JP3948010B2 - Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer - Google Patents
Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer Download PDFInfo
- Publication number
- JP3948010B2 JP3948010B2 JP2001369487A JP2001369487A JP3948010B2 JP 3948010 B2 JP3948010 B2 JP 3948010B2 JP 2001369487 A JP2001369487 A JP 2001369487A JP 2001369487 A JP2001369487 A JP 2001369487A JP 3948010 B2 JP3948010 B2 JP 3948010B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- coating layer
- cemented carbide
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、特に高熱発生を伴なう鋼や鋳鉄などの高速切削で、硬質被覆層がすぐれた耐熱性を発揮して、過熱による摩耗進行を抑制し、もって一段の使用寿命の延命化を可能ならしめた表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、切削工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
(a)0.5〜5μmの平均層厚を有し、組成式:(Ti1-XAlX)Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.30〜0.70、を満足するTi−Al複合窒化物[以下、(Ti,Al)Nで示す]からなる下部層、
(b)0.5〜5μmの平均層厚を有し、窒化アルミニウム(以下、AlNで示す]からなる上部層、
上記下部層および上部層で構成された硬質被覆層を物理蒸着してなる被覆超硬工具が知られており、また、上記被覆超硬工具において、これを構成する硬質被覆層の上記下部層がすぐれた高温硬さと耐熱性を有し、同上部層がすぐれた熱伝導性を有することから、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合、前記上部層の発揮するすぐれた放熱性と相俟って、前記下部層がすぐれた耐摩耗性を発揮することも良く知られるところである。
【0004】
さらに、上記の被覆超硬工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば雰囲気を0.13Paの真空として、400℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金および金属Alがそれぞれセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、反応雰囲気圧力を1Paとし、一方上記超硬基体には、例えば−150Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、硬質被覆層の下部層として(Ti,Al)N層および上部層としてAlN層を蒸着することにより製造されることも知られている。
【0005】
【発明が解決しようとする課題】
一方、近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は切削機械の高性能化とも相俟って高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、これを高速切削条件で用いると、切削加工時の発生熱はきわめて高いものとなるため、硬質被覆層の上部層を構成するAlN層による放熱作用では硬質被覆層の温度上昇を十分満足に防止することができず、このような硬質被覆層の温度上昇は摩耗進行を著しく促進することから、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具の硬質被覆層に着目し、特に高速切削時における温度上昇にもすぐれた耐摩耗性を発揮する硬質被覆層を開発すべく研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層の構成層である(Ti,Al)N層およびAlN層のそれぞれに、Siを含有させて、組成式:(Ti1-(X+Y)AlXSiY)Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.20〜0.35、Y:0.25〜0.30を満足する組成を有するTi−Al−Si複合窒化物[以下、(Ti,Al,Si)Nで示す]層、並びに組成式:(Al1-ZSiZ)Nで表わした場合、同じく厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、Z:0.15〜0.30を満足する組成を有するAl−Si複合窒化物[以下、(Al,Si)Nで示す]層とすると共に、これら(Ti,Al,Si)N層および(Al,Si)N層の形成を、例えばアークイオンプレーティング装置により行なう場合に、超硬基体に印加されるバイアス電圧および反応雰囲気である窒素雰囲気の圧力を、前記超硬基体の加熱温度を相対的に高い状態、例えば500℃に保持した状態で相対的に高い、例えば−300Vのバイアス電圧および10Paの窒素雰囲気圧力とした条件で行なうと、これら(Ti,Al,Si)N層および(Al,Si)N層は、透過型電子顕微鏡による観察で、それぞれ超微細結晶Ti−Al−Si複合窒化物粒子[以下、(Ti,Al,Si)N結晶微粒という]および超微細結晶Al−Si複合窒化物粒子[以下、(Al,Si)N結晶微粒という]をスケルトン構造(骨格構造)をもった非晶質窒化珪素(以下、非晶質SiNで示す)が取り囲む組織をもつようになること。
(b)上記(a)の(Ti,Al,Si)N層および(Al,Si)N層は、これを構成する(Ti,Al,Si)N結晶微粒および(Al,Si)N結晶微粒がSi含有によってすぐれた耐熱性を具備するばかりでなく、さらにスケルトン構造の前記非晶質SiNもきわめてすぐれた耐熱性をもつことから、硬質被覆層自体の耐熱性が一段と向上し、したがって、この硬質被覆層を形成してなる被覆超硬工具は、これを特に鋼や鋳鉄などの高熱発生を伴なう高速切削加工に用いても、硬質被覆層がすぐれた耐熱性を発揮し、これ自体の過熱による摩耗進行が抑制されることから、耐摩耗性が一層向上し、長期に亘って安定した切削性能を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、
超硬基体の表面に、アークイオンプレーティング装置を用い、
(a)0.5〜5μmの平均層厚を有し、組成式:(Ti1-(X+Y)AlXSiY)Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.20〜0.35、Y:0.25〜0.30を満足する組成を有し、かつ透過型電子顕微鏡による観察で、(Ti,Al,Si)N結晶微粒をスケルトン構造(骨格構造)をもった非晶質SiNが取り囲む組織を示す(Ti,Al,Si)Nからなる下部層、
(b)0.5〜5μmの平均層厚を有し、組成式:(Al1-ZSiZ)Nで表わした場合、同じく厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、Z:0.15〜0.30を満足する組成を有し、かつ同じく透過型電子顕微鏡による観察で、(Al,Si)N結晶微粒をスケルトン構造をもった非晶質SiNが取り囲む組織を示す(Al,Si)Nからなる上部層、
上記(a)および(b)の下部層および上部層で構成された硬質被覆層を蒸着してなる、硬質被覆層がすぐれた耐熱性を発揮する被覆超硬工具に特徴を有するものである。
【0008】
つぎに、この発明の被覆超硬工具において、硬質被覆層を構成する下部層および上部層の組成、さらに平均層厚を上記の通りに限定した理由を説明する。
(a)硬質被覆層の下部層
上記下部層を構成する(Ti,Al,Si)N層においては、TiとAlとSiの一部が、Tiによる高強度と高靭性、Alによるすぐれた高温硬さと耐熱性、さらに一部のSiによる一段と向上した耐熱性を具備した(Ti,Al,Si)N結晶微粒を形成するほか、残りのSiがきわめてすぐれた耐熱性を有するスケルトン構造の非晶質SiNを形成するものであり、したがって組成式:(Ti1-(X+Y)AlXSiY)NのX値が原子比(以下同じ)で、0.20未満では前記(Ti,Al,Si)N結晶微粒に所望の高温硬さおよび耐熱性を確保することができず、同じくY値が0.25未満では、特にすぐれた耐熱性を有する非晶質SiNスケルトン構造の十分な形成ができず、さらに一段の耐熱性向上効果を確保することができない場合が発生し、一方X値が0.35を越えると、前記スケルトン構造の形成に抑制作用が働く場合が生じ、所望のすぐれた耐熱性を確保することができなくなり、またY値が0.30を越えると、硬質被覆層の強度が急激に低下し、これが原因で切刃にチッピングが発生し易くなると云う理由によりX値を0.20〜0.35、Y値を0.25〜0.30と定めた。
また、下部層の平均層厚が0.5μm未満では、所望のすぐれた耐摩耗性を長期に亘って確保することができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
【0009】
(b)硬質被覆層の上部層
上記上部層を構成する(Al,Si)N層においては、Siの一部がすぐれた熱伝導性(放熱性)を有するAlNに固溶して、これの耐熱性を向上させ、もってすぐれた熱伝導性と耐熱性を有する(Al,Si)N結晶微粒を形成し、さらに残りのSiが、同じくきわめてすぐれた耐熱性を有するスケルトン構造の非晶質SiNを形成するものであり、したがってZ値が0.15未満では、同じく特にすぐれた耐熱性を有するスケルトン構造の非晶質SiNの形成が不十分で、所望のすぐれた耐熱性を確保するこができず、一方Z値が0.30を越えると、本来AlNのもつすぐれた熱伝導性が急激に低下するようになることから、Z値を0.15〜0.30と定めた。
また、上部層の平均層厚が0.5μm未満では、上部層のもつ上記の特性を十分にすることができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
【0010】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−3,A−4,A−5,A−7,およびA−8を形成した。
【0011】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B−3およびB−6を形成した。
【0012】
ついで、これら超硬基体A−3,A−4,A−5,A−7,およびA−8、さらにB−3およびB−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装着し、一方カソード電極(蒸発源)として、種々の成分組成をもったTi−Al―Si合金とAl−Si合金を装置内の所定位置に装着し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で回転する超硬基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間にアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記超硬基体に−300Vの直流バイアス電圧を印加して、前記カソード電極(前記Ti−Al−Si合金またはAl−Si合金)とアノード電極との間にアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,Si)N層で構成された下部層と(Al,Si)N層で構成された上部層からなる硬質被覆層を蒸着することにより、図2(a)に概略斜視図で、同(b)に概略縦断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜7をそれぞれ製造した。
【0013】
また、比較の目的で、上記の超硬基体A−3,A−4,A−5,A−7,およびA−8、さらにB−3およびB−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装着し、一方カソード電極(蒸発源)として、種々の成分組成をもったTi−Al合金と金属Alを装置内の所定位置に装着し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間にアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記超硬基体に−150Vの直流バイアス電圧を印加する条件で、前記カソード電極(前記Ti−Al合金または金属Al)とアノード電極との間にアーク放電を発生させ、もって前記超硬基体の表面に表4に示される目標組成および目標層厚の(Ti,Al)N層で構成された下部層とAlN層で構成された上部層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜7をそれぞれ製造した。
【0014】
つぎに、上記本発明被覆超硬チップ1〜7および従来被覆超硬チップ1〜7について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:350m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式高速連続旋削加工試験、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式高速断続旋削加工試験、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式高速断続旋削加工試験を行い、いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
【0015】
【表1】
【0016】
【表2】
【0017】
【表3】
【0018】
【表4】
【0019】
【表5】
【0020】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同2.3μmのCr3C2粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mmの丸棒焼結体C−2、および同13mmの丸棒焼結体C−5,C−6を形成し、さらに前記の丸棒焼結体のうちの丸棒焼結体C−5,C−6から、研削加工にて、表6に示される組合せで、切刃部の直径×長さが10mm×22mmの寸法をもったエンドミル超硬基体をそれぞれ製造した。
【0021】
ついで、これらのエンドミル超硬基体を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、これらの表面に上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al,Si)N層で構成された下部層と(Al,Si)N層で構成された上部層からなる硬質被覆層を蒸着することにより、図3(a)に概略正面図で、同(b)に切刃部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1,2を製造した。
【0022】
また、比較の目的で、上記のエンドミル超硬基体を、同じくアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、これらの表面に上記実施例1における従来被覆超硬チップ1〜7の製造条件と同じ条件で、表8に示される目標組成および目標層厚の(Ti,Al)N層で構成された下部層とAlN層で構成された上部層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1,2を製造した。
【0023】
つぎに、上記本発明被覆超硬エンドミル1,2および従来被覆超硬エンドミル1,2について、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC300の板材、
切削速度:180m/min.、
溝深さ(切り込み):5mm、
テーブル送り:600mm/分、
の条件での鋳鉄の乾式高速溝切削加工試験を行い、外周刃の逃げ面摩耗量が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7,8にそれぞれ示した。
【0024】
【表6】
【0025】
【表7】
【0026】
【表8】
【0027】
(実施例3)
上記の実施例2で製造した直径が8mmおよび13mmの丸棒焼結体C−2およびC−5を用い、丸棒焼結体から、研削加工にて、表6に示される組み合わせで、溝形成部の直径×長さがそれぞれ4mm×13mmおよび8mm×22mmの寸法をもったドリル超硬基体を製造した。
【0028】
ついで、これらのドリル超硬基体を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、これら超硬基体の表面に、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Ti,Al,Si)N層で構成された下部層と(Al,Si)N層で構成された上部層からなる硬質被覆層を蒸着することにより、図4(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1,2を製造した。
【0029】
また、比較の目的で、上記のドリル超硬基体を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に例示される通常のアークイオンプレーティング装置に装入し、これらの表面に上記実施例1における従来被覆超硬チップ1〜7の製造条件と同じ条件で、表10に示される目標組成および目標層厚の(Ti,Al)N層で構成された下部層とAlN層で構成された上部層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1,2をそれぞれ製造した。
【0030】
つぎに、上記本発明被覆超硬ドリル1,2および従来被覆超硬ドリル1,2のうち、本発明被覆超硬ドリル1および従来被覆超硬ドリル1については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、
切削速度:140m/min.、
送り:0.18mm/rev、
の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発明被覆超硬ドリル2および従来被覆超硬ドリル2については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:100m/min.、
送り:0.18mm/rev、
の条件での合金鋼の湿式高速穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(いずれの試験も水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9,10にそれぞれ示した。
【0031】
【表9】
【0032】
【表10】
【0033】
また、この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜7、本発明被覆超硬エンドミル1,2、および本発明被覆超硬ドリル1,2、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜7、従来被覆超硬エンドミル1,2、および従来被覆超硬ドリル1,2の硬質被覆層の組成および層厚について、それぞれの構成層の厚さ方向中央部を、エネルギー分散型X線測定装置およびオージェ分光分析装置、さらに走査型電子顕微鏡を用いて測定したところ、表3〜10の目標組成および目標層厚と実質的に同じ組成および平均層厚(任意5ヶ所測定の平均値との比較)を示し、また、組織に関しては、同じく構成層の厚さ方向中央部を透過型電子顕微鏡により観察したところ、前記本発明被覆超硬工具は、いずれも下部層が(Ti,Al,Si)N結晶微粒をスケルトン構造(骨格構造)をもった非晶質SiNが取り囲む組織、上部層が(Al,Si)N結晶微粒をスケルトン構造をもった非晶質SiNが取り囲む組織を示し、さらに前記従来被覆超硬工具は、いずれも下部層が結晶質の(Ti,Al)N、上部層が同じく結晶質のAlNからなる組織を示した。
【0034】
【発明の効果】
表3〜10に示される結果から、本発明被覆超硬工具は、いずれも鋼や鋳鉄の切削加工を高い発熱を伴う高速で行っても、硬質被覆層のもつすぐれた耐熱性によって硬質被覆層が高温加熱されるにもかかわらず、摩耗進行が著しく抑制され、切刃に欠けやチッピングなどの発生なく、すぐれた耐摩耗性を発揮するのに対して、従来被覆超硬工具においては、いずれも高速切削時に発生する高熱で温度上昇した硬質被覆層は十分な耐熱性を具備したものでないために、摩耗進行が著しく促進し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高速切削加工においてもすぐれた耐摩耗性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】 アークイオンプレーティング装置の概略説明図である。
【図2】 (a)は被覆超硬チップの概略斜視図、(b)は被覆超硬チップの概略縦断面図である。
【図3】 (a)は被覆超硬エンドミル概略正面図、(b)は同切刃部の概略横断面図である。
【図4】 (a)は被覆超硬ドリルの概略正面図、(b)は同溝形成部の概略横断面図である。[0001]
BACKGROUND OF THE INVENTION
This invention is especially effective in high-speed cutting of steel and cast iron that generate high heat, and the hard coating layer exhibits excellent heat resistance, suppresses the progress of wear due to overheating, and thus extends the service life by one step. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).
[0002]
[Prior art]
In general, for cutting tools, a throw-away tip that is used by attaching to the tip of a cutting tool for turning and planing of various steels and cast irons, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
[0003]
Further, as a cutting tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface,
(A) When having an average layer thickness of 0.5 to 5 μm and represented by the composition formula: (Ti 1-X Al X ) N, the atomic ratio is measured by an Auger spectroscopic analyzer at the center in the thickness direction. X: 0.30 to 0.70, a lower layer made of a Ti—Al composite nitride [hereinafter referred to as (Ti, Al) N],
(B) an upper layer having an average layer thickness of 0.5 to 5 μm and made of aluminum nitride (hereinafter referred to as AlN);
A coated carbide tool formed by physically vapor-depositing a hard coating layer composed of the lower layer and the upper layer is known, and in the coated carbide tool, the lower layer of the hard coating layer constituting the coated hard tool is Since it has excellent high-temperature hardness and heat resistance, and the upper layer has excellent thermal conductivity, when it is used for continuous cutting and intermittent cutting of various steels and cast irons, the upper layer exhibits It is well known that the lower layer exhibits excellent wear resistance in combination with excellent heat dissipation.
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. For example, in a state where the atmosphere is set to a vacuum of 0.13 Pa and heated to a temperature of 400 ° C., between the anode electrode and the cathode electrode (evaporation source) in which Ti—Al alloy and metal Al having a predetermined composition are set, For example, arc discharge is generated under the conditions of voltage: 35 V and current: 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to set the reaction atmosphere pressure to 1 Pa. On the other hand, the carbide substrate has, for example, −150 V. Produced by depositing a (Ti, Al) N layer as the lower layer of the hard coating layer and an AlN layer as the upper layer on the surface of the cemented carbide substrate under the condition that a bias voltage is applied. It is also known to be.
[0005]
[Problems to be solved by the invention]
On the other hand, there is a strong demand for labor-saving and energy-saving and cost reduction for cutting in recent years. Along with this, cutting tends to increase speed in combination with higher performance of cutting machines. In conventional coated carbide tools, there is no problem if this is used for cutting under normal conditions such as steel and cast iron, but if this is used under high-speed cutting conditions, the heat generated during cutting will be extremely low. Therefore, the heat dissipation by the AlN layer that forms the upper layer of the hard coating layer cannot sufficiently prevent the temperature increase of the hard coating layer, and the temperature increase of such a hard coating layer is caused by the progress of wear. As a result, the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
Therefore, the inventors focused on the hard coating layer of the above-mentioned conventional coated carbide tool from the above-mentioned viewpoint, and in particular, the hard coating layer that exhibits excellent wear resistance against temperature rise during high-speed cutting. As a result of research to develop
(A) Si is contained in each of the (Ti, Al) N layer and the AlN layer, which are the constituent layers of the hard coating layer of the conventional coated carbide tool, and the composition formula: (Ti 1- (X + Y) When expressed by Al X Si Y ) N, the atomic ratio satisfies X: 0.20 to 0.35 and Y: 0.25 to 0.30 as measured by an Auger spectroscopic analyzer at the center in the thickness direction. Ti-Al-Si composite nitride having a composition of [hereinafter, (Ti, Al, Si) shown in N] layer, and the composition formula: when represented by (Al 1-Z Si Z) N, also the thickness direction An Al—Si composite nitride [hereinafter referred to as (Al, Si) N] layer having a composition satisfying an atomic ratio of Z: 0.15 to 0.30 as measured by an Auger spectroscopic analyzer in the center; At the same time, the formation of these (Ti, Al, Si) N layers and (Al, Si) N layers is performed, for example, by In the case of using a cation plating apparatus, the bias voltage applied to the carbide substrate and the pressure of the nitrogen atmosphere as the reaction atmosphere were maintained at a relatively high heating temperature of the carbide substrate, for example, 500 ° C. When performed under conditions that are relatively high in the state, for example, a bias voltage of −300 V and a nitrogen atmosphere pressure of 10 Pa, these (Ti, Al, Si) N layers and (Al, Si) N layers are obtained by a transmission electron microscope. By ultrafine crystal Ti-Al-Si composite nitride particles [hereinafter referred to as (Ti, Al, Si) N crystal fine particles] and ultrafine crystal Al-Si composite nitride particles [hereinafter referred to as (Al, Si). ) N crystal fine grains] have a structure surrounded by amorphous silicon nitride (hereinafter referred to as amorphous SiN) having a skeleton structure (skeleton structure).
(B) The (Ti, Al, Si) N layer and (Al, Si) N layer of (a) are composed of (Ti, Al, Si) N crystal grains and (Al, Si) N crystal grains constituting the layers. Since the amorphous SiN having a skeleton structure also has extremely excellent heat resistance, the heat resistance of the hard coating layer itself is further improved. Coated carbide tools formed with a hard coating layer exhibit excellent heat resistance even when used for high-speed cutting with high heat generation such as steel and cast iron. Since the progress of wear due to overheating is suppressed, the wear resistance is further improved, and stable cutting performance is exhibited over a long period of time.
The research results shown in (a) and (b) above were obtained.
[0007]
This invention was made based on the above research results,
Using an arc ion plating device on the surface of the carbide substrate,
(A) When having an average layer thickness of 0.5 to 5 μm and represented by the composition formula: (Ti 1- (X + Y) Al X Si Y ) N, it depends on the Auger spectroscopic analyzer at the center in the thickness direction. It has a composition satisfying X: 0.20 to 0.35, Y: 0.25 to 0.30 in atomic ratio, and (Ti, Al, Si) by observation with a transmission electron microscope. A lower layer made of (Ti, Al, Si) N showing a structure in which N crystal fine particles are surrounded by amorphous SiN having a skeleton structure (skeleton structure);
(B) When having an average layer thickness of 0.5 to 5 μm and represented by the composition formula: (Al 1 -Z Si Z ) N, the atomic ratio is also measured by an Auger spectroscopic analyzer at the center in the thickness direction. And a structure satisfying Z: 0.15 to 0.30, and (Al, Si) N crystal fine particles surrounded by amorphous SiN having a skeleton structure as observed with a transmission electron microscope. An upper layer made of (Al, Si) N,
The present invention is characterized by a coated cemented carbide tool which is formed by vapor-depositing a hard coating layer composed of the lower layer and the upper layer of the above (a) and (b) and exhibits excellent heat resistance.
[0008]
Next, in the coated carbide tool of the present invention, the reason why the composition of the lower layer and the upper layer constituting the hard coating layer and the average layer thickness are limited as described above will be described.
(A) Lower layer of hard coating layer In the (Ti, Al, Si) N layer constituting the lower layer, part of Ti, Al, and Si is high strength and toughness due to Ti, and excellent high temperature due to Al. Forms (Ti, Al, Si) N crystal grains with hardness and heat resistance, and further improved heat resistance due to part of Si, and the remaining Si is an amorphous skeleton structure with excellent heat resistance Therefore, if the X value of the composition formula: (Ti 1- (X + Y) Al X Si Y ) N is an atomic ratio (hereinafter the same), and less than 0.20, the (Ti, Al , Si) N crystal grains cannot have the desired high-temperature hardness and heat resistance, and if the Y value is less than 0.25 , sufficient formation of an amorphous SiN skeleton structure having particularly excellent heat resistance is achieved. Can not be improved, and further heat resistance improvement effect Occurs may not be able to ensure, whereas when the X value exceeds 0.35, the case occurs that inhibition in the formation of the skeleton structure works, it becomes impossible to ensure the desired excellent heat resistance, On the other hand, if the Y value exceeds 0.30, the strength of the hard coating layer is drastically decreased, and this is the reason that chipping is likely to occur at the cutting edge, so that the X value is 0.20 to 0.35 and the Y value. Was determined to be 0.25 to 0.30.
Further, if the average layer thickness of the lower layer is less than 0.5 μm, the desired excellent wear resistance cannot be ensured over a long period of time. On the other hand, if the average layer thickness exceeds 5 μm, chipping occurs on the cutting edge. Since it becomes easy to generate | occur | produce, the average layer thickness was set to 0.5-5 micrometers.
[0009]
(B) Upper layer of hard coating layer In the (Al, Si) N layer constituting the upper layer, a part of Si is dissolved in AlN having excellent thermal conductivity (heat dissipation), Amorphous SiN with a skeleton structure that improves heat resistance, forms (Al, Si) N crystal grains with excellent heat conductivity and heat resistance, and the remaining Si also has extremely excellent heat resistance Therefore, when the Z value is less than 0.15, the formation of amorphous SiN having a skeleton structure having particularly excellent heat resistance is insufficient, and the desired excellent heat resistance can be ensured. On the other hand, if the Z value exceeds 0.30, the excellent thermal conductivity of AlN will suddenly drop, so the Z value was determined to be 0.15 to 0.30.
Further, if the average layer thickness of the upper layer is less than 0.5 μm, the above-mentioned characteristics of the upper layer cannot be made sufficient. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. Therefore, the average layer thickness was set to 0.5 to 5 μm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. , Blended in the composition shown in Table 1, wet-mixed for 72 hours in a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa, and the green compact was vacuumed at 6 Pa, temperature: 1400 ° C. WC-based cemented carbide substrate with ISO standard and CNMG120408 chip shape after sintering under the condition of holding for 1 hour, and then performing a honing process of R: 0.05 on the cutting edge part after sintering A-3, A-4, A-5, A-7, and A-8 were formed.
[0011]
Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, TaC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm, and Ni powder is prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. Is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to have an ISO standard / CNMG120408 chip shape. TiCN-based cermet carbide substrates B-3 and B-6 were formed.
[0012]
Subsequently, each of these carbide substrates A-3, A-4, A-5, A-7, and A-8, and further B-3 and B-6 were ultrasonically washed in acetone and dried. The Ti-Al-Si alloy and the Al-Si alloy having various component compositions are mounted in the normal arc ion plating apparatus illustrated in FIG. In addition, a bombard cleaning metal Ti is also mounted, and the apparatus is first heated to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa. A direct current bias voltage of −1000 V is applied to the carbide substrate rotating in step 1 to generate an arc discharge between the metal Ti of the cathode electrode and the anode electrode, thereby cleaning the surface of the carbide substrate with Ti bombardment. A nitrogen gas is introduced as a reaction gas into the reaction atmosphere of 10 Pa, a DC bias voltage of −300 V is applied to the cemented carbide substrate, and the cathode electrode (the Ti—Al—Si alloy or Al—Si) is applied. An arc discharge is generated between the alloy) and the anode electrode, so that the lower surface composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 3 on the surface of the cemented carbide substrate. The shape shown in the schematic perspective view of FIG. 2A and the schematic longitudinal sectional view of FIG. 2B is obtained by vapor-depositing a hard coating layer comprising an upper layer composed of a layer and an (Al, Si) N layer. The surface-coated cemented carbide throwaway tips (hereinafter referred to as the present coated carbide tips) 1 to 7 as the coated carbide tools having the present invention were produced, respectively.
[0013]
Further, for the purpose of comparison, each of the above carbide substrates A-3, A-4, A-5, A-7, and A-8, and B-3 and B-6 were ultrasonicated in acetone. After being washed and dried, it is mounted on the ordinary arc ion plating apparatus exemplified in FIG. 1, while Ti—Al alloy and metal Al having various component compositions are used as cathode electrodes (evaporation sources). Mounted at a predetermined position in the apparatus and also mounted with a bombard cleaning metal Ti, the apparatus was first heated to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa. A DC bias voltage of −1000 V is applied to the hard substrate to generate an arc discharge between the metal Ti of the cathode electrode and the anode electrode, thereby cleaning the surface of the carbide substrate with Ti bombardment, and then reacting the reaction gas into the apparatus. As nitrogen And a reaction atmosphere of 4 Pa is applied, and a −150 V DC bias voltage is applied to the cemented carbide substrate between the cathode electrode (the Ti—Al alloy or metal Al) and the anode electrode. Arc discharge is generated, and thus the surface of the cemented carbide substrate is composed of a lower layer composed of a (Ti, Al) N layer having a target composition and a target layer thickness shown in Table 4 and an upper layer composed of an AlN layer. By depositing a hard coating layer, conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 7 as conventional coated carbide tools were produced, respectively.
[0014]
Next, for the above-mentioned coated carbide tips 1-7 of the present invention and the conventional coated carbide tips 1-7 , this is screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SCM440 round bar,
Cutting speed: 350 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed continuous turning test of alloy steel under the conditions of
Work material: JIS / S50C lengthwise equal 4 round bars with vertical grooves,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Carbon steel dry high-speed intermittent turning test,
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 250 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
A dry high-speed intermittent turning test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any turning test. The measurement results are shown in Table 5 .
[0015]
[Table 1]
[0016]
[Table 2]
[0017]
[Table 3]
[0018]
[Table 4]
[0019]
[Table 5]
[0020]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle size of 5.5 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 2.3 μm Cr 3 C 2 powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder are prepared. These raw material powders are blended in the blending composition shown in Table 7, and wax is added. The mixture was ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into various green compacts of a predetermined shape at a pressure of 100 MPa. These green compacts were 7 ° C./min in a 6 Pa vacuum atmosphere. The temperature is increased to a predetermined temperature within the range of 1370 to 1470 ° C. at a rate of temperature increase, held at this temperature for 1 hour, sintered under furnace cooling conditions, and a round bar sintered body C-2 having a diameter of 8 mm And 13 mm round bar sintered body C-5, C-6, Further, from the round bar sintered bodies C-5 and C-6 among the round bar sintered bodies , the diameter x length of the cutting edge portion is 10 mm x 22 mm in the combination shown in Table 6 by grinding. End mill cemented carbide substrates having the following dimensions were produced.
[0021]
Next, these end mill superhard substrates were ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus similarly illustrated in FIG. A hard layer composed of a lower layer composed of a (Ti, Al, Si) N layer having a target composition and a target layer thickness shown in Table 7 and an upper layer composed of an (Al, Si) N layer By depositing a coating layer, the surface coating of the present invention as a coated carbide tool of the present invention having a shape shown in a schematic front view in FIG. 3A and a schematic cross-sectional view of the cutting edge in FIG. Cemented carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 and 2 were produced.
[0022]
For comparison purposes, the above-mentioned end mill cemented carbide substrate was also ultrasonically cleaned in acetone and dried, and charged into a normal arc ion plating apparatus exemplified in FIG. A lower layer composed of a (Ti, Al) N layer having a target composition and a target layer thickness shown in Table 8 under the same conditions as the manufacturing conditions of the conventional coated carbide chips 1 to 7 in Example 1 above, and AlN The conventional surface coated cemented carbide end mill (hereinafter referred to as the conventional coated carbide end mill) 1 and 2 as a conventional coated carbide tool was manufactured by vapor-depositing a hard coating layer composed of an upper layer composed of layers. .
[0023]
Next, for the above-described coated carbide end mills 1 and 2 and the conventional coated carbide end mills 1 and 2 ,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC300 plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 600 mm / min,
A dry high speed grooving test of cast iron was performed under the conditions described above, and the cutting groove length was measured until the flank wear amount of the outer peripheral blade reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8 , respectively.
[0024]
[Table 6]
[0025]
[Table 7]
[0026]
[Table 8]
[0027]
(Example 3)
Using the round bar sintered bodies C-2 and C-5 having diameters of 8 mm and 13 mm manufactured in Example 2 above , the round bar sintered bodies were ground and combined with the combinations shown in Table 6. Drilled carbide substrates having a diameter x length of 4 mm x 13 mm and 8 mm x 22 mm, respectively, were formed .
[0028]
Next, these drilled carbide substrates were ultrasonically cleaned in acetone and dried, and then loaded into a normal arc ion plating apparatus also illustrated in FIG. Under the same conditions as in Example 1, the lower layer composed of the (Ti, Al, Si) N layer having the target composition and the target layer thickness shown in Table 9 and the upper layer composed of the (Al, Si) N layer. By vapor-depositing a hard coating layer composed of layers, the coated carbide tool of the present invention having a shape shown in a schematic front view in FIG. 4A and a schematic cross-sectional view of a groove forming portion in FIG. Drills made of the surface-coated cemented carbide of the present invention (hereinafter referred to as the present invention-coated cemented carbide drills) 1 and 2 were produced.
[0029]
For comparison purposes, the above-described drilled carbide substrate was ultrasonically cleaned in acetone and dried, and then charged into a normal arc ion plating apparatus exemplified in FIG. A lower layer and an AlN layer composed of (Ti, Al) N layers having the target composition and target layer thickness shown in Table 10 under the same conditions as those for manufacturing the conventional coated carbide chips 1 to 7 in Example 1 above. The conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) 1 and 2 were manufactured as conventional coated carbide tools by vapor-depositing a hard coating layer consisting of an upper layer composed of .
[0030]
Next, of the present invention coated carbide drills 1 and 2 and the conventional coated carbide drills 1 and 2 , the present invention coated carbide drill 1 and the conventional coated carbide drill 1 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 140 m / min. ,
Feed: 0.18mm / rev,
For the wet high speed drilling test of carbon steel under the conditions of the present invention, the coated carbide drill 2 of the present invention and the conventional coated carbide drill 2 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.18mm / rev,
Wet high-speed drilling test of alloy steel under the above conditions, respectively, and in any wet high-speed drilling test (both tests use water-soluble cutting oil), the flank wear width of the tip cutting edge surface is 0. The number of drilling processes up to 3 mm was measured. The measurement results are shown in Tables 9 and 10 , respectively.
[0031]
[Table 9]
[0032]
[Table 10]
[0033]
Moreover, the present coated carbide tips 1 to 7 , the present coated carbide end mills 1 and 2 , the present coated carbide drills 1 and 2 , and the conventional coated carbide Regarding the composition and layer thickness of the conventional coated carbide tips 1 to 7 as a hard tool, the conventional coated carbide end mills 1 and 2 , and the conventional coated carbide drills 1 and 2 , the thickness direction of each constituent layer When the central portion was measured using an energy dispersive X-ray measuring device, an Auger spectroscopic analyzer, and a scanning electron microscope, the composition and average layer thickness were substantially the same as the target compositions and target layer thicknesses shown in Tables 3-10. (Comparison with the average value of the measurement at five arbitrary points), and regarding the structure, the central portion in the thickness direction of the constituent layer was also observed with a transmission electron microscope. Z The lower layer has a structure in which (Ti, Al, Si) N crystal grains are surrounded by amorphous SiN having a skeleton structure (skeleton structure), and the upper layer is a non-layer structure in which (Al, Si) N crystal grains have a skeleton structure. A structure surrounded by crystalline SiN is shown, and each of the conventional coated carbide tools has a structure in which the lower layer is made of crystalline (Ti, Al) N and the upper layer is made of the same crystalline AlN.
[0034]
【The invention's effect】
From the results shown in Tables 3 to 10 , the coated carbide tool of the present invention has a hard coating layer due to the excellent heat resistance of the hard coating layer even when cutting steel or cast iron at high speed with high heat generation. Despite being heated at a high temperature, the progress of wear is remarkably suppressed and the cutting edge is free from chipping and chipping. However, it is clear that the hard coating layer that has been heated at high speed and increased in temperature due to high heat does not have sufficient heat resistance, so that the progress of wear is remarkably accelerated and the service life is reached in a relatively short time.
As described above, the coated cemented carbide tool of the present invention exhibits excellent wear resistance not only in cutting processing under normal conditions such as various steels and cast iron, but particularly in high-speed cutting processing. Therefore, it is possible to sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an arc ion plating apparatus.
FIG. 2A is a schematic perspective view of a coated carbide chip, and FIG. 2B is a schematic longitudinal sectional view of the coated carbide chip.
3A is a schematic front view of a coated carbide end mill, and FIG. 3B is a schematic cross-sectional view of the cutting edge portion.
4A is a schematic front view of a coated carbide drill, and FIG. 4B is a schematic cross-sectional view of the groove forming portion.
Claims (1)
(a)0.5〜5μmの平均層厚を有し、組成式:(Ti1-(X+Y)AlXSiY)Nで表わした場合、厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、X:0.20〜0.35、Y:0.25〜0.30を満足する組成を有し、かつ透過型電子顕微鏡による観察で、超微細結晶Ti−Al−Si複合窒化物粒子をスケルトン構造(骨格構造)をもった非晶質窒化珪素が取り囲む組織を示すTi−Al−Si複合窒化物からなる下部層、
(b)0.5〜5μmの平均層厚を有し、組成式:(Al1-ZSiZ)Nで表わした場合、同じく厚さ方向中央部のオージェ分光分析装置による測定で、原子比で、Z:0.15〜0.30を満足する組成を有し、かつ同じく透過型電子顕微鏡による観察で、超微細結晶Al−Si複合窒化物粒子をスケルトン構造(骨格構造)をもった非晶質窒化珪素が取り囲む組織を示すAl−Si複合窒化物からなる上部層、
上記(a)および(b)の下部層および上部層で構成された硬質被覆層を蒸着してなる、硬質被覆層がすぐれた耐熱性を発揮する表面被覆超硬合金製切削工具。Using an arc ion plating device on the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate,
(A) When having an average layer thickness of 0.5 to 5 μm and represented by the composition formula: (Ti 1- (X + Y) Al X Si Y ) N, it depends on the Auger spectroscopic analyzer at the center in the thickness direction It has a composition satisfying X: 0.20 to 0.35 and Y: 0.25 to 0.30 in the atomic ratio, and the ultrafine crystal Ti—Al— is observed with a transmission electron microscope. A lower layer made of Ti—Al—Si composite nitride showing a structure in which Si composite nitride particles are surrounded by amorphous silicon nitride having a skeleton structure (skeleton structure);
(B) When having an average layer thickness of 0.5 to 5 μm and represented by the composition formula: (Al 1 -Z Si Z ) N, the atomic ratio is also measured by an Auger spectroscopic analyzer at the center in the thickness direction. And Z: 0.15 to 0.30 and a non-crystallized Al-Si composite nitride particle having a skeleton structure (skeleton structure) as observed with a transmission electron microscope. An upper layer made of Al-Si composite nitride showing a structure surrounded by crystalline silicon nitride,
A surface-coated cemented carbide cutting tool that exhibits excellent heat resistance with a hard coating layer formed by vapor-depositing a hard coating layer composed of the lower layer and the upper layer of (a) and (b) above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001369487A JP3948010B2 (en) | 2001-12-04 | 2001-12-04 | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001369487A JP3948010B2 (en) | 2001-12-04 | 2001-12-04 | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003170303A JP2003170303A (en) | 2003-06-17 |
JP3948010B2 true JP3948010B2 (en) | 2007-07-25 |
Family
ID=19178870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001369487A Expired - Fee Related JP3948010B2 (en) | 2001-12-04 | 2001-12-04 | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3948010B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4405835B2 (en) * | 2004-03-18 | 2010-01-27 | 住友電工ハードメタル株式会社 | Surface coated cutting tool |
JP6270131B2 (en) * | 2014-01-22 | 2018-01-31 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
CN108883480B (en) * | 2016-03-28 | 2020-05-19 | 京瓷株式会社 | Rotary tool |
ES2767356T3 (en) * | 2017-05-19 | 2020-06-17 | Walter Ag | Multi-Layer Coated Metal Cutting Tool |
-
2001
- 2001-12-04 JP JP2001369487A patent/JP3948010B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003170303A (en) | 2003-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645821B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP3928481B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3659217B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3931325B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3931326B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3844285B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3693001B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer | |
JP3695396B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP4687965B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP3948010B2 (en) | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer | |
JP3948013B2 (en) | Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer | |
JP3632667B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP3849135B2 (en) | Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions | |
JP3931328B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3693018B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP2003145317A (en) | Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance | |
JP3632626B2 (en) | Surface-coated cemented carbide cutting tool with excellent chipping resistance in high-speed cutting | |
JP3978723B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP3928487B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP2003136305A (en) | Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting | |
JP3475932B2 (en) | Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting | |
JP3695399B2 (en) | Surface coated cemented carbide cutting tool with excellent adhesion of hard coating layer | |
JP3879114B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4725770B2 (en) | Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials | |
JP3982347B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070408 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |