JP2003175405A - Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance - Google Patents

Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance

Info

Publication number
JP2003175405A
JP2003175405A JP2001376774A JP2001376774A JP2003175405A JP 2003175405 A JP2003175405 A JP 2003175405A JP 2001376774 A JP2001376774 A JP 2001376774A JP 2001376774 A JP2001376774 A JP 2001376774A JP 2003175405 A JP2003175405 A JP 2003175405A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
carbide
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001376774A
Other languages
Japanese (ja)
Other versions
JP3948013B2 (en
Inventor
Natsuki Ichinomiya
夏樹 一宮
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
MMC Kobelco Tool Co Ltd
Original Assignee
Mitsubishi Materials Corp
MMC Kobelco Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, MMC Kobelco Tool Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2001376774A priority Critical patent/JP3948013B2/en
Publication of JP2003175405A publication Critical patent/JP2003175405A/en
Application granted granted Critical
Publication of JP3948013B2 publication Critical patent/JP3948013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cemented-carbide cutting tool having a hard coating layer exhibiting excellent heat resistance. <P>SOLUTION: The hard coating layer is physically deposited with the whole average layer thickness of 0.8 to 10 μm on the surface of a tungsten carbide- based cemented-carbide substrate or a carbonic nitride titanium-base cermet substrate. The layer is formed by an alternate stack of a first thin layer and a second thin layer, the average layer thickness of which individually range from 0.01 to 0.1 μm. (a) The first thin layer is formed by Ti-Al-Si compound nitride having the composition satisfying the composition formula: (Ti<SB>1-(</SB>X<SB>+</SB>Y<SB>)</SB>AlXSiY)N, and the atom ratio: X: 0.20 to 0.50, Y: 0.15 to 0.30, and texture in which Ti-Al-Si compound nitride particles are enclosed by amorphous silicon nitride having a skeleton structure. (b) The second thin layer is formed by Al-Si compound nitride having the composition satisfying the composition formula: (Al<SB>1-</SB>ZSiZ)N and the atom ratio: Z: 0.15 to 0.30, and texture in which Al-Si compound nitride particles are enclosed by amorphous silicon nitride having a skeleton structure. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、特に高熱発生を
伴なう鋼や鋳鉄などの高速切削で、硬質被覆層がすぐれ
た耐熱性を発揮して、過熱による摩耗進行を抑制し、も
って一段の使用寿命の延命化を可能ならしめた表面被覆
超硬合金製切削工具(以下、被覆超硬工具という)に関
するものである。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、切削工具として、炭化タングステン
(以下、WCで示す)基超硬合金または炭窒化チタン
(以下、TiCNで示す)基サーメットからなる基体
(以下、これらを総称して超硬基体と云う)の表面に、 (a)組成式:(Ti1-XAlX)Nで表わした場合、厚
さ方向中央部のオージェ分光分析装置による測定で、原
子比で、X:0.30〜0.70、を満足するTi−A
l複合窒化物[以下、(Ti,Al)Nで示す]で構成
された下部層、(b)窒化アルミニウム(以下、AlN
で示す]で構成された上部層、以上(a)および(b)
からなる硬質被覆層を0.8〜10μmの全体平均層厚
で物理蒸着してなる被覆超硬工具が知られており、ま
た、上記被覆超硬工具において、これを構成する硬質被
覆層の上記下部層がすぐれた高温硬さと耐熱性を有し、
同上部層がすぐれた熱伝導性を有することから、これを
各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた
場合、前記上部層の発揮するすぐれた放熱性と相俟っ
て、前記下部層がすぐれた耐摩耗性を発揮することも良
く知られるところである。 【0004】さらに、上記の被覆超硬工具が、例えば図
2に概略説明図で示される物理蒸着装置の1種であるア
ークイオンプレーティング装置に上記の超硬基体を装入
し、ヒータで装置内を、例えば雰囲気を0.13Paの
真空として、400℃の温度に加熱した状態で、アノー
ド電極と所定組成を有するTi−Al合金および金属A
lがそれぞれセットされたカソード電極(蒸発源)との
間に、例えば電圧:35V、電流:90Aの条件でアー
ク放電を発生させ、同時に装置内に反応ガスとして窒素
ガスを導入して、反応雰囲気圧力を1Paとし、一方上
記超硬基体には、例えば−150Vのバイアス電圧を印
加した条件で、前記超硬基体の表面に、硬質被覆層の下
部層として(Ti,Al)N層および上部層としてAl
N層を蒸着することにより製造されることも知られてい
る。 【0005】 【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化、さらに低コスト化の要
求は強く、これに伴い、切削加工は切削機械の高性能化
とも相俟って高速化の傾向にあるが、上記の従来被覆超
硬工具においては、これを鋼や鋳鉄などの通常の条件で
の切削加工に用いた場合には問題はないが、これを高速
切削条件で用いると、切削加工時の発生熱はきわめて高
いものとなるため、硬質被覆層の上部層を構成するAl
N層による放熱作用では硬質被覆層の温度上昇を十分満
足に防止することができず、このような硬質被覆層の温
度上昇は摩耗進行を著しく促進することから、比較的短
時間で使用寿命に至るのが現状である。 【0006】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具の硬質
被覆層に着目し、特に高速切削時における温度上昇にも
すぐれた耐摩耗性を発揮する硬質被覆層を開発すべく研
究を行った結果、(a)上記従来被覆超硬工具の硬質被
覆層の構成層である(Ti,Al)N層およびAlN層
のそれぞれに、Siを含有させて、組成式:(Ti
1-(X+Y)AlXSiY)Nで表わした場合、厚さ方向中央
部の透過型電子顕微鏡による測定で、原子比で、X:
0.20〜0.50、Y:0.15〜0.30を満足す
る組成を有するTi−Al−Si複合窒化物[以下、
(Ti,Al,Si)Nで示す]層、並びに組成式:
(Al1-ZSiZ)Nで表わした場合、同じく厚さ方向中
央部の同じく透過型電子顕微鏡による測定で、原子比
で、Z:0.15〜0.30を満足する組成を有するA
l−Si複合窒化物[以下、(Al,Si)Nで示す)
層とすると共に、これら(Ti,Al,Si)N層およ
び(Al,Si)N層の形成を、例えばアークイオンプ
レーティング装置により行なう場合に、超硬基体に印加
されるバイアス電圧および反応雰囲気である窒素雰囲気
を、前記超硬基体の加熱温度を相対的に高い状態、例え
ば500℃に保持した状態で相対的に高い、例えば−3
00Vおよび10Paとした条件で行なうと、これら
(Ti,Al,Si)N層および(Al,Si)N層
は、透過型電子顕微鏡による観察で、それぞれ超微細結
晶Ti−Al−Si複合窒化物粒子[以下、(Ti,A
l,Si)N結晶微粒という]および超微細結晶Al−
Si複合窒化物粒子[以下、(Al,Si)N結晶微粒
という]をスケルトン構造(骨格構造)をもった非晶質
窒化珪素(以下、非晶質SiNで示す)が取り囲む組織
をもつようになること。(b)上記(a)の(Ti,A
l,Si)N層および(Al,Si)N層を、交互積層
とすると共に、これらの個々の層厚を平均層厚で0.0
1〜0.1μmのきわめて薄い薄層とした状態で、全体
平均層厚を0.8〜10μmとした条件で硬質被覆層を
構成すると、この結果の硬質被覆層は、これを構成する
前記(Ti,Al,Si)N層(以下、第1薄層とい
う)および(Al,Si)N層(以下、第2薄層とい
う)とも、前記(Ti,Al,Si)N結晶微粒および
(Al,Si)N結晶微粒、さらにスケルトン構造の前
記非晶質SiNがきわめてすぐれた耐熱性を具備するこ
とから、硬質被覆層自体の耐熱性が一段と向上し、かつ
前記両薄層による薄膜化交互積層構造によって硬質被覆
層全体が厚さ方向に均一な特性をもつようになり、した
がって、この硬質被覆層を形成してなる被覆超硬工具
は、これを特に鋼や鋳鉄などの高熱発生を伴なう高速切
削加工に用いても、硬質被覆層がすぐれた耐熱性を発揮
し、これ自体の過熱による摩耗進行が抑制されることか
ら、耐摩耗性が一層向上し、長期に亘って安定した切削
性能を発揮するようになること。以上(a)および
(b)に示される研究結果を得たのである。 【0007】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、0.8〜10
μmの全体平均層厚で物理蒸着した硬質被覆層が、個々
の平均層厚が0.01〜0.1μmの第1薄層と第2薄
層の交互積層からなり、(a)上記第1薄層を、組成
式:(Ti1-(X+Y)AlXSiY)Nで表わした場合、厚
さ方向中央部の透過型電子顕微鏡による測定で、原子比
で、X:0.20〜0.50、Y:0.15〜0.30
を満足する組成を有し、かつ同じく透過型電子顕微鏡に
よる観察で、(Ti−Al−Si)N結晶微粒をスケル
トン構造(骨格構造)をもった非晶質SiNが取り囲む
組織を示す(Ti,Al,Si)Nで構成し、(b)上
記第2薄層を、組成式:(Al1-ZSiZ)Nで表わした
場合、厚さ方向中央部の透過型電子顕微鏡による測定
で、原子比で、Z:0.15〜0.30を満足する組成
を有し、かつ同じく透過型電子顕微鏡による観察で、
(Al−Si)N結晶微粒をスケルトン構造をもった非
晶質SiNが取り囲む組織を示す(Al,Si)Nで構
成してなる、硬質被覆層がすぐれた耐熱性を発揮する被
覆超硬工具に特徴を有するものである。 【0008】つぎに、この発明の被覆超硬工具におい
て、硬質被覆層の交互積層を構成する第1薄層および第
2薄層の組成、さらに平均層厚を上記の通りに限定した
理由を説明する。 (a)硬質被覆層の第1薄層の組成 上記第1薄層を構成する(Ti,Al,Si)N層にお
いては、TiとAlとSiの一部が、Tiによる高強度
と高靭性、Alによるすぐれた高温硬さと耐熱性、さら
に一部のSiによる一段とすぐれた耐熱性を具備した
(Ti−Al−Si)N結晶微粒を形成するほか、残り
のSiがきわめてすぐれた耐熱性を有するスケルトン構
造の非晶質SiNを形成するものであり、したがって組
成式:(Ti1-(X+Y)AlXSiY)NのX値が原子比
(以下同じ)で、0.2未満では前記(Ti−Al−S
i)N結晶微粒に所望の高温硬さおよび耐熱性を確保す
ることができず、同じくY値が0.15未満では、特に
すぐれた耐熱性を有する非晶質SiNスケルトン構造の
形成が不十分で、さらに一段の耐熱性向上効果は困難で
あり、一方X値が0.5を越えても、前記スケルトン構
造の形成が抑制されるようになって、所望のすぐれた耐
熱性を確保することができなくなり、またY値が0.3
0を越えると、硬質被覆層の強度が急激に低下し、これ
が原因で切刃にチッピングが発生し易くなると云う理由
によりX値を0.2〜0.5、Y値を0.15〜0.3
0と定めた。 【0009】(b)硬質被覆層の第2薄層の組成 上記第2薄層を構成する(Al,Si)N層において
は、Siの一部がすぐれた熱伝導性(放熱性)を有する
AlNに固溶して、これの耐熱性を向上させ、もってす
ぐれた熱伝導性と耐熱性を有する(Al−Si)N結晶
微粒を形成し、さらに残りのSiが、同じくきわめてす
ぐれた耐熱性を有するスケルトン構造の非晶質SiNを
形成するものであり、したがってZ値が0.15未満で
は、同じく特にすぐれた耐熱性を有するスケルトン構造
の非晶質SiNの形成が不十分で、所望のすぐれた耐熱
性を確保するこができず、一方Z値が0.30を越える
と、本来AlNのもつすぐれた熱伝導性が急激に低下す
るようになることから、Z値を0.15〜0.30と定
めた。 【0010】(c)硬質被覆層の平均層厚 硬質被覆層の交互積層を構成する第1薄層および第2薄
層の平均層厚を、それぞれ0.01〜0.1μmとした
のは、いずれの薄層においても、その平均層厚が0.0
1μm未満になると、それぞれの薄層のもつ特性、すな
わち第1薄層のもつ高強度と高靭性、およびすぐれた高
温硬さ、さらに一段とすぐれた耐熱性、並びに第2薄層
のもつすぐれた熱伝導性と、一段とすぐれた耐熱性を硬
質被覆層に十分に具備せしめることができず、一方その
平均層厚がそれぞれ0.1μmを越えると、硬質被覆層
の厚さ方向の特性にバラツキが発生するようになり、切
削性能に経時的に不均性が現れるようになるという理由
によるものである。また、硬質被覆層の全体平均層厚を
0.8〜10μmとしたのは、その層厚が0.8μmで
は所望のすぐれた耐摩耗性を長期に亘って確保すること
ができず、一方その層厚が10μmを越えると、切刃に
欠けやチッピングが発生し易くなるという理由によるも
のである。 【0011】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、ZrC粉末、V
C粉末、TaC粉末、NbC粉末、Cr3 2 粉末、T
iN粉末、TaN粉末、およびCo粉末を用意し、これ
ら原料粉末を、表1に示される配合組成に配合し、ボー
ルミルで72時間湿式混合し、乾燥した後、100MP
a の圧力で圧粉体にプレス成形し、この圧粉体を6P
aの真空中、温度:1400℃に1時間保持の条件で焼
結し、焼結後、切刃部分にR:0.05のホーニング加
工を施してISO規格・CNMG120408のチップ
形状をもったWC基超硬合金製の超硬基体A1〜A10
を形成した。 【0012】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。 【0013】ついで、これら超硬基体A1〜A10およ
びB1〜B6のそれぞれを、アセトン中で超音波洗浄
し、乾燥した状態で、例えば図1(a)に概略平面図
で、同(b)に概略正面図で示されるアークイオンプレ
ーティング装置内の回転テーブル上に装着し、一方カソ
ード電極(蒸発源)として、種々の成分組成をもった第
1薄層形成用Ti−Al―Si合金と第2薄層形成用A
l−Si合金を装置内の所定位置に装着し、またボンバ
ート洗浄用金属Tiも装着し、まず装置内を排気して
0.5Paの真空に保持しながら、ヒーターで装置内を
500℃に加熱した後、前記回転テーブル上で回転する
超硬基体に−1000Vの直流バイアス電圧を印加し
て、カソード電極の前記金属Tiとアノード電極との間
にアーク放電を発生させ、もって超硬基体表面をTiボ
ンバート洗浄し、ついで装置内に反応ガスとして窒素ガ
スを導入して10Paの反応雰囲気とすると共に、前記
回転テーブル上で回転する超硬基体に−300Vの直流
バイアス電圧を印加して、前記カソード電極(前記第1
薄層形成用Ti−Al−Si合金または第2薄層形成用
Al−Si合金)とアノード電極との間にアーク放電を
発生させ、もって前記超硬基体の表面に、表3に示され
る目標組成および目標層厚の第1薄層と第2薄層とを表
4に示される組み合わせで、かつ同じく表4に示される
交互積層数からなる硬質被覆層を蒸着することにより、
図3(a)に概略斜視図で、同(b)に概略縦断面図で
示される形状を有する本発明被覆超硬工具としての本発
明表面被覆超硬合金製スローアウエイチップ(以下、本
発明被覆超硬チップと云う)1〜16をそれぞれ製造し
た。 【0014】また、比較の目的で、上記の超硬基体A1
〜A10およびB1〜B6のそれぞれを、アセトン中で
超音波洗浄し、乾燥した状態で、同じく図2に例示され
る通常のアークイオンプレーティング装置に装着し、一
方カソード電極(蒸発源)として、種々の成分組成をも
ったTi−Al合金と金属Alを装置内の所定位置に装
着し、またボンバート洗浄用金属Tiも装着し、まず装
置内を排気して0.5Paの真空に保持しながら、ヒー
ターで装置内を500℃に加熱した後、前記超硬基体に
−1000Vの直流バイアス電圧を印加して、カソード
電極の前記金属Tiとアノード電極との間にアーク放電
を発生させ、もって超硬基体表面をTiボンバート洗浄
し、ついで装置内に反応ガスとして窒素ガスを導入して
4Paの反応雰囲気とすると共に、前記超硬基体に−1
50Vの直流バイアス電圧を印加する条件で、前記カソ
ード電極(前記Ti−Al合金または金属Al)とアノー
ド電極との間にアーク放電を発生させ、もって前記超硬
基体の表面に表5に示される通りの目標組成および目標
層厚の(Ti,Al)N層(下部層)およびAlN層
(上部層)で構成された硬質被覆層を蒸着することによ
り、従来被覆超硬工具としての従来表面被覆超硬合金製
スローアウエイチップ(以下、従来被覆超硬チップと云
う)1〜16をそれぞれ製造した。 【0015】つぎに、上記本発明被覆超硬チップ1〜1
6および従来被覆超硬チップ1〜16について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SCM440の丸棒、 切削速度:350m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高速連続旋削加工試験、 被削材:JIS・S50Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:300m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:5分、 の条件での炭素鋼の乾式高速断続旋削加工試験、さら
に、 被削材:JIS・FC300の長さ方向等間隔4本縦溝
入り丸棒、 切削速度:250m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:5分、 の条件での鋳鉄の乾式高速断続旋削加工試験を行い、い
ずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表6に示した。 【0016】 【表1】 【0017】 【表2】 【0018】 【表3】【0019】 【表4】【0020】 【表5】【0021】 【表6】 【0022】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表7に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、さらに前記
の3種の丸棒焼結体から、研削加工にて、表7に示され
る組合せで、切刃部の直径×長さがそれぞれ6mm×1
3mm、10mm×22mm、および20mm×45m
mの寸法をもったエンドミル用超硬基体C−1〜C−8
をそれぞれ製造した。 【0023】ついで、これらの超硬基体C−1〜C−8
を、それぞれアセトン中で超音波洗浄し、乾燥した状態
で、同じく図1(a),(b)に示されるアークイオン
プレーティング装置に装入し、これらの表面に上記実施
例1と同一の条件で、表3に示される目標組成および目
標層厚の第1薄層と第2薄層とを表8に示される組み合
わせで、かつ同じく表8に示される交互積層数からなる
硬質被覆層を蒸着することにより、図4(a)に概略正
面図で、同(b)に切刃部の概略横断面図で示される形
状を有する本発明被覆超硬工具としての本発明表面被覆
超硬合金製エンドミル(以下、本発明被覆超硬エンドミ
ルと云う)1〜8をそれぞれ製造した。 【0024】また、比較の目的で、上記の超硬基体C−
1〜C−8を、それぞれアセトン中で超音波洗浄し、乾
燥した状態で、同じく図2に例示される通常のアークイ
オンプレーティング装置に装入し、これらの表面に上記
実施例1における従来被覆超硬チップ1〜16の製造条
件と同じ条件で、表9に示される目標組成および目標層
厚の下部層としての(Ti,Al)N層および上部層と
してのAlN層で構成された硬質被覆層を蒸着すること
により、従来被覆超硬工具としての従来表面被覆超硬合
金製エンドミル(以下、従来被覆超硬エンドミルと云
う)1〜8をそれぞれ製造した。 【0025】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SNCM439の板材、 切削速度:160m/min.、 溝深さ(切り込み):3mm、 テーブル送り:650mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル4〜6および従来被覆超硬エンドミル
4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC300の板材、 切削速度:180m/min.、 溝深さ(切り込み):5mm、 テーブル送り:600mm/分、 の条件での鋳鉄の乾式高速溝切削加工試験、本発明被覆
超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:60m/min.、 溝深さ(切り込み):10mm、 テーブル送り:150mm/分、 の条件でのステンレス鋼の乾式高速溝切削加工試験、を
それぞれ行い、いずれの溝切削加工試験でも外周刃の逃
げ面摩耗量が使用寿命の目安とされる0.1mmに至る
までの切削溝長を測定した。この測定結果を表8,9に
それぞれ示した。 【0026】 【表7】 【0027】 【表8】【0028】 【表9】 【0029】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体C−1〜C−3形成用)、13m
m(超硬基体C−4〜C−6形成用)、および26mm
(超硬基体C−7、C−8形成用)の3種の丸棒焼結体
を用い、この3種の丸棒焼結体から、研削加工にて、溝
形成部の直径×長さがそれぞれ4mm×13mm(超硬
基体D−1〜D−3)、8mm×22mm(超硬基体D
−4〜D−6)、および16mm×45mm(超硬基体
D−7、D−8)の寸法をもったドリル用超硬基体D−
1〜D−8をそれぞれ製造した。 【0030】ついで、これらの超硬基体D−1〜D−8
を、アセトン中で超音波洗浄し、乾燥した状態で、同じ
く図1(a),(b)に示されるアークイオンプレーテ
ィング装置に装入し、これら超硬基体の表面に、上記実
施例1と同一の条件で、表3に示される目標組成および
目標層厚の第1薄層と第2薄層とを表10に示される組
み合わせで、かつ同じく表10に示される交互積層数か
らなる硬質被覆層を蒸着することにより、図5(a)に
概略正面図で、同(b)に溝形成部の概略横断面図で示
される形状を有する本発明被覆超硬工具としての本発明
表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリ
ルと云う)1〜8をそれぞれ製造した。 【0031】また、比較の目的で、上記の超硬基体D−
1〜D−8を、それぞれアセトン中で超音波洗浄し、乾
燥した状態で、同じく図2に例示される通常のアークイ
オンプレーティング装置に装入し、これらの表面に上記
実施例1における従来被覆超硬チップ1〜16の製造条
件と同じ条件で、表11に示される目標組成および目標
層厚の下部層としての(Ti,Al)N層および上部層
としてのAlN層で構成された硬質被覆層を蒸着するこ
とにより、従来被覆超硬工具としての従来表面被覆超硬
合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜
8をそれぞれ製造した。 【0032】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S50Cの板材、 切削速度:140m/min.、 送り:0.18mm/rev、 の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:100m/min.、 送り:0.18mm/rev、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル7,8および従来被覆超硬ドリル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:90m/min.、 送り:0.27mm/rev、 の条件での鋳鉄の湿式高速穴あけ切削加工試験、をそれ
ぞれ行い、いずれの湿式高速穴あけ切削加工試験(いず
れの試験も水溶性切削油使用)でも先端切刃面の逃げ面
摩耗幅が0.3mmに至るまでの穴あけ加工数を測定し
た。この測定結果を表10,11にそれぞれ示した。 【0033】 【表10】 【0034】 【表11】 【0035】また、この結果得られた本発明被覆超硬工
具としての本発明被覆超硬チップ1〜16、本発明被覆
超硬エンドミル1〜8、および本発明被覆超硬ドリル1
〜8の硬質被覆層を構成する第1薄層および第2薄層の
組成、組織、および層厚、並びに従来被覆超硬工具とし
ての従来被覆超硬チップ1〜16、従来被覆超硬エンド
ミル1〜8、および従来被覆超硬ドリル1〜8の硬質被
覆層の構成層である下部層および上部層の組成、組織、
および層厚を、個々の構成層の厚さ方向中央部を透過型
電子顕微鏡を用いて測定したところ、組成および層厚に
関しては、表3〜11の目標組成および目標層厚と実質
的に同じ組成および平均層厚(任意5ヶ所測定の平均値
との比較)を示し、さらに、組織に関しては、前記本発
明被覆超硬工具は、いずれも第1薄層が(Ti−Al−
Si)N結晶微粒をスケルトン構造(骨格構造)をもっ
た非晶質SiNが取り囲む組織、第2薄層が(Al−S
i)N結晶微粒をスケルトン構造をもった非晶質SiN
が取り囲む組織を示し、前記従来被覆超硬工具は、いず
れも下部層が結晶質の(Ti,Al)N、上部層が同じ
く結晶質のAlNからなる組織を示した。 【0036】 【発明の効果】表3〜11に示される結果から、硬質被
覆層が第1薄層と第2薄層の交互多重積層からなる本発
明被覆超硬工具は、いずれも鋼や鋳鉄の切削加工を高い
発熱を伴う高速で行っても、前記硬質被覆層のもつすぐ
れた耐熱性によって硬質被覆層が高温加熱されるにもか
かわらず、摩耗進行が著しく抑制され、切刃に欠けやチ
ッピングなどの発生なく、すぐれた耐摩耗性を発揮する
のに対して、実質的に硬質被覆層が下部層の(Ti,A
l)N層と上部層のAlN層からなる従来被覆超硬工具
においては、いずれも高速切削時に発生する高熱で温度
上昇した硬質被覆層は十分な耐熱性を具備したものでな
いために、摩耗進行が著しく促進し、比較的短時間で使
用寿命に至ることが明らかである。上述のように、この
発明の被覆超硬工具は、各種の鋼や鋳鉄などの通常の条
件での切削加工は勿論のこと、特に高速切削加工におい
てもすぐれた耐摩耗性を発揮するものであるから、切削
加工の省力化および省エネ化、さらに低コスト化に十分
満足に対応できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard coating layer having excellent heat resistance, particularly in high-speed cutting of steel or cast iron accompanied by high heat generation. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter, referred to as a coated cemented carbide tool) that suppresses the progress of wear due to overheating and thereby enables a longer service life. 2. Description of the Related Art Generally, a cutting tool includes a throw-away tip which is removably attached to a tip of a cutting tool for turning or planing of a work material such as steel or cast iron. There are drills and miniature drills used for drilling and cutting work materials, and solid type end mills used for face milling, grooving, shoulder processing, etc. of the work material. A throw-away end mill tool or the like which is freely mounted and performs cutting in the same manner as the solid type end mill is known. Further, as a cutting tool, a base made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium cermet (hereinafter, referred to as TiCN) -based cermet (hereinafter, collectively referred to as a cemented carbide base) (A) When represented by the composition formula: (Ti 1 -x Al x ) N, the atomic ratio X: 0.30 to 0.30 as measured by an Auger spectrometer at the center in the thickness direction. Ti-A satisfying 0.70
1) a lower layer composed of a composite nitride [hereinafter referred to as (Ti, Al) N], and (b) aluminum nitride (hereinafter referred to as AlN).
The upper layer composed of the above (a) and (b)
A coated hard carbide tool obtained by physical vapor deposition of a hard coating layer consisting of 0.8 to 10 μm with a total average layer thickness of 0.8 to 10 μm is also known. The lower layer has excellent high-temperature hardness and heat resistance,
Since the upper layer has excellent thermal conductivity, when it is used for continuous cutting or intermittent cutting of various steels or cast iron, coupled with the excellent heat dissipation exhibited by the upper layer, It is also well known that the lower layer exhibits excellent wear resistance. [0004] Further, the above coated super hard tool is prepared by charging the above super hard substrate into an arc ion plating apparatus which is a kind of a physical vapor deposition apparatus schematically shown in FIG. The inside is heated to a temperature of 400 ° C., for example, with an atmosphere of a vacuum of 0.13 Pa, and an anode electrode, a Ti—Al alloy having a predetermined composition and a metal A are heated.
An arc discharge is generated under the conditions of, for example, a voltage of 35 V and a current of 90 A between the cathode electrode (evaporation source) in which each of the electrodes 1 is set, and at the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere. The pressure is set to 1 Pa, and on the other hand, a (Ti, Al) N layer and an upper layer as a lower layer of a hard coating layer are formed on the surface of the super hard substrate under the condition that a bias voltage of, for example, -150 V is applied. As Al
It is also known to be manufactured by depositing an N layer. On the other hand, in recent years, there has been a strong demand for labor saving, energy saving, and further cost reduction in cutting work, and with this, cutting work is accompanied by higher performance of cutting machines. In the conventional coated carbide tools described above, there is no problem if this is used for cutting under ordinary conditions such as steel or cast iron, When used in, the heat generated at the time of cutting becomes extremely high, so that the aluminum constituting the upper layer of the hard coating layer
The heat dissipation effect of the N layer cannot sufficiently satisfactorily prevent the temperature rise of the hard coating layer, and such a temperature rise of the hard coating layer significantly accelerates the progress of wear. It is the present situation. Means for Solving the Problems Accordingly, the present inventors have proposed:
In view of the above, we focused on the hard coating layer of the conventional coated carbide tools described above, and conducted research to develop a hard coating layer that exhibits excellent wear resistance even at elevated temperatures during high-speed cutting. As a result, (a) Si was contained in each of the (Ti, Al) N layer and the AlN layer which are the constituent layers of the hard coating layer of the conventional coated carbide tool, and the composition formula: (Ti
When expressed by 1- (X + Y) Al X Si Y ) N, the atomic ratio X:
Ti—Al—Si composite nitride having a composition satisfying 0.20 to 0.50, Y: 0.15 to 0.30 [hereinafter, referred to as “
(Ti, Al, Si) N] layer, and the composition formula:
When represented by (Al 1 -Z Si Z ) N, A having a composition that satisfies Z: 0.15 to 0.30 in atomic ratio by the same transmission electron microscope measurement at the center in the thickness direction.
l-Si composite nitride [hereinafter referred to as (Al, Si) N]
When the (Ti, Al, Si) N layer and the (Al, Si) N layer are formed by, for example, an arc ion plating apparatus, a bias voltage and a reaction atmosphere Is relatively high in a state where the heating temperature of the cemented carbide substrate is kept relatively high, for example, 500 ° C., for example, −3.
Under the conditions of 00V and 10 Pa, these (Ti, Al, Si) N layers and (Al, Si) N layers were observed with a transmission electron microscope to obtain ultrafine crystalline Ti—Al—Si composite nitrides, respectively. Particles [hereinafter, (Ti, A
l, Si) N crystal grains] and ultra-fine crystal Al-
An amorphous silicon nitride (hereinafter, referred to as amorphous SiN) having a skeleton structure (skeleton structure) surrounds Si composite nitride particles [hereinafter, referred to as (Al, Si) N crystal fine particles]. To become a. (B) (Ti, A) in (a) above
The (1, Si) N layer and the (Al, Si) N layer are alternately laminated, and their individual layer thicknesses are 0.0
When the hard coating layer is formed under the condition that the total average layer thickness is 0.8 to 10 μm in a state where the hard coating layer is formed as an extremely thin layer having a thickness of 1 to 0.1 μm, the resulting hard coating layer has the above-mentioned ( Both the (Ti, Al, Si) N layer (hereinafter, referred to as a first thin layer) and the (Al, Si) N layer (hereinafter, referred to as a second thin layer) include the (Ti, Al, Si) N crystal grains and (Al). , Si) N crystal grains and the amorphous SiN having a skeleton structure have extremely excellent heat resistance, so that the heat resistance of the hard coating layer itself is further improved, and the thin film is alternately laminated by the two thin layers. The structure allows the entire hard coating layer to have uniform properties in the thickness direction, and therefore, the coated carbide tool formed with this hard coating layer requires high heat generation, especially for steel and cast iron. Even when used for high-speed cutting, The covering layer exhibits excellent heat resistance and suppresses the progress of abrasion due to overheating of the covering layer itself. Therefore, the abrasion resistance is further improved, and stable cutting performance is exhibited over a long period of time. The research results shown in (a) and (b) above were obtained. The present invention has been made on the basis of the above research results, and has a surface of a superhard substrate of 0.8 to 10 mm.
The hard coating layer physically vapor-deposited with a total average layer thickness of μm is composed of alternately laminated first and second thin layers each having an average layer thickness of 0.01 to 0.1 μm. When the thin layer is represented by the composition formula: (Ti 1-(X + Y) Al X Si Y ) N, the atomic ratio X: 0.20 as measured by a transmission electron microscope at the center in the thickness direction. ~ 0.50, Y: 0.15 ~ 0.30
Observation by a transmission electron microscope also shows a structure in which amorphous SiN having a skeleton structure (skeleton structure) surrounds (Ti-Al-Si) N crystal grains (Ti, (Al, Si) N, and (b) when the second thin layer is represented by a composition formula: (Al 1 -Z Si Z ) N, the thickness is measured by a transmission electron microscope at the center in the thickness direction. It has a composition satisfying Z: 0.15 to 0.30 in atomic ratio, and is also observed by a transmission electron microscope.
A coated carbide tool having a hard coating layer exhibiting excellent heat resistance, made of (Al, Si) N showing a structure in which amorphous SiN having a skeleton structure surrounds (Al-Si) N crystal grains. It is characterized by the following. Next, in the coated cemented carbide tool of the present invention, the reason why the composition of the first thin layer and the second thin layer constituting the alternate lamination of the hard coating layer and the average layer thickness are limited as described above. I do. (A) Composition of the first thin layer of the hard coating layer In the (Ti, Al, Si) N layer constituting the first thin layer, Ti, Al and a part of Si have high strength and high toughness due to Ti. In addition to forming (Ti-Al-Si) N crystal grains with excellent high-temperature hardness and heat resistance due to Al and further excellent heat resistance due to part of Si, the remaining Si has extremely excellent heat resistance. To form amorphous SiN having a skeleton structure, and therefore, the X value of the composition formula: (Ti 1-(X + Y) Al x Si Y ) N is an atomic ratio (hereinafter the same) of less than 0.2. Then, the (Ti-Al-S
i) The desired high-temperature hardness and heat resistance cannot be ensured for the N crystal fine particles. Similarly, when the Y value is less than 0.15, formation of an amorphous SiN skeleton structure having particularly excellent heat resistance is insufficient. Therefore, it is difficult to further improve the heat resistance. On the other hand, even when the X value exceeds 0.5, the formation of the skeleton structure is suppressed, and the desired excellent heat resistance is ensured. And Y value is 0.3
If it exceeds 0, the X value is 0.2 to 0.5 and the Y value is 0.15 to 0 for the reason that the strength of the hard coating layer is sharply reduced and chipping easily occurs on the cutting edge. .3
0 was set. (B) Composition of the second thin layer of the hard coating layer In the (Al, Si) N layer constituting the second thin layer, a part of Si has excellent thermal conductivity (heat dissipation). It forms a solid solution in AlN to improve its heat resistance, and forms (Al-Si) N crystal grains having excellent thermal conductivity and heat resistance, and the remaining Si also has extremely excellent heat resistance. Therefore, when the Z value is less than 0.15, the formation of the amorphous SiN having the skeleton structure having particularly excellent heat resistance is also insufficient, and the desired value is obtained. Excellent heat resistance cannot be ensured. On the other hand, when the Z value exceeds 0.30, the excellent thermal conductivity inherent in AlN suddenly decreases, so the Z value is set to 0.15 to 0.15. It was determined to be 0.30. (C) Average thickness of the hard coating layer The average thickness of the first thin layer and the second thin layer constituting the alternate lamination of the hard coating layer is 0.01 to 0.1 μm, respectively. In any thin layer, the average layer thickness is 0.0
When the thickness is less than 1 μm, the properties of each thin layer, that is, high strength and high toughness of the first thin layer, excellent high-temperature hardness, further excellent heat resistance, and excellent heat of the second thin layer The hard coating layer cannot be sufficiently provided with conductivity and further excellent heat resistance. On the other hand, when the average layer thickness exceeds 0.1 μm, the characteristics of the hard coating layer in the thickness direction vary. And the cutting performance becomes uneven over time. Further, the reason why the total average layer thickness of the hard coating layer is set to 0.8 to 10 μm is that when the layer thickness is 0.8 μm, a desired excellent wear resistance cannot be secured for a long period of time. This is because if the layer thickness exceeds 10 μm, chipping and chipping of the cutting edge are likely to occur. Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, ZrC powder, V
C powder, TaC powder, NbC powder, Cr 3 C 2 powder, T
An iN powder, a TaN powder, and a Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried.
a into a green compact at the pressure of a
sintering in a vacuum at a temperature of 1400 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.05 to form a WC having a chip shape of ISO standard CNMG120408. Substrates A1 to A10 made of base cemented carbide
Was formed. In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered under the condition of holding at 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to obtain a TiC having a chip shape conforming to ISO standard, CNMG120408.
Carbide substrates B1 to B6 made of N-based cermet were formed. Next, each of these super-hard substrates A1 to A10 and B1 to B6 is subjected to ultrasonic cleaning in acetone and dried, for example, as shown in a schematic plan view in FIG. It is mounted on a rotary table in an arc ion plating apparatus shown in a schematic front view, and on the other hand, as a cathode electrode (evaporation source), a first thin layer forming Ti-Al-Si alloy having various component compositions and a second electrode are formed. A for forming 2 thin layers
The l-Si alloy is mounted at a predetermined position in the apparatus, and a metal Ti for bombarding cleaning is also mounted. First, the inside of the apparatus is evacuated and heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa. After that, a DC bias voltage of -1000 V is applied to the cemented carbide substrate rotating on the rotary table to generate an arc discharge between the metal Ti of the cathode electrode and the anode electrode, thereby causing the cemented carbide substrate surface to After washing with Ti bombard, nitrogen gas was introduced as a reaction gas into the apparatus to make a reaction atmosphere of 10 Pa, and a DC bias voltage of -300 V was applied to the super-hard substrate rotating on the rotary table. Electrodes (the first
Arc discharge is generated between the thin-layer forming Ti-Al-Si alloy or the second thin-layer forming Al-Si alloy) and the anode electrode, and the target shown in Table 3 is formed on the surface of the cemented carbide substrate. By depositing the first thin layer and the second thin layer having the composition and the target layer thickness in a combination shown in Table 4 and a hard coating layer having the same number of layers as shown in Table 4,
FIG. 3A is a schematic perspective view and FIG. 3B is a schematic longitudinal sectional view of the present invention. 1-16). For the purpose of comparison, the above-mentioned super-hard substrate A1
A10 and B1 to B6 were each subjected to ultrasonic cleaning in acetone and dried, and then mounted on a normal arc ion plating apparatus also illustrated in FIG. 2, while a cathode electrode (evaporation source) was used. A Ti-Al alloy having various component compositions and metal Al are mounted at predetermined positions in the apparatus, and metal Ti for bombarding is also mounted. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa. After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the superhard substrate to generate an arc discharge between the metal Ti of the cathode electrode and the anode electrode. The surface of the hard substrate was cleaned by Ti bombarding, and nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 4 Pa.
Under a condition of applying a DC bias voltage of 50 V, an arc discharge is generated between the cathode electrode (the Ti-Al alloy or the metal Al) and the anode electrode, and as shown in Table 5 on the surface of the cemented carbide substrate. By coating a hard coating layer composed of a (Ti, Al) N layer (lower layer) and an AlN layer (upper layer) of the desired target composition and target layer thickness, the conventional surface coating as a conventional coated carbide tool is deposited. Cemented carbide throw-away tips (hereinafter referred to as conventionally coated cemented carbide tips) 1 to 16 were manufactured, respectively. Next, the coated cemented carbide tips 1 to 1 of the present invention will be described.
6 and the conventional coated carbide tips 1 to 16 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS SCM440 round bar, Cutting speed: 350 m / min . Infeed: 1.5 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous turning test of alloy steel under the following conditions: Work material: JIS S50C, 4 longitudinally-spaced round bars at regular intervals in the longitudinal direction, Cutting speed: 300 m / min. Infeed: 1.5 mm Feed: 0.2 mm / rev. , Cutting time: 5 minutes, Dry high-speed intermittent turning test of carbon steel under the following conditions: Work material: JIS FC300, 4 longitudinally spaced round bars at regular intervals in the longitudinal direction, Cutting speed: 250 m / min . Infeed: 1.5 mm Feed: 0.3 mm / rev. A dry high-speed intermittent turning test of cast iron was performed under the following conditions: cutting time: 5 minutes, and the flank wear width of the cutting edge was measured in each turning test. Table 6 shows the measurement results. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] (Example 2) As the raw material powder, the average particle size was as follows:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0
μm of (Ti, W) C powder and 1.8 μm of Co
Powders were prepared, and these raw material powders were respectively blended in the composition shown in Table 7, and further added with wax, and ball-mixed in acetone for 24 hours, and dried under reduced pressure.
Press molding at a pressure of 0 MPa into various green compacts of a predetermined shape, and pressing these green compacts in a vacuum atmosphere of 6 Pa at 7 ° C. /
The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, and then sintered under the condition of furnace cooling to obtain a sample having a diameter of 8 mm, 13 mm and 26 mm. Kinds of round bar sintered bodies for forming a cemented carbide substrate are formed, and the above three kinds of round bar sintered bodies are subjected to grinding processing in a combination shown in Table 7 to obtain the diameter × length of the cutting edge portion. Is 6mm × 1 each
3mm, 10mm x 22mm, and 20mm x 45m
Carbide substrate C-1 to C-8 for end mill having dimension of m
Was manufactured respectively. Next, these cemented carbide substrates C-1 to C-8
, Each of which was subjected to ultrasonic cleaning in acetone and dried, was charged into an arc ion plating apparatus also shown in FIGS. 1 (a) and 1 (b), and the surfaces thereof were the same as in Example 1 described above. Under the conditions, the first thin layer and the second thin layer having the target composition and the target layer thickness shown in Table 3 were combined in the combination shown in Table 8 and the hard coating layer having the same number of layers as shown in Table 8 was formed. By vapor deposition, the surface-coated cemented carbide of the present invention as the coated cemented carbide tool of the present invention having a shape shown in a schematic front view in FIG. 4 (a) and a schematic cross-sectional view of the cutting edge portion in FIG. 4 (b). End mills (hereinafter, referred to as coated carbide end mills) 1 to 8 were manufactured. For the purpose of comparison, the cemented carbide substrate C-
Each of 1 to C-8 was ultrasonically cleaned in acetone, dried and charged into a usual arc ion plating apparatus also illustrated in FIG. Under the same conditions as the manufacturing conditions of the coated carbide tips 1 to 16, a hard layer composed of a (Ti, Al) N layer as a lower layer and an AlN layer as an upper layer having a target composition and a target layer thickness shown in Table 9 By depositing a coating layer, end mills 1 to 8 of conventional surface-coated cemented carbide (hereinafter, referred to as conventional coated carbide end mills) as conventional coated carbide tools were manufactured, respectively. Next, the coated carbide end mill 1 of the present invention will be described.
-8 and the conventional coated carbide end mills 1-8, the coated carbide end mills 1-3 of the present invention and the conventional coated carbide end mills 1-3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SNCM439 plate material, Cutting speed: 160 m / min. , Groove depth (cut): 3 mm, Table feed: 650 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 4 to 6 of the present invention and conventional coated carbide end mills 4 to 6 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
JIS FC300 plate material of 0 mm, Cutting speed: 180 m / min. , Groove depth (cut): 5 mm, table feed: 600 mm / min., Dry high-speed groove cutting test of cast iron, coated carbide end mills 7 and 8 of the present invention and conventional coated carbide end mills 7 and 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SUS304 plate, Cutting speed: 60 m / min. , Groove depth (cut): 10 mm, table feed: 150 mm / min., Dry stainless steel high-speed grooving test under the following conditions. The cut groove length up to 0.1 mm, which is a standard for the service life, was measured. The measurement results are shown in Tables 8 and 9, respectively. [Table 7] [Table 8] [Table 9] Example 3 The diameter produced in Example 2 was 8 mm (for forming the cemented carbide substrates C-1 to C-3) and 13 m.
m (for forming the super-hard substrate C-4 to C-6), and 26 mm
Using the three types of round bar sintered bodies (for forming the cemented carbide substrates C-7 and C-8), the three types of round bar sintered bodies were subjected to grinding to obtain the diameter × length of the groove forming portion. Are 4 mm × 13 mm (carbide substrate D-1 to D-3) and 8 mm × 22 mm (carbide substrate D
-4 to D-6), and a carbide substrate D- for a drill having dimensions of 16 mm × 45 mm (carbide substrates D-7 and D-8).
1 to D-8 were produced respectively. Next, these super-hard substrates D-1 to D-8
Was ultrasonically washed in acetone and dried, and then charged into an arc ion plating apparatus also shown in FIGS. 1A and 1B, and the surface of the super-hard substrate was placed on the surface of Example 1 described above. Under the same conditions as above, the first thin layer and the second thin layer having the target composition and the target layer thickness shown in Table 3 were combined in the combination shown in Table 10 and the same number of layers as shown in Table 10 were used. By depositing a coating layer, the surface coating of the present invention as a coated carbide tool of the present invention having a shape shown in a schematic front view in FIG. 5A and a schematic cross-sectional view of a groove forming portion in FIG. Drills made of cemented carbide (hereinafter referred to as coated carbide drills of the present invention) 1 to 8 were produced. For the purpose of comparison, the above-mentioned carbide substrate D-
Each of 1 to D-8 was ultrasonically cleaned in acetone, dried and charged into a usual arc ion plating apparatus also illustrated in FIG. Under the same manufacturing conditions as the coated carbide tips 1 to 16, a hard layer composed of a (Ti, Al) N layer as a lower layer and an AlN layer as an upper layer having a target composition and a target layer thickness shown in Table 11 By depositing a coating layer, a drill made of a conventional surface-coated cemented carbide as a conventionally coated cemented carbide tool (hereinafter, referred to as a conventional coated carbide drill) 1
8 were each produced. Next, the above-mentioned coated carbide drills 1 to 8 according to the present invention.
Of the coated carbide drills 1 to 8 of the present invention, the coated carbide drills 1 to 3 of the present invention and the coated carbide drills 1 to 3 of the present invention are: Work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS S50C plate, Cutting speed: 140 m / min. , Feed: 0.18 mm / rev, Wet high-speed drilling test of carbon steel under the following conditions: coated carbide drills of the present invention 4-6 and conventional coated carbide drills 4-
About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 100 m / min. , Feed: 0.18 mm / rev, Wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 7 and 8 according to the present invention and conventional coated carbide drills 7 and 8
About 8, work material: plane dimension: 100 mm x 250 mm, thickness: 5
0 mm JIS FC250 plate, Cutting speed: 90 m / min. , Feed: 0.27mm / rev, Wet high-speed drilling cutting test of cast iron under the following conditions, and any wet high-speed drilling cutting test (both tests use water-soluble cutting oil). Was measured until the flank wear width reached 0.3 mm. The measurement results are shown in Tables 10 and 11, respectively. [Table 10] [Table 11] The resulting coated carbide tips 1-16, coated carbide end mills 1-8, and coated carbide drill 1 of the present invention as the resulting coated carbide tools of the present invention.
-8, the composition, the structure, and the layer thickness of the first thin layer and the second thin layer constituting the hard coating layer, the conventional coated carbide tips 1-16 as the conventional coated carbide tool, and the conventional coated carbide end mill 1. -8, and the composition, structure, and structure of the lower layer and the upper layer, which are constituent layers of the hard coating layer of the conventionally coated carbide drills 1-8.
And the layer thickness was measured at the center in the thickness direction of each constituent layer using a transmission electron microscope. As for the composition and the layer thickness, they were substantially the same as the target compositions and the target layer thicknesses in Tables 3 to 11. The composition and the average layer thickness (compared to the average value of measurement at five arbitrary points) are shown. Further, with respect to the microstructure, in the coated carbide tool of the present invention, the first thin layer is (Ti-Al-
A structure in which amorphous SiN having a skeleton structure (skeleton structure) surrounds Si) N crystal grains, and a second thin layer is formed of (Al-S).
i) Amorphous SiN having skeleton structure with N crystal fine particles
The conventional coated cemented carbide tool showed a structure in which the lower layer was composed of crystalline (Ti, Al) N and the upper layer was composed of crystalline AlN. From the results shown in Tables 3 to 11, the coated carbide tools of the present invention, in which the hard coating layer is composed of alternating multiple layers of the first thin layer and the second thin layer, are all steel or cast iron. Even if the cutting process is performed at a high speed with high heat generation, the progress of abrasion is remarkably suppressed even though the hard coating layer is heated to a high temperature by the excellent heat resistance of the hard coating layer, and the cutting edge is not chipped. While exhibiting excellent abrasion resistance without occurrence of chipping or the like, the substantially hard coating layer substantially forms the lower layer (Ti, A
l) In conventional coated carbide tools comprising an N layer and an AlN layer as an upper layer, wear progresses in any case because the hard coating layer which has been heated at high heat and raised in temperature during high-speed cutting does not have sufficient heat resistance. Is remarkably accelerated, and the service life is apparently shortened in a relatively short time. As described above, the coated carbide tool of the present invention exerts excellent wear resistance not only in cutting under various conditions such as steel and cast iron but also in high-speed cutting. Therefore, it is possible to satisfactorily cope with the labor saving and energy saving of the cutting process and the cost reduction.

【図面の簡単な説明】 【図1】本発明被覆超硬工具の硬質被覆層の形成に用い
たアークイオンプレーティング装置を示し、(a)が概
略平面図、(b)が概略正面図である。 【図2】従来被覆超硬工具の硬質被覆層の形成に用いた
アークイオンプレーティング装置の概略説明図である。 【図3】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。 【図4】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。 【図5】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer of a coated carbide tool according to the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view. is there. FIG. 2 is a schematic explanatory view of an arc ion plating apparatus used for forming a hard coating layer of a conventional coated carbide tool. FIG. 3A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic vertical sectional view of a coated carbide tip. FIG. 4 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic transverse sectional view of the cutting blade portion. FIG. 5A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

フロントページの続き (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 3C046 FF03 FF05 FF10 FF16 FF19 FF25 4K029 BA58 BB02 BB07 BB10 BC10 BD05 CA04 EA01 Continuation of front page    (72) Inventor Yusuke Tanaka             179 Kanegasaki Nishi-Oike, Uozumi Town, Akashi City, Hyogo Prefecture             1. MMC Kobelcourt Co., Ltd.             Inside F term (reference) 3C046 FF03 FF05 FF10 FF16 FF19                       FF25                 4K029 BA58 BB02 BB07 BB10 BC10                       BD05 CA04 EA01

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、0.8〜10
μmの全体平均層厚で物理蒸着した硬質被覆層が、個々
の平均層厚が0.01〜0.1μmの第1薄層と第2薄
層の交互積層からなり、 (a)上記第1薄層を、組成式:(Ti1-(X+Y)AlX
Y)Nで表わした場合、厚さ方向中央部の透過型電子
顕微鏡による測定で、原子比で、X:0.20〜0.5
0、Y:0.15〜0.30を満足する組成を有し、か
つ同じく透過型電子顕微鏡による観察で、超微細結晶T
i−Al−Si複合窒化物粒子をスケルトン構造(骨格
構造)をもった非晶質窒化珪素が取り囲む組織を示すT
i−Al−Si複合窒化物で構成し、 (b)上記第2薄層を、組成式:(Al1-ZSiZ)Nで
表わした場合、厚さ方向中央部の透過型電子顕微鏡によ
る測定で、原子比で、Z:0.15〜0.30を満足す
る組成を有し、かつ同じく透過型電子顕微鏡による観察
で、超微細結晶Al−Si複合窒化物粒子をスケルトン
構造(骨格構造)をもった非晶質窒化珪素が取り囲む組
織を示すAl−Si複合窒化物で構成したこと、を特徴
とする硬質被覆層がすぐれた耐熱性を発揮する表面被覆
超硬合金製切削工具。
Claims: 1. A tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate has a surface of 0.8 to 10%.
The hard coating layer physically deposited with a total average layer thickness of μm is composed of alternately laminated first and second thin layers each having an average layer thickness of 0.01 to 0.1 μm; The thin layer is formed by the composition formula: (Ti 1- (X + Y) Al X S
i Y ) When represented by N, the atomic ratio X: 0.20 to 0.5 as measured by a transmission electron microscope at the center in the thickness direction.
0, Y: has a composition satisfying 0.15 to 0.30, and is also observed by a transmission electron microscope.
T showing a structure in which i-Al-Si composite nitride particles are surrounded by amorphous silicon nitride having a skeleton structure (skeleton structure)
(b) When the second thin layer is represented by a composition formula: (Al 1 -Z Si Z ) N, it is determined by a transmission electron microscope at the center in the thickness direction. According to the measurement, the atomic ratio has a composition satisfying Z: 0.15 to 0.30, and the ultrafine crystalline Al-Si composite nitride particles are also observed by a transmission electron microscope to have a skeleton structure (skeleton structure). (1) A cutting tool made of a surface-coated cemented carbide in which a hard coating layer exhibits excellent heat resistance, wherein the cutting tool is made of an Al-Si composite nitride exhibiting a structure surrounded by amorphous silicon nitride.
JP2001376774A 2001-12-11 2001-12-11 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer Expired - Fee Related JP3948013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376774A JP3948013B2 (en) 2001-12-11 2001-12-11 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376774A JP3948013B2 (en) 2001-12-11 2001-12-11 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2003175405A true JP2003175405A (en) 2003-06-24
JP3948013B2 JP3948013B2 (en) 2007-07-25

Family

ID=19184897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376774A Expired - Fee Related JP3948013B2 (en) 2001-12-11 2001-12-11 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP3948013B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152321A (en) * 2004-11-25 2006-06-15 Hitachi Tool Engineering Ltd Coated member with hard film and coating method therefor
WO2008079088A2 (en) * 2006-12-27 2008-07-03 Sandvik Intellectual Property Ab Multilayered coated cutting tool
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152321A (en) * 2004-11-25 2006-06-15 Hitachi Tool Engineering Ltd Coated member with hard film and coating method therefor
WO2008079088A2 (en) * 2006-12-27 2008-07-03 Sandvik Intellectual Property Ab Multilayered coated cutting tool
WO2008079088A3 (en) * 2006-12-27 2008-08-14 Sandvik Intellectual Property Multilayered coated cutting tool
US8119262B2 (en) 2006-12-27 2012-02-21 Sandvik Intellectual Property Ab Multilayered coated cutting tool
CN101578396B (en) * 2006-12-27 2012-05-09 山特维克知识产权股份有限公司 Multilayered coated cutting tool
US8227098B2 (en) 2006-12-27 2012-07-24 Sandvik Intellectual Property Multilayered coated cutting tool
US9103036B2 (en) 2013-03-15 2015-08-11 Kennametal Inc. Hard coatings comprising cubic phase forming compositions
US9168664B2 (en) 2013-08-16 2015-10-27 Kennametal Inc. Low stress hard coatings and applications thereof
US9896767B2 (en) 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
US10184187B2 (en) 2013-08-16 2019-01-22 Kennametal Inc. Low stress hard coatings and applications thereof

Also Published As

Publication number Publication date
JP3948013B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP2006218592A (en) Surface coated cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance in high speed cutting of high hardness steel
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2003326403A (en) Cutting tool made of surface coated cemented carbide providing excellent wear resistance by hard layer in high speed heavy cutting
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3693001B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP3948010B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP3632667B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2003334704A (en) Surface-coated hard metal cutting tool having hard coated layer of excellent abrasion resistance in high- speed cutting processing
JP2003200306A (en) Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3580275B2 (en) Surface-coated cemented carbide cutting tool with excellent heat dissipation with a wear-resistant coating layer
JP3508748B2 (en) Surface-coated cemented carbide cutting tool with excellent heat-resistant plastic deformation with wear-resistant coating layer
JP2003205405A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP3951292B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent chipping resistance with a hard coating layer in high-speed intermittent machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees