JP3632667B2 - Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials - Google Patents
Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials Download PDFInfo
- Publication number
- JP3632667B2 JP3632667B2 JP2002025818A JP2002025818A JP3632667B2 JP 3632667 B2 JP3632667 B2 JP 3632667B2 JP 2002025818 A JP2002025818 A JP 2002025818A JP 2002025818 A JP2002025818 A JP 2002025818A JP 3632667 B2 JP3632667 B2 JP 3632667B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- carbide
- coated carbide
- cemented carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、耐酸化性被覆層がすぐれた高温特性を有し、特に高い発熱を伴うステンレス鋼や軟鋼などの難削材の高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、近年、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、組成式:(Al1−XSiX)N(ただし、原子比で、Xは0.05〜0.20を示す)を満足するAlとSiの複合窒化物[以下、(Al,Si)Nで示す]層からなる耐酸化性被覆層を2〜10μmの平均層厚で物理蒸着してなる被覆超硬工具が、特にステンレス鋼や軟鋼などの難削材の切削加工に適した切削工具として注目されている。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば雰囲気を1.3×10−3Paの真空として、500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入し、一方上記超硬基体には、例えば−200Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、上記(Al,Si)N層からなる耐酸化性被覆層を蒸着することにより製造されることも知られている。
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これをステンレス鋼や軟鋼などの難削材を通常の条件で切削加工する場合には問題はないが、これをきわめて粘性の高いステンレス鋼や軟鋼などの被削材の切削加工をきわめて高い発熱を伴う高速切削条件で行なった場合には、耐酸化性被覆層が十分な高温特性を発揮しないことから、切刃の摩耗進行が著しく促進されるようになり、この結果比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、ステンレス鋼や軟鋼などの難削材の切削加工を高速切削条件で行なった場合にも、すぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、特に上記の従来被覆超硬工具を構成する耐酸化性被覆層に着目し、研究を行った結果、
(a)上記の従来被覆超硬工具を構成する(Al,Si)N層からなる耐酸化性被覆層は熱的に不安定な「六方晶」の結晶構造をもつため、これが高速切削時に発生する高熱に曝されると摩耗進行が促進されるようになるが、この結晶構造が「六方晶」の耐酸化性被覆層を超硬基体表面に物理蒸着形成する前に、予め「立方晶」の結晶構造を有するCr窒化物[以下、CrNで示す]層を相対的に薄い0.05〜2μmの平均層厚で蒸着形成しておくと、これの上に物理蒸着された、本来「六方晶」の結晶構造を有する前記(Al,Si)N層も前記CrN層による結晶履歴効果によって「立方晶」に結晶変換し、CrN層の結晶構造と同じ「立方晶」の結晶構造をもつようになること。
【0007】
(b)結晶構造が「立方晶」の(Al,Si)N層は、同「六方晶」の(AlSi)N層に比して高温特性(高温耐酸化性および高温強度)にすぐれているので、前記結晶構造が「立方晶」の(Al,Si)N層からなる耐酸化性被覆層を超硬基体表面に物理蒸着してなる被覆超硬工具は、結晶履歴層であるCrN層が超硬基体および耐酸化性被覆層の両方に対する密着性にすぐれていることと相俟って、高い発を伴うステンレス鋼や軟鋼などの難削材の高速切削加工ですぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)0.05〜2μmの平均層厚を有し、かつ、立方晶の結晶構造を有するCrN層からなる結晶履歴層を介して、
(b)2〜10μmの平均層厚を有し、かつ、
組成式:(Al1−XSiX)N(ただし、原子比で、Xは0.05〜0.20を示す)を満足すると共に、同じく立方晶の変換結晶構造を有する(Al,Si)N層からなる耐酸化性被覆層を物理蒸着してなる、
難削材の高速切削ですぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬工具において、これを構成する結晶履歴層および耐酸化性被覆層の組成および平均層厚を上記の通りに限定した理由を説明する。
(a)結晶履歴層(CrN層)
CrN層は、「立方晶」の結晶構造を有し、超硬基体および耐酸化性被覆層に対する密着性にすぐれたものであるが、その平均層厚が0.05μm未満では、(Al,Si)N層の本来有する「六方晶」の結晶構造を「立方晶」に変換する結晶履歴効果を十分に発揮させることができず、一方この結晶履歴効果は2μmまでの平均層厚で十分であることから、その平均層厚を0.05〜2μmと定めた。
【0010】
(b)耐酸化性被覆層[(Al,Si)N層]
(Al,Si)N層におけるSiは、耐酸化性にすぐれたAlN層の高温硬さおよび耐熱性を向上させる目的で含有するが、その割合がAlとの合量に占める割合(原子比)で0.05未満では前記の特性に所望の向上効果が得られず、一方その割合が同じく0.20を越えると、層の強度が急激に低下し、切刃にチッピング(微小欠け)が発生し易くなり、これが摩耗進行の原因となることから、その割合を0.05〜0.20と定めた。
また、その平均層厚が2μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が10μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を2〜10μmと定めた。
【0011】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
【0012】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B−1〜B−6を形成した。
【0013】
ついで、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に例示される通常のアークイオンプレーティング装置に装入し、一方カソード電極(蒸発源)として種々の成分組成をもった金属CrおよびAl―Si合金を装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのAr雰囲気とし、この状態で超硬基体に−800Vのバイアス電圧を印加して超硬基体表面をArガスボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して6Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−200Vに下げて、前記カソード電極のうちの金属Crとアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表3,4に示される目標層厚の結晶履歴層(CrN層)を蒸着形成し、ついで前記結晶履歴層の上に、アーク放電をカソード電極のAl―Si合金とアノード電極との間に発生させて、同じく表3,4に示される目標組成および目標層厚の耐酸化性被覆層[(Al,Si)N層]を蒸着することにより、図2(a)に概略斜視図で、同(b)に概略縦断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
また、比較の目的で、表5,6に示される通り上記結晶履歴層(CrN層)の形成を行なわない以外は同一の条件で従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0014】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS304の丸棒、
切削速度:200m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件でのステンレス鋼の乾式高速連続旋削加工試験、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:1.2mm、
送り:0.15mm/rev.、
切削時間:3分、
の条件でのステンレス鋼の乾式高速断続旋削加工試験、さらに、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での軟鋼の乾式高速断続旋削加工試験を行い、いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、8に示した。
【0015】
【表1】
【0016】
【表2】
【0017】
【表3】
【0018】
【表4】
【0019】
【表5】
【0020】
【表6】
【0021】
【表7】
【0022】
【表8】
【0023】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0024】
ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、前記超硬基体C−1〜C−8のそれぞれの表面に、表10に示される目標層厚をもった結晶履歴層(CrN層)および目標組成および目標層厚をもった耐酸化性被覆層[(Al,Si)N層]を蒸着することにより、図3(a)に概略正面図で、同(b)に切刃部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
また、比較の目的で、表11に示される通り上記結晶履歴層(CrN層)の形成を行なわない以外は同一の条件で従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0025】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:45m/min.、
溝深さ(切り込み):2mm、
テーブル送り:110mm/分、
の条件でのステンレス鋼の湿式高速溝切削加工試験(水溶性切削油使用)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15C板材、
切削速度:120m/min.、
溝深さ(切り込み):4mm、
テーブル送り:500mm/分、
の条件での軟鋼の乾式高速溝切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:50m/min.、
溝深さ(切り込み):7mm、
テーブル送り:80mm/分、
の条件でのステンレス鋼の湿式高速溝切削加工試験(水溶性切削油使用)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部先端面の直径が使用寿命の目安とされる0.2mm減少するまでの切削溝長を測定した。この測定結果を表10、11にそれぞれ示した。
【0026】
【表9】
【0027】
【表10】
【0028】
【表11】
【0029】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7,D−8)の寸法をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0030】
ついで、これらの超硬基体(ドリル)D−1〜D−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、前記超硬基体D−1〜D−8のそれぞれの表面に、表12に示される目標層厚をもった結晶履歴層(CrN層)および目標組成および目標層厚をもった耐酸化性被覆層[(Al,Si)N層]を蒸着することにより、図4(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
また、比較の目的で、表13に示される通り上記結晶履歴層(CrN層)の形成を行なわない以外は同一の条件で従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0031】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:8mmのJIS・SUS304板材、
切削速度:35m/min.、
送り:0.1mm/rev、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:16mmのJIS・SUS304の板材、
切削速度:40m/min.、
送り:0.16mm/rev、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:32mmのJIS・S15Cの板材、
切削速度:90m/min.、
送り:0.32mm/rev、
の条件での軟鋼の湿式高速穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12、13にそれぞれ示した。
【0032】
【表12】
【0033】
【表13】
【0034】
なお、この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8の結晶履歴層(CrN層)および耐酸化性被覆層[(Al,Si)N層]、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の耐酸化性被覆層[(Al,Si)N層]の組成について、その厚さ方向中央部をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆超硬工具、並びに従来被覆超硬工具の上記構成層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
さらに、これらの本発明被覆超硬工具、並びに従来被覆超硬工具の上記構成層の結晶構造を透過型電子顕微鏡を用いて断面測定した結果を表3〜6および表10〜13にそれぞれ示した。
さらに、また上記の本発明被覆超硬工具のCrN層および(Al,Si)N層について、CuKα線を用いてX線回折分析を行なったところ、いずれも立方晶の結晶構造を示す(111)面(2θで38°付近)、(200)面(2θで44°付近)、および(220)面(2θで65°付近)に回折ピークが現れ、かつこれらの回折ピークのうちのいずれかが最高回折ピークを示す回折パターンを示した。、
【0035】
【発明の効果】
表3〜13に示される結果から、本発明被覆超硬工具は、これを構成する耐酸化性被覆層の結晶構造が立方晶の結晶履歴層の介在によって立方晶に変換し、これによってすぐれた高温特性(高温耐酸化性および高温強度)を具備するようになることから、いずれもステンレス鋼や軟鋼の切削加工を高い発熱を伴う高速で行っても、すぐれた耐摩耗性を発揮するのに対して、前記耐酸化性被覆層の結晶構造が六方晶の従来被覆超硬工具においては、高温特性不足が原因で摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、特に粘性が高く、高い発熱を伴うステンレス鋼や軟鋼などの高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】アークイオンプレーティング装置の概略説明図である。
【図2】(a)は被覆超硬チップの概略斜視図、(b)は被覆超硬チップの概略縦断面図である。
【図3】(a)は被覆超硬エンドミル概略正面図、(b)は同切刃部の概略横断面図である。
【図4】(a)は被覆超硬ドリルの概略正面図、(b)は同溝形成部の概略横断面図である。[0001]
BACKGROUND OF THE INVENTION
This invention has excellent high-temperature characteristics with an oxidation-resistant coating layer, and exhibits excellent wear resistance particularly when used for high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel with high heat generation. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).
[0002]
[Prior art]
In general, for cutting tools, a throw-away tip that is used by attaching to the tip of a cutting tool for turning and planing of various steels and cast irons, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
[0003]
In recent years, the surface of a substrate (hereinafter collectively referred to as a carbide substrate) made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. , Compositional formula: (Al 1-X Si X ) N (wherein, X is 0.05 to 0.20 in atomic ratio) and Al / Si composite nitride [hereinafter referred to as (Al, Si) Cutting tool suitable for cutting difficult-to-cut materials such as stainless steel and mild steel, with a coated carbide tool formed by physically vapor-depositing an oxidation-resistant coating layer comprising a layer represented by N] with an average layer thickness of 2 to 10 μm It is attracting attention as.
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. For example, with the atmosphere set to a vacuum of 1.3 × 10 −3 Pa and heated to a temperature of 500 ° C., between the anode electrode and the cathode electrode (evaporation source) on which an Al—Si alloy having a predetermined composition is set For example, arc discharge is generated under the conditions of voltage: 35 V and current: 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas, while a bias voltage of, for example, −200 V is applied to the carbide substrate. It is also known that it is produced by vapor-depositing an oxidation-resistant coating layer composed of the (Al, Si) N layer on the surface of the cemented carbide substrate.
[0005]
[Problems to be solved by the invention]
In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. For coated carbide tools, there is no problem when cutting difficult-to-cut materials such as stainless steel and mild steel under normal conditions. When cutting is performed under high-speed cutting conditions with extremely high heat generation, the oxidation-resistant coating layer does not exhibit sufficient high-temperature characteristics, so that the progress of wear on the cutting edge is remarkably accelerated. At present, the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
In view of the above, the inventors of the present invention have a coated carbide tool that exhibits excellent wear resistance even when cutting difficult-to-cut materials such as stainless steel and mild steel under high-speed cutting conditions. As a result of conducting research, focusing on the oxidation-resistant coating layer that constitutes the above conventional coated carbide tool,
(A) The oxidation-resistant coating layer composed of the (Al, Si) N layer that constitutes the above conventional coated carbide tool has a thermally unstable “hexagonal” crystal structure, which occurs during high-speed cutting. When exposed to high heat, the progress of wear is promoted, but this crystal structure is preliminarily "cubic" before physical deposition of a "hexagonal" oxidation-resistant coating layer on the surface of the carbide substrate. When a Cr nitride [hereinafter referred to as CrN] layer having a crystal structure of [5] is deposited with a relatively thin average layer thickness of 0.05-2 [mu] m, The (Al, Si) N layer having the crystal structure of “crystal” is also converted to “cubic” by the crystal hysteresis effect of the CrN layer, and has the same “cubic” crystal structure as that of the CrN layer. To become.
[0007]
(B) The (Al, Si) N layer having a “cubic” crystal structure is superior in high-temperature characteristics (high-temperature oxidation resistance and high-temperature strength) as compared to the (AlSi) N layer having the “hexagonal” crystal structure. Therefore, the coated carbide tool formed by physically vapor-depositing an oxidation-resistant coating layer composed of an (Al, Si) N layer having a crystal structure of “cubic” on the surface of the carbide substrate has a CrN layer as a crystal history layer. Combined with excellent adhesion to both the carbide substrate and the oxidation-resistant coating layer, it exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel, which have high resistance. To come to do.
The research results shown in (a) and (b) above were obtained.
[0008]
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) Through a crystal history layer comprising a CrN layer having an average layer thickness of 0.05 to 2 μm and having a cubic crystal structure,
(B) having an average layer thickness of 2 to 10 μm, and
It satisfies the composition formula: (Al 1-X Si X ) N (wherein X is 0.05 to 0.20 in atomic ratio), and also has a cubic crystal structure (Al, Si) It is formed by physical vapor deposition of an oxidation resistant coating layer composed of an N layer.
It is characterized by a coated carbide tool that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials.
[0009]
Next, in the coated carbide tool of the present invention, the reason why the composition and average layer thickness of the crystal history layer and the oxidation resistant coating layer constituting the tool are limited as described above will be described.
(A) Crystal history layer (CrN layer)
The CrN layer has a “cubic” crystal structure and has excellent adhesion to the carbide substrate and the oxidation-resistant coating layer. However, when the average layer thickness is less than 0.05 μm, (Al, Si ) The crystal history effect of converting the original “hexagonal” crystal structure of the N layer into “cubic crystal” cannot be sufficiently exhibited, while this crystal history effect is sufficient with an average layer thickness of up to 2 μm. Therefore, the average layer thickness was set to 0.05 to 2 μm.
[0010]
(B) Oxidation-resistant coating layer [(Al, Si) N layer]
Si in the (Al, Si) N layer is contained for the purpose of improving the high-temperature hardness and heat resistance of the AlN layer excellent in oxidation resistance, but the proportion of the total amount with Al (atomic ratio) If the ratio is less than 0.05, the desired improvement effect cannot be obtained in the above characteristics. On the other hand, if the ratio exceeds 0.20, the strength of the layer is drastically reduced and chipping (small chipping) occurs in the cutting edge. Since this becomes a cause of wear progress, the ratio was set to 0.05 to 0.20.
Further, if the average layer thickness is less than 2 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 10 μm, chipping tends to occur on the cutting edge. The thickness was set to 2 to 10 μm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
(Example 1)
WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, WC-based carbide with ISO standard / CNMG120408 chip shape after honed to R: 0.05 after cutting Alloy carbide substrates A-1 to A-10 were formed.
[0012]
In addition, as raw material powders, all of TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cermet carbide substrates B-1 to B-6 having the following chip shape were formed.
[0013]
Next, these superhard substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus illustrated in FIG. Metal Cr and Al—Si alloys having various component compositions were attached as (evaporation source), and the inside of the apparatus was heated to 500 ° C. with a heater while the inside of the apparatus was evacuated and kept at a vacuum of 0.5 Pa or less. Thereafter, Ar gas is introduced into the apparatus to form an Ar atmosphere of 10 Pa. In this state, a bias voltage of −800 V is applied to the cemented carbide substrate to clean the surface of the cemented carbide substrate with Ar gas bombardment, and then the reaction gas enters the apparatus. Nitrogen gas is introduced to form a reaction atmosphere of 6 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to −200 V so that the metal Cr and the anode of the cathode electrode are An arc discharge is generated between the electrodes and the surfaces of the carbide substrates A-1 to A-10 and B-1 to B-6, and the target layer thicknesses shown in Tables 3 and 4 are set. A crystal history layer (CrN layer) is formed by vapor deposition, and then an arc discharge is generated between the Al—Si alloy of the cathode electrode and the anode electrode on the crystal history layer, which are also shown in Tables 3 and 4. By depositing an oxidation resistant coating layer [(Al, Si) N layer] having a target composition and a target layer thickness, a schematic perspective view is shown in FIG. 2A and a schematic vertical cross-sectional view is shown in FIG. 2B. The present invention surface-coated cemented carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 as the present invention coated carbide tools having shapes were produced, respectively.
For comparison purposes, a conventional surface-coated cemented carbide throwaway as a conventional coated carbide tool under the same conditions except that the above-mentioned crystal history layer (CrN layer) is not formed as shown in Tables 5 and 6. Chips (hereinafter referred to as conventional coated carbide chips) 1 to 16 were produced.
[0014]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUS304 round bar,
Cutting speed: 200 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Stainless steel dry-type high-speed continuous turning test,
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.15 mm / rev. ,
Cutting time: 3 minutes
Stainless steel dry high-speed intermittent turning test,
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
The dry high-speed intermittent turning test of mild steel under the conditions described above was conducted, and the flank wear width of the cutting edge was measured in any turning test. The measurement results are shown in Tables 7 and 8.
[0015]
[Table 1]
[0016]
[Table 2]
[0017]
[Table 3]
[0018]
[Table 4]
[0019]
[Table 5]
[0020]
[Table 6]
[0021]
[Table 7]
[0022]
[Table 8]
[0023]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Prepare powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder. Each was blended in the blending composition shown in Table 9, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into various compacts of a predetermined shape at a pressure of 100 MPa. The green compact is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then fired under furnace cooling conditions. The diameter is 8mm, 13mm, and 2 The diameter of the cutting edge is formed by combining the three types of sintered carbide rods for forming a carbide substrate with a diameter of 3 mm, and further grinding the above three types of sintered rods with the combinations shown in Table 9. X Carbide substrates (end mills) C-1 to C-8 having lengths of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, were produced.
[0024]
Then, these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus illustrated in FIG. Under the same conditions as in Example 1, the crystal history layer (CrN layer) having the target layer thickness shown in Table 10 and the target composition on each surface of the cemented carbide substrates C-1 to C-8, and By depositing an oxidation resistant coating layer [(Al, Si) N layer] having a target layer thickness, FIG. 3A is a schematic front view, and FIG. 3B is a schematic cross-sectional view of the cutting edge portion. The surface coated cemented carbide end mills (hereinafter referred to as the present coated carbide end mills) 1 to 8 as the coated carbide tools of the present invention having the shapes indicated by
For comparison purposes, a conventional surface-coated cemented carbide end mill (hereinafter referred to as a conventional coated carbide tool) as a conventional coated carbide tool under the same conditions except that the above-described crystal history layer (CrN layer) is not formed as shown in Table 11. Conventionally coated carbide end mills) 1 to 8 were produced.
[0025]
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 45 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 110 mm / min,
The wet high-speed grooving test of stainless steel under the conditions of (using water-soluble cutting oil), the present invention coated carbide end mills 4-6 and the conventional coated carbide end mills 4-6,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 120 m / min. ,
Groove depth (cut): 4 mm
Table feed: 500 mm / min,
For the dry high-speed grooving test of mild steel under the following conditions, the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 50 m / min. ,
Groove depth (cut): 7 mm,
Table feed: 80 mm / min,
Wet high-speed grooving cutting test of stainless steel under the conditions of (using water-soluble cutting oil),
In each of the groove cutting tests, the cutting groove length was measured until the diameter of the tip surface of the cutting edge decreased by 0.2 mm, which is a guide for the service life. The measurement results are shown in Tables 10 and 11, respectively.
[0026]
[Table 9]
[0027]
[Table 10]
[0028]
[Table 11]
[0029]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7, D-8) Hard substrates (drills) D-1 to D-8 were produced, respectively.
[0030]
Then, these carbide substrates (drills) D-1 to D-8 were ultrasonically cleaned in acetone and dried, and then loaded into a normal arc ion plating apparatus similarly illustrated in FIG. A crystal history layer (CrN layer) having a target layer thickness shown in Table 12 and a target composition on each of the surfaces of the cemented carbide substrates D-1 to D-8 under the same conditions as in Example 1 and By depositing an oxidation-resistant coating layer [(Al, Si) N layer] having a target layer thickness, FIG. 4A is a schematic front view, and FIG. 4B is a schematic cross-sectional view of a groove forming portion. The surface-coated cemented carbide drills (hereinafter referred to as the present invention coated carbide drills) 1 to 8 as the present invention coated carbide tools having the shape shown in FIG.
For comparison purposes, a conventional surface-coated cemented carbide drill (hereinafter referred to as a conventional coated carbide tool) as a conventional coated carbide tool under the same conditions except that the above-described crystal history layer (CrN layer) is not formed as shown in Table 13. 1 to 8 were manufactured.
[0031]
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 8 mm JIS / SUS304 plate material,
Cutting speed: 35 m / min. ,
Feed: 0.1 mm / rev,
For the wet high speed drilling test of stainless steel under the conditions of the present invention, the coated carbide drills 4-6 of the present invention and the conventional coated carbide drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 16 mm JIS / SUS304 plate,
Cutting speed: 40 m / min. ,
Feed: 0.16mm / rev,
For the wet high speed drilling test of stainless steel under the conditions of the present invention, the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 32 mm JIS / S15C plate material,
Cutting speed: 90 m / min. ,
Feed: 0.32mm / rev,
Wet high-speed drilling machining test of mild steel under the conditions of each of the above, and in any wet high-speed drilling machining test (using water-soluble cutting oil), the flank wear width of the tip cutting edge surface reaches 0.3 mm The number of drilling operations was measured. The measurement results are shown in Tables 12 and 13, respectively.
[0032]
[Table 12]
[0033]
[Table 13]
[0034]
In addition, the crystal | crystallization history layer of this invention coated carbide tips 1-16 as this invention coated carbide tool obtained as a result of this invention, this invention coated carbide end mill 1-8, and this invention coated carbide drill 1-8 ( CrN layer) and oxidation-resistant coating layer [(Al, Si) N layer], and conventionally coated carbide tips 1 to 16 as conventional coated carbide tools, conventionally coated carbide end mills 1 to 8, and conventionally coated carbide About the composition of the oxidation-resistant coating layer [(Al, Si) N layer] of the drills 1 to 8, the central portion in the thickness direction was measured using an Auger spectroscopic analyzer. showed that.
Further, when the thicknesses of the above constituent layers of the coated carbide tool of the present invention and the conventional coated carbide tool were subjected to cross-sectional measurement using a scanning electron microscope, the average layer was substantially the same as the target layer thickness. The thickness (average value of 5-point measurement) was shown.
Further, Tables 3-6 and Tables 10-13 show the results of cross-sectional measurement of the crystal structures of the above-described constituent layers of the present coated carbide tool and the conventional coated carbide tool using a transmission electron microscope, respectively. .
Further, when the CrN layer and the (Al, Si) N layer of the coated carbide tool of the present invention described above were subjected to X-ray diffraction analysis using CuKα rays, both showed a cubic crystal structure (111). Diffraction peaks appear on the plane (near 38 ° at 2θ), the (200) plane (near 44 ° at 2θ), and the (220) plane (near 65 ° at 2θ), and any of these diffraction peaks A diffraction pattern showing the highest diffraction peak was shown. ,
[0035]
【The invention's effect】
From the results shown in Tables 3 to 13, the coated carbide tool of the present invention was superior in that the crystal structure of the oxidation-resistant coating layer constituting the present invention was converted to cubic by interposing a cubic crystal hysteresis layer. Because it has high temperature characteristics (high temperature oxidation resistance and high temperature strength), both have excellent wear resistance even when cutting stainless steel and mild steel at high speed with high heat generation. On the other hand, in the conventional coated carbide tool having a hexagonal crystal structure of the oxidation resistant coating layer, it is clear that the wear progresses rapidly due to insufficient high-temperature characteristics, and the service life is reached in a relatively short time.
As described above, the coated carbide tool of the present invention is particularly viscous and exhibits excellent wear resistance even in high-speed cutting such as stainless steel and mild steel with high heat generation, and excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily cope with high performance of the cutting device, labor saving and energy saving of cutting, and cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an arc ion plating apparatus.
FIG. 2A is a schematic perspective view of a coated carbide chip, and FIG. 2B is a schematic longitudinal sectional view of the coated carbide chip.
3A is a schematic front view of a coated carbide end mill, and FIG. 3B is a schematic cross-sectional view of the cutting edge portion.
4A is a schematic front view of a coated carbide drill, and FIG. 4B is a schematic cross-sectional view of the groove forming portion.
Claims (1)
(a)0.05〜2μmの平均層厚を有し、かつ、立方晶の結晶構造を有するCr窒化物層からなる結晶履歴層を介して、
(b)2〜10μmの平均層厚を有し、かつ、
組成式:(Al1−XSiX)N(ただし、原子比で、Xは0.05〜0.20を示す)を満足すると共に、同じく立方晶の変換結晶構造を有するAlとSiの複合窒化物層からなる耐酸化性被覆層を物理蒸着してなる、
難削材の高速切削ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。On the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate,
(A) through a crystal history layer consisting of a Cr nitride layer having an average layer thickness of 0.05 to 2 μm and having a cubic crystal structure,
(B) having an average layer thickness of 2 to 10 μm, and
A composite of Al and Si that satisfies the composition formula: (Al 1-X Si X ) N (wherein X is 0.05 to 0.20 in atomic ratio) and also has a cubic crystal structure. It is formed by physical vapor deposition of an oxidation resistant coating layer made of a nitride layer.
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002025818A JP3632667B2 (en) | 2002-02-01 | 2002-02-01 | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002025818A JP3632667B2 (en) | 2002-02-01 | 2002-02-01 | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003225809A JP2003225809A (en) | 2003-08-12 |
JP3632667B2 true JP3632667B2 (en) | 2005-03-23 |
Family
ID=27747852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002025818A Expired - Fee Related JP3632667B2 (en) | 2002-02-01 | 2002-02-01 | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3632667B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1749118B1 (en) | 2004-04-19 | 2014-04-09 | Pivot a.s. | A hard, wear-resistant aluminum nitride based coating |
SE0500994L (en) | 2005-04-29 | 2006-10-30 | Seco Tools Ab | Thin durable layer |
KR100758033B1 (en) | 2006-05-12 | 2007-09-11 | 울산대학교 산학협력단 | Hard wear resistant thin films deposition device and method |
JP5559131B2 (en) * | 2011-11-22 | 2014-07-23 | 株式会社神戸製鋼所 | Hard coating and hard coating tool |
-
2002
- 2002-02-01 JP JP2002025818A patent/JP3632667B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003225809A (en) | 2003-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3969230B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions | |
JP3669334B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3659217B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3931326B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3931325B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3844285B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3693001B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3695396B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP3632667B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP3879113B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4007102B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3948013B2 (en) | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer | |
JP3693018B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP3931328B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3985227B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3982301B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP3948010B2 (en) | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer | |
JP3849135B2 (en) | Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions | |
JP3928461B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP4366987B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. | |
JP3879114B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3944900B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP2002254204A (en) | Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip | |
JP3928487B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3580271B2 (en) | Surface coated cemented carbide cutting tool with excellent chip slipperiness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080107 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130107 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |