N層]を蒸着す
ることにより、図4(a)に概略斜視図で、同(b)に
概略縦断面図で示される形状を有する本発明被覆超硬工
具としての本発明表面被覆超硬合金製スローアウエイチ
ップ(以下、本発明被覆超硬チップと云う)1〜20を
それぞれ製造した。また、比較の目的で、表5,6に示
される通り上記結晶配向履歴層[(Ti,Al)C層]
の形成を行なわない以外は同一の条件で従来被覆超硬工
具としての従来表面被覆超硬合金製スローアウエイチッ
プ(以下、従来被覆超硬チップと云う)1〜20をそれ
ぞれ製造した。 【0014】つぎに、上記本発明被覆超硬チップ1〜2
0および従来被覆超硬チップ1〜20について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SNCM439の丸棒、 切削速度:360m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高速連続旋削加工試験、 被削材:JIS・S50Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:280m/min.、 切り込み:1.8mm、 送り:0.3mm/rev.、 切削時間:5分、 の条件での炭素鋼の乾式高速断続旋削加工試験、さら
に、被削材:JIS・FC250の長さ方向等間隔4本
縦溝入り丸棒、 切削速度:200m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:5分、 の条件での鋳鉄の乾式高速断続旋削加工試験を行い、い
ずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表7、8に示した。 【0015】 【表1】 【0016】 【表2】【0017】 【表3】 【0018】 【表4】 【0019】 【表5】【0020】 【表6】 【0021】 【表7】【0022】 【表8】 【0023】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表9に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、さらに前記
の3種の丸棒焼結体から、研削加工にて、表9に示され
る組合せで、切刃部の直径×長さがそれぞれ6mm×1
3mm、10mm×22mm、および20mm×45m
mの寸法をもった超硬基体(エンドミル)a〜hをそれ
ぞれ製造した。 【0024】ついで、これらの超硬基体(エンドミル)
a〜hの表面に、ホーニングを施し、アセトン中で超音
波洗浄し、乾燥した状態で、同じく図3に例示される通
常のアークイオンプレーティング装置に装入し、上記実
施例1と同一の条件で、表10に示される目標組成およ
び目標層厚をもった結晶配向履歴層[(Ti,Al)C
層]および硬質被覆層[(Ti,Al)N層]を蒸着す
ることにより、図5(a)に概略正面図で、同(b)に
切刃部の概略横断面図で示される形状を有する本発明被
覆超硬工具としての本発明表面被覆超硬合金製エンドミ
ル(以下、本発明被覆超硬エンドミルと云う)1〜8を
それぞれ製造した。また、比較の目的で、表11に示さ
れる通り上記結晶配向履歴層[(Ti,Al)C層]の
形成を行なわない以外は同一の条件で従来被覆超硬工具
としての従来表面被覆超硬合金製エンドミル(以下、従
来被覆超硬エンドミルと云う)1〜8をそれぞれ製造し
た。 【0025】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:160m/min.、 溝深さ(切り込み):2.5mm、 テーブル送り:700mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル4〜6および従来被覆超硬エンドミル
4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S45Cの板材、 切削速度:180m/min.、 溝深さ(切り込み):5mm、 テーブル送り:550mm/分、 の条件での炭素鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC300の板材、 切削速度:180m/min.、 溝深さ(切り込み):10mm、 テーブル送り:300mm/分、 の条件での鋳鉄の乾式高速溝切削加工試験、をそれぞれ
行い、いずれの溝切削加工試験でも外周刃の逃げ面摩耗
量が使用寿命の目安とされる0.1mmに至るまでの切
削溝長を測定した。この測定結果を表10、11にそれ
ぞれ示した。 【0026】 【表9】 【0027】 【表10】 【0028】 【表11】【0029】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体a〜c形成用)、13mm(超硬
基体d〜f形成用)、および26mm(超硬基体g、h
形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼
結体から、研削加工にて、溝形成部の直径×長さがそれ
ぞれ4mm×13mm(超硬基体a´〜c´)、8mm
×22mm(超硬基体d´〜f´)、および16mm×
45mm(超硬基体g´、h´)の寸法をもった超硬基
体(ドリル)a´〜h´をそれぞれ製造した。 【0030】ついで、これらの超硬基体(ドリル)a´
〜h´の表面に、ホーニングを施し、アセトン中で超音
波洗浄し、乾燥した状態で、同じく図3に例示される通
常のアークイオンプレーティング装置に装入し、上記実
施例1と同一の条件で、表12に示される目標組成およ
び目標層厚をもった結晶配向履歴層[(Ti,Al)C
層]および硬質被覆層[(Ti,Al)N層]を蒸着す
ることにより、図6(a)に概略正面図で、同(b)に
溝形成部の概略横断面図で示される形状を有する本発明
被覆超硬工具としての本発明表面被覆超硬合金製ドリル
(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞ
れ製造した。また、比較の目的で、表13に示される通
り上記結晶配向履歴層[(Ti,Al)C層]の形成を
行なわない以外は同一の条件で従来被覆超硬工具として
の従来表面被覆超硬合金製ドリル(以下、従来被覆超硬
ドリルと云う)1〜8をそれぞれ製造した。 【0031】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250、厚さ:50m
mのJIS・SNCM439の板材、 切削速度:120m/min.、 送り:0.12mm/rev、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S55Cの板材、 切削速度:100m/min.、 送り:0.25mm/rev、 の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル7,8および従来被覆超硬ドリル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:100m/min.、 送り:0.25mm/rev、 の条件での鋳鉄の湿式高速穴あけ切削加工試験、をそれ
ぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶
性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3
mmに至るまでの穴あけ加工数を測定した。この測定結
果を表12、13にそれぞれ示した。 【0032】 【表12】【0033】 【表13】 【0034】なお、この結果得られた本発明被覆超硬工
具としての本発明被覆超硬チップ1〜20、本発明被覆
超硬エンドミル1〜8、および本発明被覆超硬ドリル1
〜8の結晶配向履歴層[(Ti,Al)C層]および硬
質被覆層[(Ti,Al)N層]、並びに従来被覆超硬
工具としての従来被覆超硬チップ1〜20、従来被覆超
硬エンドミル1〜8、および従来被覆超硬ドリル1〜8
の硬質被覆層[(Ti,Al)N層]の組成について、
その厚さ方向中央部をオージェ分光分析装置を用いて測
定したところ、それぞれ目標組成と実質的に同じ組成を
示した。また、これらの本発明被覆超硬工具、並びに従
来被覆超硬工具の上記構成層の厚さを、走査型電子顕微
鏡を用いて断面測定したところ、いずれも目標層厚と実
質的に同じ平均層厚(5点測定の平均値)を示した。さ
らに、これらの本発明被覆超硬工具、並びに従来被覆超
硬工具の上記構成層をCu−Kα線を用いたX線回折装
置を用いて切刃のすくい面および/または逃げ面で観察
し、この結果得られたX線回折パターンから(200)
面に現われたピークの半価幅を測定し(この場合正確な
測定が困難な場合には、上記の実施例時にアークイオン
プレーティング装置に同時に装入した測定ピースのX線
回折パターンを用いて測定した)、この測定結果を表3
〜6および表10〜13にそれぞれ示した。 【0035】 【発明の効果】表3〜13に示される結果から、結晶配
向履歴層の介在によって硬質被覆層の(200)面が高
配向し、これによってすぐれた高温特性(高温耐酸化性
および高温硬さ)を具備すようになる本発明被覆超硬工
具は、いずれも鋼や鋳鉄の切削加工を高い発熱を伴う高
速で行っても、すぐれた耐摩耗性を発揮するのに対し
て、硬質被覆層の(200)面の配向性の低い従来被覆
超硬工具においては、高温を伴う高速切削加工では切刃
の摩耗進行が速く、比較的短時間で使用寿命に至ること
が明らかである。上述のように、この発明の被覆超硬工
具は、特に各種の鋼や鋳鉄などの高速切削加工でもすぐ
れた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能
を示すものであるから、切削加工装置の高性能化、並び
に切削加工の省力化および省エネ化、さらに低コスト化
に十分満足に対応できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed cutting process in which a hard coating layer has excellent high-temperature characteristics, and thus high heat generation of various steels and cast irons. The present invention relates to a surface-coated cemented carbide cutting tool exhibiting excellent wear resistance (hereinafter referred to as a coated cemented carbide tool). 2. Description of the Related Art Generally, a cutting tool includes a throw-away tip which is removably attached to a tip of a cutting tool for turning or planing of a work material such as steel or cast iron. There are drills and miniature drills used for drilling and cutting work materials, and solid type end mills used for face milling, grooving, shoulder processing, etc. of the work material. A throw-away end mill tool or the like which is freely mounted and performs cutting in the same manner as the solid type end mill is known. [0003] Further, as a cutting tool, a substrate made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a titanium cermet (hereinafter, referred to as TiCN) -based cermet (hereinafter, collectively referred to as a cemented carbide substrate). On the surface)
Ti—Al composite nitride satisfying the composition formula: (Ti 1-Y Al Y ) N (where Y represents 0.4 to 0.6 in atomic ratio) [hereinafter, (Ti, Al) N Shown] A coated carbide tool is known which is obtained by physical vapor deposition of a hard coating layer having an average layer thickness of 2 to 15 μm, and is used for continuous cutting or intermittent cutting of various steels and cast irons. Is also well known. Further, the above-mentioned coated super hard tool is prepared by charging the above super hard substrate into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. The atmosphere is, for example, 1.3 × 10 −3.
In a state of heating to a temperature of 500 ° C. as a vacuum of Pa,
An arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti-Al alloy having a predetermined composition is set, for example, at a voltage of 35 V and a current of 90 A, and at the same time, as a reaction gas in the apparatus. Introduce nitrogen gas,
On the other hand, under the condition that a bias voltage of -200 V is applied, for example, the (T
It is also known to be manufactured by depositing a hard coating layer consisting of an i, Al) N layer. [0005] In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction in the cutting work. Although there is a tendency to increase the speed, in the above-mentioned conventional coated carbide tools, there is no problem if this is used under normal cutting conditions, but if this is used at high speed cutting conditions with high heat generation. At present, the progress of abrasion of the hard coating layer is promoted, and the service life is reached in a relatively short time. Means for Solving the Problems Accordingly, the present inventors have proposed:
In view of the above, in order to develop a coated carbide tool that demonstrates excellent wear resistance in high-speed cutting, we focused on the hard coating layer that constitutes the above-mentioned conventional coated carbide tool and conducted research. As a result, (a) constituting the above-mentioned conventional coated carbide tool (Ti, A
l) The hard coating layer composed of the N layer was measured by an X-ray diffractometer using Cu-Kα radiation, as shown in FIG.
The X-ray diffraction pattern in which the highest peak appears on the (00) plane and the half width of the highest peak is 0.9 ° or more in 2θ (horizontal axis) is shown. Prior to vapor deposition formation, the composition formula: (Ti 1-X A
l x ) C However, in the atomic ratio, X shows 0.05 to 0.20).
i, Al) C] layer is extremely thin.
By vapor deposition with an average layer thickness of 5 μm, (Ti,
The Al) C layer is highly oriented on the (200) plane, and the (20)
0) X having a half width of a crystal plane peak of 0.6 degrees or less at 2θ.
Since the X-ray diffraction pattern is shown above, the half-width of the peak on the (200) plane of the X-ray diffraction pattern which is physically deposited on the X-ray diffraction pattern is 0.9 ° or more at 2θ. As shown in FIG. 1, the (Ti, Al) N layer also has a (200) plane with a half width of 0.
To show a highly oriented X-ray diffraction pattern of 6 degrees or less. (B) In a highly oriented (Ti, Al) N layer in which the half width of the peak on the (200) plane of the X-ray diffraction pattern is 0.6 ° or less at 2θ, the half width of the peak is 0.
Since the high-temperature characteristics (high-temperature oxidation resistance and high-temperature hardness) are superior to the (Ti, Al) N layer having a temperature of 9 degrees or more, the hard coating layer composed of the (Ti, Al) N layer having a high orientation is used. A coated cemented carbide tool formed by physical vapor deposition on the surface of a cemented carbide substrate will exhibit excellent wear resistance in high-speed cutting of steel or mild steel with high heat generation. The research results shown in (a) and (b) above were obtained. The present invention has been made on the basis of the above research results, and (a) 0.0
It has an average layer thickness of 5 to 0.5 μm and a composition formula: (T
i 1-X Al X ) C where X is 0.05 to 0.
20), and the highest peak appeared on the (200) plane by a X-ray diffractometer using Cu-Kα ray, and the half width of the highest peak was 0.6 at 2θ. X-ray diffraction pattern which is less than
1) Through the crystal orientation history layer composed of the C layer, (b)
It has an average layer thickness of 15 μm and has a composition formula: (Ti 1-Y Al Y )
N (however, in the atomic ratio, Y indicates 0.4 to 0.6), and the highest peak appears on the (200) plane by the same X-ray diffractometer using Cu-Kα ray. And a hard coating layer formed by physical vapor deposition of a hard coating layer composed of a (Ti, Al) N layer showing an X-ray diffraction pattern in which the half width of the highest peak is 0.6 ° or less at 2θ, and Is characterized by coated carbide tools exhibiting excellent wear resistance. Next, the reason why the composition and average layer thickness of the crystal orientation history layer and the hard coating layer constituting the coated carbide tool of the present invention are limited as described above will be described. (A) Crystal orientation history layer [(Ti, Al) C layer] Al in the (Ti, Al) C layer includes (200)
There is an effect of orienting the plane perpendicular to the rake face and flank face of the cutting edge. However, if the Al ratio is less than 0.05 in atomic ratio, the orientation to the (200) plane is insufficient and (200) )
The half-width of the highest peak appearing on the plane cannot be highly oriented to 0.6 ° or less at 2θ, while even if the ratio exceeds 0.20, the crystal orientation becomes disordered,
Since it becomes difficult to make the (200) plane highly oriented, the ratio is set to 0.05 to 0.20. If the average layer thickness is less than 0.05 μm, (Ti, Al) C
The crystal orientation history effect of converting the high orientation of the (200) plane inherent in the layer to the hard coating layer cannot be sufficiently exhibited, while the crystal orientation history effect is sufficient with an average layer thickness up to 0.5 μm. Therefore, the average layer thickness is 0.05
0.50.5 μm. (B) Hard coating layer [(Ti, Al) N layer] Al in the (Ti, Al) N layer enhances the hardness and heat resistance of the TiN layer having high toughness, thereby improving the wear resistance. However, if the ratio is less than 0.4 in the ratio (atomic ratio) to the total amount with Ti, the desired effect of improving wear resistance cannot be obtained, while the ratio also exceeds 0.6. Since chipping (minute chipping) and the like easily occur on the cutting edge, the ratio is set to 0.4 to 0.6. If the average layer thickness is less than 2 μm, desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur on the cutting edge. The thickness was determined to be 2 to 15 μm. Furthermore, X
The half width of the highest peak appearing on the (200) plane of the X-ray diffraction pattern: 0.6 ° or less (2θ) is empirically determined based on the test results. When the half-width increases to more than 0.6 degrees, that is, when the orientation of the (200) plane is reduced, it exhibits excellent wear resistance especially in high-speed cutting. This is because the desired wear resistance cannot be ensured. Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, ZrC powder, V
C powder, TaC powder, NbC powder, Cr 3 C 2 powder, T
An iN powder, a TaN powder, and a Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried.
a into a green compact at the pressure of a
sintering in a vacuum at a temperature of 1400 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.05 to form a WC having a chip shape of ISO standard CNMG120408. Substrates A1 to A10 made of base cemented carbide
Was formed. In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered under the condition of holding at 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to obtain a TiC having a chip shape conforming to ISO standard, CNMG120408.
Carbide substrates B1 to B6 made of N-based cermet were formed. Next, these super-hard substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and each is charged into a usual arc ion plating apparatus illustrated in FIG. On the other hand, a Ti-Al alloy for forming a crystal orientation history layer and a Ti-Al alloy for forming a hard coating layer having various component compositions are mounted as a cathode electrode (evaporation source), and the inside of the apparatus is evacuated to a vacuum of 0.5 Pa. After heating the inside of the device to 500 ° C with a heater,
Ar gas was introduced into the apparatus to form an Ar atmosphere of 10 Pa. In this state, a bias voltage of -800 V was applied to the super hard substrate to clean the surface of the super hard substrate by Ar gas bombardment, and then the introduction of Ar gas was stopped. In this state, the bias voltage applied to the cemented carbide substrate was reduced to -100 V, methane gas was introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3.5 Pa, and the cathode electrode (for forming a crystal orientation history layer) was formed. An arc discharge is generated between the Ti—Al alloy) and the anode electrode, and the target compositions and target layer thicknesses shown in Tables 3 and 4 are respectively formed on the surfaces of the cemented carbide substrates A1 to A10 and B1 to B6. Crystal orientation history layer [(Ti,
Al) C layer], nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3.5 Pa, and a bias voltage applied to the super hard substrate is -30.
V to the cathode electrode (Ti for forming the hard coating layer).
-Al alloy) and the anode electrode to generate an arc discharge, and thereby deposit a hard coating layer [(Ti, Al) N layer] having the target composition and target layer thickness also shown in Tables 3 and 4. FIG. 4A is a schematic perspective view, and FIG. 4B is a schematic longitudinal sectional view of the present invention. Inventive coated carbide tips) 1 to 20 were manufactured respectively. For comparison purposes, as shown in Tables 5 and 6, the crystal orientation history layer [(Ti, Al) C layer]
Under the same conditions, except that the formation of No. was not performed, conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventionally-coated cemented carbide tips) 1 to 20 as conventionally-coated cemented carbide tools were produced, respectively. Next, the coated carbide tips 1-2 of the present invention
0 and the conventional coated carbide tips 1 to 20 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS / SNCM439 round bar, Cutting speed: 360 m / min . Infeed: 1.5 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous turning test of alloy steel under the following conditions: Work material: JIS S50C, longitudinally-elongated round bar with four longitudinal grooves, Cutting speed: 280 m / min. Notch: 1.8 mm Feed: 0.3 mm / rev. , Cutting time: 5 minutes, Dry high-speed intermittent turning test of carbon steel under the following conditions: Work material: JIS FC250, 4 longitudinally spaced round bars at regular intervals in the longitudinal direction, Cutting speed: 200 m / min . Infeed: 1.5 mm Feed: 0.3 mm / rev. A dry high-speed intermittent turning test of cast iron was performed under the following conditions: cutting time: 5 minutes, and the flank wear width of the cutting edge was measured in each turning test. The measurement results are shown in Tables 7 and 8. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] [Table 8] Example 2 As raw material powder, average particle size:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0
μm of (Ti, W) C powder and 1.8 μm of Co
Powders were prepared, and each of these raw material powders was blended into the blending composition shown in Table 9, further added with wax, and ball-mixed in acetone for 24 hours, and dried under reduced pressure.
Press molding at a pressure of 0 MPa into various green compacts of a predetermined shape, and pressing these green compacts in a vacuum atmosphere of 6 Pa at 7 ° C. /
The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, and then sintered under the condition of furnace cooling to obtain a sample having a diameter of 8 mm, 13 mm and 26 mm. Kinds of round bar sintered bodies for forming a cemented carbide substrate are formed, and the above three kinds of round bar sintered bodies are subjected to grinding processing in a combination shown in Table 9 to obtain a diameter shown in FIG. Is 6mm × 1 each
3mm, 10mm x 22mm, and 20mm x 45m
Carbide substrates (end mills) a to h having a size of m were manufactured, respectively. Next, these super-hard substrates (end mills)
Honing was performed on the surfaces a to h, ultrasonically cleaned in acetone, and dried, and then charged into a usual arc ion plating apparatus also illustrated in FIG. Under the conditions, the crystal orientation history layer [(Ti, Al) C having the target composition and the target layer thickness shown in Table 10
5A and a hard coating layer [(Ti, Al) N layer], the shape shown in the schematic front view in FIG. 5A and the schematic cross-sectional view of the cutting edge in FIG. End mills (hereinafter referred to as “coated carbide end mills of the present invention”) 1 to 8 of the surface coated cemented carbide of the present invention as the coated carbide tools of the present invention were manufactured. For the purpose of comparison, as shown in Table 11, under the same conditions except that the above-mentioned crystal orientation history layer [(Ti, Al) C layer] was not formed, the conventional surface-coated carbide as a conventional coated carbide tool was used. Alloy end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 were manufactured, respectively. Next, the coated carbide end mill 1 of the present invention will be described.
-8 and the conventional coated carbide end mills 1-8, the coated carbide end mills 1-3 of the present invention and the conventional coated carbide end mills 1-3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 160 m / min. , Groove depth (cut): 2.5 mm, Table feed: 700 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 4 to 6 according to the present invention and conventional coated carbide end mills 4 to About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS S45C plate, Cutting speed: 180 m / min. , Groove depth (cut): 5 mm, table feed: 550 mm / min, dry high-speed groove cutting test of carbon steel under the following conditions, coated carbide end mills 7 and 8 of the present invention and conventional coated carbide end mills 7 and 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
JIS FC300 plate material of 0 mm, Cutting speed: 180 m / min. , Groove depth (cut): 10 mm, Table feed: 300 mm / min., Dry high-speed grooving test for cast iron under the following conditions: In all grooving tests, the flank wear of the outer peripheral edge is used. The cutting groove length up to 0.1 mm, which is a standard for the life, was measured. The measurement results are shown in Tables 10 and 11, respectively. [Table 9] [Table 10] [Table 11] (Example 3) The diameters of 8 mm (for forming the super-hard substrates a to c), 13 mm (for forming the super-hard substrates d to f), and 26 mm (for the super-hard substrate g) produced in Example 2 described above. h
(For forming), the diameter x length of the groove forming portion was 4 mm x 13 mm (the cemented carbide substrate a ') by grinding from the three types of round rod sintered bodies. ~ C '), 8mm
× 22 mm (carbide substrate d ′ to f ′) and 16 mm ×
Carbide substrates (drills) a 'to h' each having a size of 45 mm (carbide substrates g 'and h') were manufactured. Next, these super hard substrates (drills) a '
~ H 'was subjected to honing, ultrasonically cleaned in acetone, dried, and charged in a usual arc ion plating apparatus also illustrated in FIG. Under the conditions, the crystal orientation history layer [(Ti, Al) C having the target composition and the target layer thickness shown in Table 12
6A and 6B, the hard coating layer [(Ti, Al) N layer] is vapor-deposited so that the shape shown in the schematic front view in FIG. Drills made of the surface-coated cemented carbide of the present invention (hereinafter referred to as the coated carbide drills of the present invention) 1 to 8 as the coated carbide tools of the present invention were manufactured. For the purpose of comparison, as shown in Table 13, under the same conditions except that the above-mentioned crystal orientation history layer [(Ti, Al) C layer] was not formed, the conventional surface-coated carbide as a conventional coated carbide tool was used. Alloy drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 were manufactured, respectively. Next, the above-described coated carbide drills 1 to 8 of the present invention will be described.
Of the coated carbide drills 1 to 8 of the present invention, the coated carbide drills 1 to 3 of the present invention and the coated carbide drills 1 to 3 of the present invention are: work material: plane dimension: 100 mm × 250, thickness: 50 m
m JIS SNCM439 plate material, Cutting speed: 120 m / min. , Feed: 0.12 mm / rev, Wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills of the present invention 4-6 and conventional coated carbide drills 4-
About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS S55C plate, Cutting speed: 100 m / min. , Feed: 0.25 mm / rev, Wet high-speed drilling test of carbon steel under the following conditions: coated carbide drills 7 and 8 of the present invention and conventional coated carbide drills 7 and 8
About 8, work material: plane dimension: 100 mm x 250 mm, thickness: 5
0mm JIS FC250 plate, Cutting speed: 100m / min. , Feed: 0.25mm / rev, Wet high-speed drilling cutting test of cast iron under the following conditions: In any wet high-speed drilling cutting test (using water-soluble cutting oil), flank wear of the cutting edge at the tip 0.3 width
The number of drilling processes up to mm was measured. The measurement results are shown in Tables 12 and 13, respectively. [Table 12] [Table 13] The coated carbide tips 1-20, coated end mills 1-8, and coated drill 1 of the present invention as the coated carbide tools of the present invention obtained as a result.
To 8 (Ti, Al) C layer and hard coating layer [(Ti, Al) N layer], and conventional coated carbide tips 1 to 20 as conventional coated carbide tools, Hard end mills 1-8 and conventional coated carbide drills 1-8
The composition of the hard coating layer [(Ti, Al) N layer]
When the central part in the thickness direction was measured using an Auger spectroscopic analyzer, it showed substantially the same composition as the target composition. Further, when the thickness of the above-described constituent layers of the coated carbide tool of the present invention and the conventional coated carbide tool was measured in cross section using a scanning electron microscope, the average layer thickness was substantially the same as the target layer thickness. The thickness (average value of five-point measurements) is shown. Furthermore, the above-mentioned constituent layers of the coated carbide tool of the present invention and the conventional coated carbide tool are observed on the rake face and / or flank of the cutting edge using an X-ray diffractometer using Cu-Kα radiation. From the X-ray diffraction pattern obtained as a result, (200)
Measure the half-value width of the peak appearing on the surface (in this case, if accurate measurement is difficult, use the X-ray diffraction pattern of the measurement piece simultaneously loaded in the arc ion plating apparatus in the above embodiment). Table 3 shows the measurement results.
To 6 and Tables 10 to 13, respectively. From the results shown in Tables 3 to 13, it can be seen that the (200) plane of the hard coating layer is highly oriented by the interposition of the crystal orientation history layer, whereby the high temperature properties (high temperature oxidation resistance and The coated carbide tool of the present invention, which has high-temperature hardness), while exhibiting excellent wear resistance even when cutting steel or cast iron at high speed with high heat generation, In the conventional coated carbide tool having a low orientation of the (200) plane of the hard coating layer, it is clear that the wear of the cutting edge progresses rapidly in high-speed cutting at high temperatures, and the service life is reached in a relatively short time. . As described above, the coated cemented carbide tool of the present invention exhibits excellent wear resistance especially in high-speed cutting of various steels and cast irons, and exhibits excellent cutting performance over a long period of time. The present invention can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting process, and the cost reduction.

【図面の簡単な説明】 【図1】本発明被覆超硬チップ15の硬質被覆層が示す
X線回折パターンである。 【図2】従来被覆超硬チップ15の硬質被覆層が示すX
線回折パターンである。 【図3】アークイオンプレーティング装置の概略説明図
である。 【図4】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。 【図5】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。 【図6】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an X-ray diffraction pattern of a hard coating layer of a coated superhard tip 15 of the present invention. FIG. 2 shows the X of the hard coating layer of the conventional coated carbide tip 15.
It is a line diffraction pattern. FIG. 3 is a schematic explanatory view of an arc ion plating apparatus. FIG. 4A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic vertical sectional view of a coated carbide tip. FIG. 5 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic transverse sectional view of the cutting blade portion. FIG. 6A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/06 C23C 14/06 P (72)発明者 近藤 暁裕 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF25 4K029 AA02 AA04 BA55 BA58 BB02 BB07 BD05 CA04 DD06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C23C 14/06 C23C 14/06 P (72) Inventor Akihiro Kondo 179 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo Prefecture Address 1 MMC Kobelcourt Co., Ltd. (72) Inventor Yusuke Tanaka 179 Kanegasaki Nishiike, Uozumi-cho, Akashi-shi, Hyogo 1 FMC Term Co., Ltd. 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF25 4K029 AA02 AA04 BA55 BA58 BB02 BB07 BD05 CA04 DD06

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、 (a)0.05〜0.5μmの平均層厚を有し、 組成式:(Ti1-XAlX)Cただし、原子比で、Xは
0.05〜0.20を示す)を満足し、 さらに、Cu−Kα線を用いたX線回折装置による測定
で、(200)面に最高ピークが現われ、かつ前記最高
ピークの半価幅が2θで0.6度以下であるX線回折パ
ターンを示すTi−Al複合炭化物層からなる結晶配向
履歴層を介して、 (b)2〜15μmの平均層厚を有し、 組成式:(Ti1-YAlY)N(ただし、原子比で、Yは
0.4〜0.6を示す)を満足し、 同じくCu−Kα線を用いたX線回折装置による測定
で、(200)面に最高ピークが現われ、かつ前記最高
ピークの半価幅が2θで0.6度以下であるX線回折パ
ターンを示すTi−Al複合窒化物層からなる硬質被覆
層を物理蒸着してなる、高速切削加工で硬質被覆層がす
ぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工
具。
Claims 1. A surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate, (a) having an average layer thickness of 0.05 to 0.5 µm; (Ti 1-X Al X ) C, where X is 0.05 to 0.20 in atomic ratio). Further, the measurement by an X-ray diffractometer using Cu-Kα ray shows that (200 (B) via a crystal orientation history layer composed of a Ti—Al composite carbide layer showing an X-ray diffraction pattern in which the highest peak appears on the plane and the half width of the highest peak is not more than 0.6 degree at 2θ, ) Having an average layer thickness of 2 to 15 μm, and satisfying the composition formula: (Ti 1 -Y Al Y ) N (where Y represents 0.4 to 0.6 in atomic ratio). In the measurement with an X-ray diffractometer using Kα ray, the highest peak appeared on the (200) plane, Hard coating layer consisting of Ti-Al complex nitride layer showing an X-ray diffraction pattern with half peak width of 2 ° or less at 2θ of 0.6 ° or less by physical vapor deposition. Surface-coated cemented carbide cutting tool that exhibits excellent wear resistance.
JP2001332805A 2001-10-30 2001-10-30 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer Expired - Fee Related JP3693001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332805A JP3693001B2 (en) 2001-10-30 2001-10-30 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332805A JP3693001B2 (en) 2001-10-30 2001-10-30 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Publications (2)

Publication Number Publication Date
JP2003136302A true JP2003136302A (en) 2003-05-14
JP3693001B2 JP3693001B2 (en) 2005-09-07

Family

ID=19148171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332805A Expired - Fee Related JP3693001B2 (en) 2001-10-30 2001-10-30 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Country Status (1)

Country Link
JP (1) JP3693001B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012564A (en) * 2008-07-04 2010-01-21 Hitachi Tool Engineering Ltd Hard film-coated cutting tool
JP2011093085A (en) * 2009-10-01 2011-05-12 Hitachi Tool Engineering Ltd Hard film-coated tool
US20120201615A1 (en) * 2011-02-07 2012-08-09 Kennametal Inc. Cubic Aluminum Titanium Nitride Coating and Method of Making Same
US8304098B2 (en) 2007-10-12 2012-11-06 Hitachi Tool Engineering, Ltd. Hard-coated member, and its production method
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304098B2 (en) 2007-10-12 2012-11-06 Hitachi Tool Engineering, Ltd. Hard-coated member, and its production method
JP2010012564A (en) * 2008-07-04 2010-01-21 Hitachi Tool Engineering Ltd Hard film-coated cutting tool
JP2011093085A (en) * 2009-10-01 2011-05-12 Hitachi Tool Engineering Ltd Hard film-coated tool
US20120201615A1 (en) * 2011-02-07 2012-08-09 Kennametal Inc. Cubic Aluminum Titanium Nitride Coating and Method of Making Same
US8409702B2 (en) * 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
US10184187B2 (en) 2013-08-16 2019-01-22 Kennametal Inc. Low stress hard coatings and applications thereof

Also Published As

Publication number Publication date
JP3693001B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JP3931326B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP3931325B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3844285B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3659217B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3693001B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP3879113B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3931328B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2003145317A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance
JP3948010B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3580275B2 (en) Surface-coated cemented carbide cutting tool with excellent heat dissipation with a wear-resistant coating layer
JP3508748B2 (en) Surface-coated cemented carbide cutting tool with excellent heat-resistant plastic deformation with wear-resistant coating layer
JP2003225809A (en) Surface coated cemented carbide cutting tool superior in wear resistance in high speed cutting of hard-to-cut material
JP3879114B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3478276B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent chipping resistance in high-speed heavy cutting
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040924

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Effective date: 20050613

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080701

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080701

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090701

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100701

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100701

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100701

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110701

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130701

LAPS Cancellation because of no payment of annual fees