JP3928487B2 - Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting - Google Patents

Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting Download PDF

Info

Publication number
JP3928487B2
JP3928487B2 JP2002162496A JP2002162496A JP3928487B2 JP 3928487 B2 JP3928487 B2 JP 3928487B2 JP 2002162496 A JP2002162496 A JP 2002162496A JP 2002162496 A JP2002162496 A JP 2002162496A JP 3928487 B2 JP3928487 B2 JP 3928487B2
Authority
JP
Japan
Prior art keywords
content point
highest
hard coating
content
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002162496A
Other languages
Japanese (ja)
Other versions
JP2004009162A (en
Inventor
秀充 高岡
恵滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002162496A priority Critical patent/JP3928487B2/en
Publication of JP2004009162A publication Critical patent/JP2004009162A/en
Application granted granted Critical
Publication of JP3928487B2 publication Critical patent/JP3928487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が一段とすぐれた高温硬さおよび耐熱性を有し、したがって特に各種の鋼や鋳鉄などの高熱発生を伴う高速切削加工で、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.35〜0.60、Y:0.01〜0.15を示す)を満足するAlとTiとZrの複合窒化物[以下、(Al,Ti,Zr)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、これが各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられることも良く知られるところである。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば400℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti−Zr合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、上記(Al,Ti,Zr)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、これを高い発熱を伴う高速切削条件で用いた場合には、硬質被覆層が高強度と高靭性を具備するものの、高温硬さおよび耐熱性が不十分であるため、硬質被覆層の摩耗進行が促進され、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速切削加工ですぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Al,Ti,Zr)N層は、層厚全体に亘って均質な高温硬さと耐熱性、強度と靭性、さらに高温強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に上記の従来(Al,Ti,Zr)N層の形成にカソード電極(蒸発源)として用いられたAl−Ti−Zr合金に相当する相対的にTi含有量の高いAl−Ti−Zr合金、他方側に相対的にTi含有量の低いAl−Ti−Zr合金をいずれもカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブルの外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Al,Ti,Zr)N層を形成すると、この結果の(Al,Ti,Zr)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にTi含有量の高いAl−Ti−Zr合金のカソード電極(蒸発源)に最も接近した時点で層中にTi最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にTi含有量の低いAl−Ti−Zr合金のカソード電極に最も接近した時点で層中にTi最低含有点が形成され、上記回転テーブルの回転によって層中には厚さ方向にそって前記Ti最高含有点とTi最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造をもつようになること。
【0007】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Al,Ti,Zr)N層において、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成を調製すると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Ti最高含有点が、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.35〜0.50、Y:0.01〜0.15を示す)、
上記Ti最低含有点が、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.05〜0.30、Y:0.01〜0.15を示す)、
をそれぞれ満足し、かつ隣り合う上記Ti最高含有点とTi最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Ti最低含有点部分では、上記の従来(Al,Ti,Zr)N層に比してAl含有量が相対的に高くなることから、より一段とすぐれた高温硬さと耐熱性を示し、一方上記Ti最高含有点部分は、前記従来(Al,Ti,Zr)N層と同等の組成、すなわち前記Ti最低含有点部分に比して相対的にAl含有量が低く、Ti含有量の高い組成をもつので、高強度と高靭性を保持し、かつこれらTi最高含有点とTi最低含有点の間隔をきわめて小さくしたことから、層全体の特性として高強度と高靭性を保持し、かつZrによる高温強度も保持した状態ですぐれた高温硬さと耐熱性を具備するようになり、したがって、硬質被覆層がかかる構成の(Al,Ti、Zr)N層からなる被覆超硬工具は、高い発熱を伴う鋼や鋳鉄などの高速切削加工ですぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にTi最高含有点形成用Al−Ti−Zr合金、他方側にTi最低含有点形成用Al−Ti−Zr合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブルの外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、超硬基体の表面に、(Al,Ti,Zr)Nからなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる被覆超硬工具にして
上記硬質被覆層が、厚さ方向にそって、Ti最高含有点とTi最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Ti最高含有点が、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.35〜0.50、Y:0.01〜0.15を示す)、
上記Ti最低含有点が、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.05〜0.30、Y:0.01〜0.15を示す)、
をそれぞれ満足し、かつ隣り合う上記Ti最高含有点とTi最低含有点の間隔が、0.01〜0.1μmである、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Ti最低含有点の組成
Ti最低含有点の(Al,Ti,Zr)NにおけるAl成分は高温硬さおよび耐熱性を向上させ、一方同Ti成分は、強度および靭性を向上させ、さらに同Zr成分は層の高温強度を一段と向上させる作用があるので、前記Ti最低含有点では相対的にTi含有量を低くし、Al含有量を高くして、高熱発生を伴う高速切削に適応するすぐれた高温硬さと耐熱性を具備するようにしたものであるが、Tiの割合を示すX値がAlとZrの合量に占める割合(原子比)で0.05未満になると、相対的にAlの割合が多くなり過ぎて、高強度および高靭性を有するTi最高含有点が隣接して存在しても層自体の強度および靭性の低下は避けられず、この結果チッピングなどが発生し易くなり、一方Tiの割合を示すX値が同0.30を越えると、相対的にAlの割合が少なくなり過ぎて、高速切削に要求されるすぐれた高温硬さおよび耐熱性を確保することができなくなるものであり、またZrの割合を示すY値がAlとTiの合量に占める割合(原子比)で0.01未満では所望の高温強度を確保することができず、この結果チッピングが発生し易くなり、一方同Y値が0.15を超えても、所望の高温強度を確保することが困難になることから、X値を0.05〜0.30、Y値を0.01〜0.15とそれぞれ定めた。
【0010】
(b)Ti最高含有点の組成
上記の通りTi最低含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面強度および靭性の劣るものであるため、このTi最低含有点の強度および靭性不足を補う目的で、上記の従来(Al,Ti,Zr)N層と同等の組成、すなわち相対的にTi含有割合が高く、一方Al含有量が低く、これによって高強度および高靭性を有するようになるTi最高含有点を厚さ方向に交互に介在させるものであり、したがってTiの割合を示すX値がAlおよびZr成分との合量に占める割合(原子比)で0.35未満では、所望のすぐれた強度および靭性を確保することができず、一方同X値が0.50を越えると、Alに対するTiの割合が多くなって、Ti最高含有点に所望の高温硬さおよび耐熱性を具備せしめることができなくなることから、Ti最高含有点でのTiの割合を示すX値を0.35〜0.50と定めた。
また、Ti最高含有点におけるZr成分は、上記の通り高温強度を向上させ、もって耐チッピング性の向上に寄与する作用をもつものであり、したがってY値が0.01未満では所望の高温強度向上効果が得られず、一方Y値が0.15を超えても、所望の高温強度を確保することが困難になることから、Y値を0.01〜0.15と定めた。
【0011】
(c)Ti最低含有点とTi最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さと耐熱性、さらに高強度と高靭性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちTi最低含有点であれば強度および靭性不足、Ti最高含有点であれば高温硬さと耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0012】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0013】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1410℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製のチップ超硬基体A−1,A−2,A−4,A−5,A−7〜A−9を形成した。
【0014】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1510℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製のチップ超硬基体B−1,B−2,B−5,B−6を形成した。
【0015】
ついで、上記のチップ超硬基体A−1,A−2,A−4,A−5,A−7〜A−9およびB−1,B−2,B−5,B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったTi最低含有点形成用Al−Ti−Zr合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったTi最高含有点形成用Al−Ti−Zr合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−50Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Ti最低含有点形成用Al−Ti−Zr合金およびTi最高含有点形成用Al−Ti−Zr合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、厚さ方向に沿って表3に示される目標組成のTi最低含有点とTi最高含有点とが交互に同じく表3に示される目標間隔で繰り返し存在し、かつ前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜11をそれぞれ製造した。
【0016】
また、比較の目的で、これらチップ超硬基体A−1,A−2,A−4,A−5,A−7〜A−9およびB−1,B−2,B−5,B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったAl−Ti−Zr合金を装着し、またボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表4に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜11をそれぞれ製造した。
【0017】
つぎに、上記本発明被覆超硬チップ1〜11および従来被覆超硬チップ1〜11について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S10Cの丸棒、
切削速度:370m/min.、
切り込み:1.1mm、
送り:0.22mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式高速連続旋削加工試験、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min.、
切り込み:2.5mm、
送り:0.25mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式高速断続旋削加工試験、さらに、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min.、
切り込み:3mm、
送り:0.25mm/rev.、
切削時間:8分、
の条件での鋳鉄の乾式高速断続旋削加工試験を行い、いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
【0018】
【表1】

Figure 0003928487
【0019】
【表2】
Figure 0003928487
【0020】
【表3】
Figure 0003928487
【0021】
【表4】
Figure 0003928487
【0022】
【表5】
Figure 0003928487
【0023】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で48時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体C−1〜C−7を形成し、さらに前記の3種の丸棒焼結体のうちの丸棒焼結体C−2,C−3,C−6,C−7を用い、これから、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエア形状をもったエンドミル超硬基体をそれぞれ製造した。
【0024】
ついで、これらのエンドミル超硬基体の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、厚さ方向に沿って表7に示される目標組成のTi最低含有点とTi最高含有点とが交互に同じく表7に示される目標間隔で繰り返し存在し、かつ前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表7に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜4をそれぞれ製造した。
【0025】
また、比較の目的で、上記のエンドミル超硬基体の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜4をそれぞれ製造した。
【0026】
つぎに、上記本発明被覆超硬エンドミル1〜4および従来被覆超硬エンドミル1〜4のうち、本発明被覆超硬エンドミル1,2および従来被覆超硬エンドミル1,2については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S20Cの板材、
切削速度:285m/min.、
軸方向切り込み:5mm、
径方向切り込み:0.2mm、
テーブル送り:200mm/分、
の条件での炭素鋼の湿式高速側面切削加工試験、本発明被覆超硬エンドミルおよび従来被覆超硬エンドミルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:270m/min.、
軸方向切り込み:7.5mm、
径方向切り込み:0.3mm、
テーブル送り:220mm/分、
の条件での合金鋼の湿式高速側面切削加工試験、本発明被覆超硬エンドミルおよび従来被覆超硬エンドミルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC250の板材、
切削速度:305m/min.、
軸方向切り込み:15mm、
径方向切り込み:0.4mm、
テーブル送り:110mm/分、
の条件での鋳鉄の湿式高速側面切削加工試験をそれぞれ行い、いずれの側面切削加工試験(いずれの試験も水溶性切削油使用)でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表7、8にそれぞれ示した。
【0027】
【表6】
Figure 0003928487
【0028】
【表7】
Figure 0003928487
【0029】
【表8】
Figure 0003928487
【0030】
(実施例3)
上記の実施例2で製造した直径が8mm、13mm、および26mmの3種の丸棒焼結体のうちの丸棒焼結体C−1,C−2,C−4,C−5,C−7を用い、これから、研削加工にて、同じく表6に示される組合せで、溝形成部の直径×長さがそれぞれ4mm×13mm、8mm×22mm、および16mm×45mmの寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったドリル超硬基体をそれぞれ製造した。
【0031】
ついで、これらのドリル超硬基体の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のTi最低含有点とTi最高含有点とが交互に同じく表9に示される目標間隔で繰り返し存在し、かつ前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜5をそれぞれ製造した。
【0032】
また、比較の目的で、上記のドリル超硬基体の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Al,Ti,Zr)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜5をそれぞれ製造した。
【0033】
つぎに、上記本発明被覆超硬ドリル1〜5および従来被覆超硬ドリル1〜5のうち、本発明被覆超硬ドリル1,2および従来被覆超硬ドリル1,2については、
被削材:平面寸法:100mm×250厚さ:50mmのJIS・S20Cの板材、
切削速度:180m/min.、
送り:0.2mm/rev、
穴深さ:10mm
の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発明被覆超硬ドリル3,4および従来被覆超硬ドリル3,4については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:185m/min.、
送り:0.21mm/rev、
穴深さ:15mm
の条件での合金鋼の湿式高速穴あけ切削加工試験、本発明被覆超硬ドリルおよび従来被覆超硬ドリルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC250の板材、
切削速度:225m/min.、
送り:0.25mm/rev、
穴深さ:30mm
の条件での鋳鉄の湿式高速穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9、10にそれぞれ示した。
【0034】
【表9】
Figure 0003928487
【0035】
【表10】
Figure 0003928487
【0036】
なお、この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜11、本発明被覆超硬エンドミル1〜4、および本発明被覆超硬ドリル1〜5を構成する硬質被覆層におけるTi最低含有点とTi最高含有点の組成、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜11、従来被覆超硬エンドミル1〜4、および従来被覆超硬ドリル1〜5の硬質被覆層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆超硬工具の硬質被覆層におけるTi最低含有点とTi最高含有点間の間隔、およびこれの全体層厚、並びに従来被覆超硬工具の硬質被覆層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ値を示した。
【0039】
【発明の効果】
表3〜10に示される結果から、硬質被覆層が層厚方向にTi最低含有点とTi最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも鋼や鋳鉄の切削加工を高い発熱を伴う高速で行っても、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が厚さ方向に沿って実質的に組成変化のない(Al,Ti,Zr)N層からなる従来被覆超硬工具においては、高温を伴う高速切削加工では前記層の高温硬さおよび耐熱性不足が原因で切刃の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】 この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】 従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
This invention has a surface coating super-hard coating layer that has excellent high-temperature hardness and heat resistance, and therefore exhibits excellent wear resistance especially in high-speed cutting with high heat generation such as various steels and cast iron. The present invention relates to a hard alloy cutting tool (hereinafter referred to as a coated carbide tool).
[0002]
[Prior art]
Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). ) On the surface of the composition formula: (Al 1-(X + Y) Ti X Zr Y ) N (wherein, X is 0.35 to 0.60, Y: 0.01 to 0.15 in atomic ratio) A hard coating layer composed of a composite nitride of Al, Ti and Zr satisfying (shown below) [hereinafter referred to as (Al, Ti, Zr) N] layer is physically deposited with an average layer thickness of 1 to 15 μm. Hard tools are known, and it is well known that they are used for continuous cutting and intermittent cutting of various steels and cast irons.
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al—Ti—Zr alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 400 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa, while the cemented carbide substrate has a surface of the cemented carbide substrate under the condition that a bias voltage of, for example, −100 V is applied. In addition, it is also known to be produced by vapor-depositing a hard coating layer composed of the (Al, Ti, Zr) N layer.
[0005]
[Problems to be solved by the invention]
In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, there is no problem when used under normal cutting conditions, but when used under high-speed cutting conditions with high heat generation, the hard coating layer has high strength and high toughness. However, since the high temperature hardness and heat resistance are insufficient, the progress of wear of the hard coating layer is promoted and the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have developed a hard coating layer that constitutes the above-described conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent wear resistance particularly in high-speed cutting. As a result of conducting research with a focus on
(A) The (Al, Ti, Zr) N layer constituting the conventional coated carbide tool formed using the arc ion plating apparatus shown in FIG. 2 has a uniform high-temperature hardness throughout the layer thickness. And heat resistance, strength and toughness, and high-temperature strength. For example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. Is provided with a rotating table for mounting a carbide substrate, and the Al—Ti— used as a cathode electrode (evaporation source) for forming the conventional (Al, Ti, Zr) N layer on one side with the rotating table interposed therebetween. An Al-Ti-Zr alloy having a relatively high Ti content corresponding to a Zr alloy and an Al-Ti-Zr alloy having a relatively low Ti content on the other side are both arranged as cathode electrodes (evaporation sources). Arc Ionp Using a coating device, a plurality of cemented carbide substrates are attached in a ring shape along the outer periphery of the rotary table of this device. In this state, the rotary table is rotated with the atmosphere inside the device being a nitrogen atmosphere, and vapor deposition is performed. In order to make the thickness of the hard coating layer uniform, the carbide substrate itself is rotated, while arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides, thereby the carbide substrate. When the (Al, Ti, Zr) N layer is formed on the surface of the substrate, in the resulting (Al, Ti, Zr) N layer, the carbide substrate arranged in a ring shape on the rotary table is the one side described above. At the point closest to the cathode electrode (evaporation source) of the Al-Ti-Zr alloy having a relatively high Ti content, the highest Ti content point is formed in the layer, and the carbide substrate is formed on the other side. Relatively Ti The point of lowest Ti content is formed in the layer when it comes closest to the cathode electrode of the low Al-Ti-Zr alloy, and the highest Ti content in the layer along the thickness direction by the rotation of the rotary table. A component in which the Ti content continuously changes from the highest Ti content point to the lowest Ti content point, and from the lowest Ti content point to the highest Ti content point, and the point and the lowest Ti content point alternately appear at predetermined intervals. Have a concentration distribution structure.
[0007]
(B) In the (Al, Ti, Zr) N layer having the repeated continuous change component concentration distribution structure of (a) above, for example, the respective compositions of the cathode electrodes (evaporation sources) arranged opposite to each other are prepared, and the carbide substrate is By controlling the rotation speed of the mounted rotary table,
The Ti maximum content point, the composition formula: (Al 1- (X + Y ) Ti X Zr Y) N ( provided that an atomic ratio, X is 0.35~ 0.50, Y: 0.01~0. 15)
The minimum Ti content point is the composition formula: (Al 1-(X + Y) Ti X Zr Y ) N (wherein, X is 0.05 to 0.30, Y: 0.01 to 0.00 in terms of atomic ratio). 15)
And the distance between the adjacent Ti highest content point and Ti lowest content point in the thickness direction is 0.01 to 0.1 μm,
In the Ti minimum content point portion, the Al content is relatively higher than that of the conventional (Al, Ti, Zr) N layer described above, so that it exhibits a further superior high temperature hardness and heat resistance, The highest Ti content point portion has the same composition as the conventional (Al, Ti, Zr) N layer, that is, a relatively low Al content and a high Ti content composition compared to the lowest Ti content point portion. Because it has high strength and high toughness, and the distance between the highest Ti content point and the lowest Ti content point is extremely small, it maintains high strength and high toughness as the characteristics of the entire layer, and high temperature due to Zr. Coated carbide tools composed of an (Al, Ti, Zr) N layer with a hard coating layer are accompanied by high heat generation, with excellent high-temperature hardness and heat resistance while maintaining strength. High speed cutting of steel and cast iron It is like to exhibit wear resistance excellent in working.
The research results shown in (a) and (b) above were obtained.
[0008]
The present invention has been made based on the above research results, and is provided with a carbide substrate mounting rotary table in the center of the apparatus, sandwiching the rotary table, and Ti-containing point forming Al- Using an arc ion plating apparatus in which a Ti—Zr alloy and an Al—Ti—Zr alloy for forming a minimum Ti content point on the other side are arranged to face each other as a cathode electrode (evaporation source), along the outer peripheral portion of the rotary table of this apparatus A plurality of carbide substrates are mounted in a ring shape, and in this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the carbide substrates themselves are rotated, while the cathode electrodes (evaporation sources) on both sides are rotated. and by generating arc discharge between the anode electrode, the surface of the cemented carbide substrate by depositing (Al, Ti, Zr) a hard coating layer made of N in total average layer thickness of 1~15μm And in that coated carbide tools,
In the hard coating layer, the highest Ti content point and the lowest Ti content point are present alternately at predetermined intervals along the thickness direction, and from the highest Ti content point to the lowest Ti content point, the Ti A component concentration distribution structure in which the Ti content continuously changes from the lowest content point to the Ti highest content point,
Further, the highest Ti content point is the composition formula: (Al 1-(X + Y) Ti X Zr Y ) N (wherein, X is 0.35 to 0.50 , Y: 0.01 to 0.15),
The minimum Ti content point is the composition formula: (Al 1-(X + Y) Ti X Zr Y ) N (wherein, X is 0.05 to 0.30, Y: 0.01 to 0.00 in terms of atomic ratio). 15)
And the interval between the adjacent highest Ti content point and the lowest Ti content point is 0.01 to 0.1 μm.
It is characterized by a coated carbide tool that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.
[0009]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Composition of the lowest Ti content point The Al component in (Al, Ti, Zr) N at the lowest Ti content point improves high-temperature hardness and heat resistance, while the same Ti component improves strength and toughness. Since the Zr component has the effect of further improving the high-temperature strength of the layer, the Ti content is relatively low at the Ti minimum content point, and the Al content is increased to adapt to high-speed cutting with high heat generation. Although it has excellent high-temperature hardness and heat resistance, when the X value indicating the ratio of Ti is less than 0.05 in the ratio (atomic ratio) to the total amount of Al and Zr, Even if the proportion of Al is excessively increased and the highest Ti content point having high strength and high toughness exists adjacent to each other, the strength and toughness of the layer itself is inevitably lowered, and as a result, chipping and the like are likely to occur. , On the other hand, shows the proportion of Ti When the X value exceeds 0.30, the proportion of Al becomes relatively small, and the high temperature hardness and heat resistance required for high speed cutting cannot be ensured. If the Y value indicating the proportion of Al is less than 0.01 in the total amount of Al and Ti (atomic ratio), the desired high-temperature strength cannot be ensured, and as a result, chipping is likely to occur. Even if the value exceeds 0.15, it is difficult to ensure the desired high-temperature strength. Therefore, the X value is set to 0.05 to 0.30, and the Y value is set to 0.01 to 0.15. .
[0010]
(B) Composition of the highest Ti content point As described above, the lowest Ti content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in strength and toughness. In order to compensate for the lack of toughness, the same composition as the conventional (Al, Ti, Zr) N layer, that is, the Ti content is relatively high, while the Al content is low, thereby having high strength and high toughness. Thus, the highest Ti content point is interposed alternately in the thickness direction, and therefore the X value indicating the ratio of Ti is less than 0.35 in the ratio (atomic ratio) to the total amount of Al and Zr components The desired excellent strength and toughness cannot be ensured. On the other hand, if the X value exceeds 0.50 , the ratio of Ti to Al increases, and the desired high-temperature hardness and heat resistance at the highest Ti content point. Have sex Since X cannot be tightened, the X value indicating the ratio of Ti at the highest Ti content point was determined to be 0.35 to 0.50 .
In addition, the Zr component at the highest Ti content point has the effect of improving the high temperature strength as described above and thus contributing to the improvement of chipping resistance. Therefore, if the Y value is less than 0.01, the desired high temperature strength is improved. No effect was obtained, and on the other hand, even if the Y value exceeded 0.15, it was difficult to ensure the desired high-temperature strength, so the Y value was determined to be 0.01 to 0.15.
[0011]
(C) Interval between the lowest Ti content point and the highest Ti content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. As a result, the layer has a desired excellent high temperature. Hardness and heat resistance, high strength and high toughness cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if Ti is the lowest content point, insufficient strength and toughness, Ti If it is the highest content point, high temperature hardness and insufficient heat resistance appear locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes the progress of wear. It was determined to be 0.01 to 0.1 μm.
[0012]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 1 μm, the desired wear resistance cannot be ensured, while if the average layer thickness exceeds 15 μm, chipping occurs on the cutting edge. Since it becomes easy, the average layer thickness was set to 1 to 15 μm.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa, and the green compact was vacuumed at 6 Pa at a temperature of 1410 ° C. for 1 hour. Sintered under holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and a chip cemented carbide substrate A- made of a WC-based cemented carbide alloy having a chip shape of ISO standard / CNMG120408 1, A-2, A-4, A-5, A-7 to A-9 were formed.
[0014]
In addition, as raw material powders, TiCN (TiC / TiN = 50/50 in weight ratio) powder, Mo 2 C powder, ZrC powder, TaC powder, WC powder, Co powder all having an average particle diameter of 0.5 to 2 μm. , And Ni powder, these raw material powders are blended in the blending composition shown in Table 2, wet mixed with a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The powder was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1510 ° C. for 1 hour. After sintering, the cutting edge part was subjected to a honing process of R: 0.03, and a chip shape conforming to ISO standard CNMG120408. Chip carbide substrates B-1, B-2, B-5, and B-6 made of TiCN-based cermets having the above structure were formed.
[0015]
Subsequently, each of the above-mentioned chip superhard substrates A-1, A-2, A-4, A-5, A-7 to A-9 and B-1, B-2, B-5, B-6 are prepared. In the state of ultrasonic cleaning in acetone and drying, it is mounted on the rotary table in the arc ion plating apparatus shown in FIG. 1 along the outer periphery, and various cathode electrodes (evaporation sources) are provided on one side. Al-Ti-Zr alloy for forming the lowest Ti content point with the component composition of the above, and Al-Ti-Zr alloy for forming the highest Ti content point with various component compositions as the cathode electrode (evaporation source) on the other side. After placing the rotary table oppositely, and mounting a bombard cleaning metal Ti, the apparatus was first heated to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa or less, Rotates while rotating on the rotary table A DC bias voltage of −1000 V is applied to the hard substrate, and a current of 100 A is passed between the metal Ti and the anode electrode of the cathode electrode to generate an arc discharge, whereby the surface of the carbide substrate is Ti bombard washed. Next, nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, a DC bias voltage of −50 V is applied to the carbide substrate rotating while rotating on the rotary table, and each cathode electrode A current of 150 A was passed between the above-mentioned Al-Ti-Zr alloy for forming the lowest Ti content point and Al-Ti-Zr alloy for forming the highest Ti content point and the anode electrode to generate an arc discharge. the hard substrate surface, target Ti lowest content point along the thickness direction target composition shown in Table 3 and Ti and the highest content point are shown also in Table 3 alternately Repeatedly present at intervals, and having a component concentration distribution structure in which the Ti content continuously changes from the highest Ti content point to the lowest Ti content point, from the lowest Ti content point to the highest Ti content point, and similarly By depositing a hard coating layer having a target overall layer thickness shown in Table 3 , a throwaway tip made of the surface coated cemented carbide of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the coated carbide chip of the present invention). 1 to 11 were produced.
[0016]
For the purpose of comparison, these chip superhard substrates A-1, A-2, A-4, A-5, A-7 to A-9 and B-1, B-2, B-5, B- 6 was ultrasonically cleaned in acetone and dried, and then charged in the ordinary arc ion plating apparatus shown in FIG. 2, and Al- having various composition as a cathode electrode (evaporation source). The Ti—Zr alloy is mounted, and the bombard cleaning metal Ti is also mounted. First, the apparatus is heated to 400 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa or less. A DC bias voltage of −1000 V is applied to the cemented carbide substrate, and a current of 100 A is passed between the metal Ti and the anode electrode of the cathode electrode to generate an arc discharge, thereby cleaning the surface of the cemented carbide substrate with Ti bombardment. Then, the reaction gas in the device Then, nitrogen gas is introduced to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode, thereby Each of the surfaces of the carbide substrates A1 to A10 and B1 to B6 has the target composition and target layer thickness shown in Table 4 and has substantially no composition change along the layer thickness direction (Al, Ti, By depositing a hard coating layer comprising a Zr) N layer, conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 11 as conventional coated carbide tools were produced, respectively. .
[0017]
Next, for the above-mentioned coated carbide tips 1-11 of the present invention and the conventional coated carbide tips 1-11 , this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S10C round bar,
Cutting speed: 370 m / min. ,
Cutting depth: 1.1 mm,
Feed: 0.22 mm / rev. ,
Cutting time: 5 minutes
Carbon steel dry high-speed continuous turning test,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 320 m / min. ,
Incision: 2.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes
Dry high-speed intermittent turning test of alloy steel under the conditions of
Work material: JIS · FC250 lengthwise equal length 4 round bar with round groove,
Cutting speed: 350 m / min. ,
Incision: 3mm,
Feed: 0.25 mm / rev. ,
Cutting time: 8 minutes
A dry high-speed intermittent turning test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any turning test. The measurement results are shown in Table 5 .
[0018]
[Table 1]
Figure 0003928487
[0019]
[Table 2]
Figure 0003928487
[0020]
[Table 3]
Figure 0003928487
[0021]
[Table 4]
Figure 0003928487
[0022]
[Table 5]
Figure 0003928487
[0023]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle size of 5.5 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder are prepared, and these raw material powders are shown in Table 8 respectively. Then, after adding wax, ball mill mixing in acetone for 48 hours, drying under reduced pressure, and then press-molding into various compacts of a predetermined shape at a pressure of 100 MPa. In the atmosphere, the temperature was raised to a predetermined temperature within a range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min, held at this temperature for 1 hour, sintered under furnace cooling conditions, and having a diameter of 8 mm. For forming three types of carbide substrates of 13mm and 26mm Forming a Boshoyuitai C-1~C-7, further round bars sintered C-2, C-3, C-6, C-7 of the 3 kinds of round bar sintered body of the In use, from now on , with the combinations shown in Table 6 , the diameter x length of the cutting edge part is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and the twist angle is 30 degrees. The end mill superhard substrate having a four-blade square shape was manufactured.
[0024]
Next, the surfaces of these end mill carbide substrates were ultrasonically cleaned in acetone, and in a dried state, they were charged into the arc ion plating apparatus shown in FIG. 1, and under the same conditions as in Example 1 above, The Ti minimum content point and the Ti maximum content point of the target composition shown in Table 7 along the thickness direction alternately and repeatedly exist at the target intervals shown in Table 7 , and from the Ti maximum content point to the Ti minimum content point. A hard coating layer having a component concentration distribution structure in which the Ti content continuously changes from the content point, the Ti minimum content point to the Ti maximum content point, and having the target total layer thickness shown in Table 7 is also deposited. Thus, end mills made of the surface coated cemented carbide of the present invention (hereinafter referred to as the present coated carbide end mill) 1 to 4 as the coated carbide tool of the present invention were produced.
[0025]
For the purpose of comparison, the surface of the above-mentioned end mill cemented carbide substrate was ultrasonically cleaned in acetone and dried, and then charged into the ordinary arc ion plating apparatus shown in FIG. 1. A hard coating layer composed of an (Al, Ti, Zr) N layer having the target composition and target layer thickness shown in Table 8 and having substantially no composition change along the layer thickness direction under the same conditions as in Table 1. The conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated cemented carbide end mills) 1 to 4 as conventional coated cemented carbide tools were produced, respectively.
[0026]
Next, among the coated carbide end mills 1 to 4 and the conventional coated carbide end mills 1 to 4 of the present invention, the coated carbide end mills 1 and 2 and the conventional coated carbide end mills 1 and 2 are as follows.
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S20C plate material,
Cutting speed: 285 m / min. ,
Axial cut: 5mm,
Radial notch: 0.2mm,
Table feed: 200 mm / min,
For the wet high speed side cutting test of carbon steel under the conditions of the present invention, the coated carbide end mill 3 of the present invention and the conventional coated carbide end mill 3 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 270 m / min. ,
Axial cut: 7.5mm,
Radial notch: 0.3mm,
Table feed: 220 mm / min,
The wet high-speed side cutting test of alloy steel under the conditions of the present invention, the coated carbide end mill 4 of the present invention and the conventional coated carbide end mill 4 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FC250 plate material,
Cutting speed: 305 m / min. ,
Axial cut: 15mm,
Radial notch: 0.4mm,
Table feed: 110 mm / min,
The wet high-speed side cutting test of cast iron under the above conditions was performed, and the flank wear width of the outer peripheral edge of the cutting edge in any of the side cutting tests (both tests using water-soluble cutting oil) is a guide for the service life The cutting length up to 0.1 mm was measured. The measurement results are shown in Tables 7 and 8 , respectively.
[0027]
[Table 6]
Figure 0003928487
[0028]
[Table 7]
Figure 0003928487
[0029]
[Table 8]
Figure 0003928487
[0030]
(Example 3)
Round bar sintered bodies C-1, C-2, C-4, C-5, and C among the three types of round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm manufactured in Example 2 above. From now on, in the grinding process , the groove forming part diameter × length is 4 mm × 13 mm, 8 mm × 22 mm, and 16 mm × 45 mm, respectively, in the combination shown in Table 6. A drill carbide substrate having a two-blade shape with an angle of 30 degrees was produced.
[0031]
Next, honing is performed on the cutting blades of these drill carbide substrates , ultrasonic cleaning in acetone is performed, and the dried state is inserted into the arc ion plating apparatus shown in FIG. Under the same conditions, the lowest Ti content point and the highest Ti content point of the target composition shown in Table 9 along the layer thickness direction are alternately present at the same target interval shown in Table 9 , and the highest Ti content. It has a component concentration distribution structure in which the Ti content continuously changes from the content point to the Ti minimum content point, from the Ti minimum content point to the Ti maximum content point, and the target total layer thickness also shown in Table 9 By vapor-depositing the hard coating layer, drills made of the surface-coated cemented carbide of the present invention (hereinafter referred to as the present invention coated carbide drill) 1 to 5 as the coated carbide tool of the present invention were produced.
[0032]
Further, for the purpose of comparison, honing is performed on the surface of the drill carbide substrate described above, ultrasonic cleaning is performed in acetone, and the state is dried, and then loaded into the normal arc ion plating apparatus shown in FIG. (Al, Ti, Zr) N layer having the target composition and the target layer thickness shown in Table 10 and having substantially no composition change along the thickness direction under the same conditions as in Example 1 above. By vapor-depositing a hard coating layer consisting of the above, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 5 as conventional coated carbide tools were produced, respectively.
[0033]
Next, of the present invention coated carbide drills 1 to 5 and the conventional coated carbide drills 1 to 5 , the present invention coated carbide drills 1 and 2 and the conventional coated carbide drills 1 and 2 ,
Work material: Plane dimension: 100 mm x 250 Thickness: 50 mm JIS / S20C plate material,
Cutting speed: 180 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 10mm
For the wet high speed drilling test of carbon steel under the conditions of the present invention, the coated carbide drills 3 and 4 of the present invention and the conventional coated carbide drills 3 and 4 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 185 m / min. ,
Feed: 0.21mm / rev,
Hole depth: 15mm
For the wet high-speed drilling test of alloy steel under the above conditions, the coated carbide drill 5 of the present invention and the conventional coated carbide drill 5 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FC250 plate material,
Cutting speed: 225 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 30mm
Wet cast high-speed drilling test of cast iron under the conditions of each, and any wet high-speed drilling cutting test (using water-soluble cutting oil) until the flank wear width of the cutting edge surface reaches 0.3mm The number of drilling operations was measured. The measurement results are shown in Tables 9 and 10 , respectively.
[0034]
[Table 9]
Figure 0003928487
[0035]
[Table 10]
Figure 0003928487
[0036]
In addition, the hard coating which comprises this invention coated carbide tip 1-11 as this invention coated carbide tool obtained as a result, this invention coated carbide end mill 1-4 , and this invention coated carbide drill 1-5 Composition of the lowest Ti content point and the highest Ti content point in the layer, as well as the conventional coated carbide tips 1-11 as a conventional coated carbide tool, the conventional coated carbide end mills 1-4 , and the conventional coated carbide drills 1-5 . When the composition of the hard coating layer was measured using an Auger spectroscopic analyzer, the composition was substantially the same as the target composition.
Further, the interval between the Ti minimum content point and the Ti maximum content point in the hard coating layer of these coated carbide tools of the present invention, and the total layer thickness thereof, and the thickness of the hard coating layer of the conventional coated carbide tool, When the cross-section was measured using a scanning electron microscope, all showed substantially the same value as the target value.
[0039]
【The invention's effect】
From the results shown in Tables 3 to 10 , in the hard coating layer, the Ti lowest content point and the Ti highest content point are alternately repeated at predetermined intervals in the layer thickness direction, and the Ti lowest content point is from the Ti highest content point. The coated carbide tool of the present invention having a component concentration distribution structure in which the Ti content continuously changes from the content point, the Ti minimum content point to the Ti maximum content point, all of which produce high heat generation when cutting steel and cast iron. Conventional coating consisting of an (Al, Ti, Zr) N layer in which the hard coating layer has substantially no compositional change along the thickness direction while exhibiting excellent wear resistance even at high speeds In cemented carbide tools, it is clear that high-speed cutting with high temperature causes the cutting edge to progress rapidly due to the high-temperature hardness of the layer and insufficient heat resistance and reach the service life in a relatively short time.
As described above, the coated carbide tool of the present invention exhibits excellent wear resistance even in high-speed cutting such as various types of steel and cast iron, and exhibits excellent cutting performance over a long period of time. It is possible to satisfactorily cope with the high performance of the cutting device, the labor saving and energy saving of cutting, and the cost reduction.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used to form a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used to form a hard coating layer constituting a conventional coated carbide tool.

Claims (1)

装置中央部に炭化タングステン基超硬合金基体および炭窒化チタン系サーメット基体のいずれか、または両方の装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にTi最高含有点形成用Al−Ti−Zr合金、他方側にTi最低含有点形成用Al−Ti−Zr合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブルの外周部に沿って複数の前記基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、前記基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記基体の表面に、AlとTiとZrの複合窒化物からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具にして
上記硬質被覆層が、厚さ方向にそって、Ti最高含有点とTi最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Ti最高含有点から前記Ti最低含有点、前記Ti最低含有点から前記Ti最高含有点へTi含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Ti最高含有点が、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.35〜0.50、Y:0.01〜0.15を示す)、
上記Ti最低含有点が、組成式:(Al1-(X+Y)TiX ZrY)N(ただし、原子比で、Xは0.05〜0.30、Y:0.01〜0.15を示す)、
をそれぞれ満足し、かつ隣り合う上記Ti最高含有点とTi最低含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
A rotating table for mounting either or both of a tungsten carbide base cemented carbide substrate and a titanium carbonitride-based cermet substrate is provided at the center of the apparatus, and the Ti-containing point forming Al- Using an arc ion plating apparatus in which a Ti—Zr alloy and an Al—Ti—Zr alloy for forming a minimum Ti content point on the other side are arranged to face each other as a cathode electrode (evaporation source), along the outer peripheral portion of the rotary table of this apparatus A plurality of the bases are mounted in a ring shape, and in this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the base itself is rotated, while the cathode electrodes (evaporation sources) and the anodes on both sides are rotated. by generating arc discharge between the electrodes, the surface of the substrate, the hard coating layer made of a composite nitride of Al, Ti, and Zr 1 to 15 in the overall average layer surface-coated cemented carbide cutting tool comprising depositing a thickness of m,
In the hard coating layer, the highest Ti content point and the lowest Ti content point are present alternately at predetermined intervals along the thickness direction, and from the highest Ti content point to the lowest Ti content point, the Ti A component concentration distribution structure in which the Ti content continuously changes from the lowest content point to the Ti highest content point,
Further, the highest Ti content point is the composition formula: (Al 1-(X + Y) Ti X Zr Y ) N (wherein, X is 0.35 to 0.50 , Y: 0.01 to 0.15),
The minimum Ti content point is the composition formula: (Al 1-(X + Y) Ti X Zr Y ) N (wherein, X is 0.05 to 0.30, Y: 0.01 to 0.00 in terms of atomic ratio). 15)
And the interval between the adjacent highest Ti content point and the lowest Ti content point is 0.01 to 0.1 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.
JP2002162496A 2002-06-04 2002-06-04 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting Expired - Fee Related JP3928487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162496A JP3928487B2 (en) 2002-06-04 2002-06-04 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162496A JP3928487B2 (en) 2002-06-04 2002-06-04 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Publications (2)

Publication Number Publication Date
JP2004009162A JP2004009162A (en) 2004-01-15
JP3928487B2 true JP3928487B2 (en) 2007-06-13

Family

ID=30431219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162496A Expired - Fee Related JP3928487B2 (en) 2002-06-04 2002-06-04 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Country Status (1)

Country Link
JP (1) JP3928487B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2255908A1 (en) * 2002-06-25 2010-12-01 Mitsubishi Materials Corporation Coated cutting tool member
WO2005072895A1 (en) * 2004-01-30 2005-08-11 Mitsubishi Materials Corporation Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof

Also Published As

Publication number Publication date
JP2004009162A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4389152B2 (en) Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3978722B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3991272B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3978723B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3928452B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP3962913B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP4304586B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3978775B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3972294B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928497B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Ref document number: 3928487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees