JP2003170303A - Cutting tool made of surface coated cemented carbide having hard coating layer exerting high heat resistance - Google Patents

Cutting tool made of surface coated cemented carbide having hard coating layer exerting high heat resistance

Info

Publication number
JP2003170303A
JP2003170303A JP2001369487A JP2001369487A JP2003170303A JP 2003170303 A JP2003170303 A JP 2003170303A JP 2001369487 A JP2001369487 A JP 2001369487A JP 2001369487 A JP2001369487 A JP 2001369487A JP 2003170303 A JP2003170303 A JP 2003170303A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
cemented carbide
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001369487A
Other languages
Japanese (ja)
Other versions
JP3948010B2 (en
Inventor
Natsuki Ichinomiya
夏樹 一宮
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
MMC Kobelco Tool Co Ltd
Original Assignee
Mitsubishi Materials Corp
MMC Kobelco Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, MMC Kobelco Tool Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2001369487A priority Critical patent/JP3948010B2/en
Publication of JP2003170303A publication Critical patent/JP2003170303A/en
Application granted granted Critical
Publication of JP3948010B2 publication Critical patent/JP3948010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide of which hard coating layer exerts high heat resistance. <P>SOLUTION: The hard coating layer comprising a lower layer a and an upper layer b is physically deposited on a surface of WC based cemented carbide substrate or carbo-nitriding titanium based cermet substrate. The lower layer has an average layer thickness of 0.5 to 5 μm, has a composition that is represented by the formula (Ti<SB>1-(</SB>X<SB>+</SB>Y<SB>)</SB>AlXSiY)N and satisfies atomic ratio X: 0.20 to 0.50, Y: 0.15 to 0.30 in the measurement by an Auger spectroscopic analysis device of a central part in the thickness direction, and indicates a texture where amorphous silicon nitride having a skeleton structure (frame structure) surrounds complex nitride particles of hyperfine crystal Ti-Al-Si in the observation by a transmission electron microscope. The upper layer has an average layer thickness of 0.5 to 5 μm, has a composition that is represented by the formula (Al<SB>1-</SB>ZSiZ)N and satisfies atomic ratio Z: 0.15 to 0.30 in the measurement by the Auger spectroscopic analysis device, and indicates a texture where amorphous silicon nitride having a skeleton structure surrounds complex nitride particles of hyperfine crystal Al-Si. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、特に高熱発生を
伴なう鋼や鋳鉄などの高速切削で、硬質被覆層がすぐれ
た耐熱性を発揮して、過熱による摩耗進行を抑制し、も
って一段の使用寿命の延命化を可能ならしめた表面被覆
超硬合金製切削工具(以下、被覆超硬工具という)に関
するものである。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、切削工具として、炭化タングステン
(以下、WCで示す)基超硬合金または炭窒化チタン
(以下、TiCNで示す)基サーメットからなる基体
(以下、これらを総称して超硬基体と云う)の表面に、
(a)0.5〜5μmの平均層厚を有し、組成式:(T
1-XAlX)Nで表わした場合、厚さ方向中央部のオー
ジェ分光分析装置による測定で、原子比で、X:0.3
0〜0.70、を満足するTi−Al複合窒化物[以
下、(Ti,Al)Nで示す]からなる下部層、(b)
0.5〜5μmの平均層厚を有し、窒化アルミニウム
(以下、AlNで示す]からなる上部層、上記下部層お
よび上部層で構成された硬質被覆層を物理蒸着してなる
被覆超硬工具が知られており、また、上記被覆超硬工具
において、これを構成する硬質被覆層の上記下部層がす
ぐれた高温硬さと耐熱性を有し、同上部層がすぐれた熱
伝導性を有することから、これを各種の鋼や鋳鉄などの
連続切削や断続切削加工に用いた場合、前記上部層の発
揮するすぐれた放熱性と相俟って、前記下部層がすぐれ
た耐摩耗性を発揮することも良く知られるところであ
る。 【0004】さらに、上記の被覆超硬工具が、例えば図
1に概略説明図で示される物理蒸着装置の1種であるア
ークイオンプレーティング装置に上記の超硬基体を装入
し、ヒータで装置内を、例えば雰囲気を0.13Paの
真空として、400℃の温度に加熱した状態で、アノー
ド電極と所定組成を有するTi−Al合金および金属A
lがそれぞれセットされたカソード電極(蒸発源)との
間に、例えば電圧:35V、電流:90Aの条件でアー
ク放電を発生させ、同時に装置内に反応ガスとして窒素
ガスを導入して、反応雰囲気圧力を1Paとし、一方上
記超硬基体には、例えば−150Vのバイアス電圧を印
加した条件で、前記超硬基体の表面に、硬質被覆層の下
部層として(Ti,Al)N層および上部層としてAl
N層を蒸着することにより製造されることも知られてい
る。 【0005】 【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化、さらに低コスト化の要
求は強く、これに伴い、切削加工は切削機械の高性能化
とも相俟って高速化の傾向にあるが、上記の従来被覆超
硬工具においては、これを鋼や鋳鉄などの通常の条件で
の切削加工に用いた場合には問題はないが、これを高速
切削条件で用いると、切削加工時の発生熱はきわめて高
いものとなるため、硬質被覆層の上部層を構成するAl
N層による放熱作用では硬質被覆層の温度上昇を十分満
足に防止することができず、このような硬質被覆層の温
度上昇は摩耗進行を著しく促進することから、比較的短
時間で使用寿命に至るのが現状である。 【0006】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具の硬質
被覆層に着目し、特に高速切削時における温度上昇にも
すぐれた耐摩耗性を発揮する硬質被覆層を開発すべく研
究を行った結果、 (a)上記従来被覆超硬工具の硬質被覆層の構成層であ
る(Ti,Al)N層およびAlN層のそれぞれに、S
iを含有させて、組成式:(Ti1-(X+Y)AlXSiY
Nで表わした場合、厚さ方向中央部のオージェ分光分析
装置による測定で、原子比で、X:0.20〜0.5
0、Y:0.15〜0.30を満足する組成を有するT
i−Al−Si複合窒化物[以下、(Ti,Al,S
i)Nで示す]層、並びに組成式:(Al1-ZSiZ)N
で表わした場合、同じく厚さ方向中央部のオージェ分光
分析装置による測定で、原子比で、Z:0.15〜0.
30を満足する組成を有するAl−Si複合窒化物[以
下、(Al,Si)Nで示す)層とすると共に、これら
(Ti,Al,Si)N層および(Al,Si)N層の
形成を、例えばアークイオンプレーティング装置により
行なう場合に、超硬基体に印加されるバイアス電圧およ
び反応雰囲気である窒素雰囲気の圧力を、前記超硬基体
の加熱温度を相対的に高い状態、例えば500℃に保持
した状態で相対的に高い、例えば−300Vのバイアス
電圧および10Paの窒素雰囲気圧力とした条件で行な
うと、これら(Ti,Al,Si)N層および(Al,
Si)N層は、透過型電子顕微鏡による観察で、それぞ
れ超微細結晶Ti−Al−Si複合窒化物粒子[以下、
(Ti,Al,Si)N結晶微粒という]および超微細
結晶Al−Si複合窒化物粒子[以下、(Al,Si)
N結晶微粒という]をスケルトン構造(骨格構造)をも
った非晶質窒化珪素(以下、非晶質SiNで示す)が取
り囲む組織をもつようになること。 (b)上記(a)の(Ti,Al,Si)N層および
(Al,Si)N層は、これを構成する(Ti,Al,
Si)N結晶微粒および(Al,Si)N結晶微粒がS
i含有によってすぐれた耐熱性を具備するばかりでな
く、さらにスケルトン構造の前記非晶質SiNもきわめ
てすぐれた耐熱性をもつことから、硬質被覆層自体の耐
熱性が一段と向上し、したがって、この硬質被覆層を形
成してなる被覆超硬工具は、これを特に鋼や鋳鉄などの
高熱発生を伴なう高速切削加工に用いても、硬質被覆層
がすぐれた耐熱性を発揮し、これ自体の過熱による摩耗
進行が抑制されることから、耐摩耗性が一層向上し、長
期に亘って安定した切削性能を発揮するようになるこ
と。以上(a)および(b)に示される研究結果を得た
のである。 【0007】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、(a)0.5
〜5μmの平均層厚を有し、組成式:(Ti1-(X+Y)
XSiY)Nで表わした場合、厚さ方向中央部のオージ
ェ分光分析装置による測定で、原子比で、X:0.20
〜0.50、Y:0.15〜0.30を満足する組成を
有し、かつ透過型電子顕微鏡による観察で、(Ti−A
l−Si)N結晶微粒をスケルトン構造(骨格構造)を
もった非晶質SiNが取り囲む組織を示す(Ti,A
l,Si)Nからなる下部層、(b)0.5〜5μmの
平均層厚を有し、組成式:(Al1-ZSiZ)Nで表わし
た場合、同じく厚さ方向中央部のオージェ分光分析装置
による測定で、原子比で、Z:0.15〜0.30を満
足する組成を有し、かつ同じく透過型電子顕微鏡による
観察で、(Al−Si)N結晶微粒をスケルトン構造を
もった非晶質SiNが取り囲む組織を示す(Al,S
i)Nからなる上部層、上記(a)および(b)の下部
層および上部層で構成された硬質被覆層を物理蒸着して
なる、硬質被覆層がすぐれた耐熱性を発揮する被覆超硬
工具に特徴を有するものである。 【0008】つぎに、この発明の被覆超硬工具におい
て、硬質被覆層を構成する下部層および上部層の組成、
さらに平均層厚を上記の通りに限定した理由を説明す
る。 (a)硬質被覆層の下部層 上記下部層を構成する(Ti,Al,Si)N層におい
ては、TiとAlとSiの一部が、Tiによる高強度と
高靭性、Alによるすぐれた高温硬さと耐熱性、さらに
一部のSiによる一段と向上した耐熱性を具備した(T
i−Al−Si)N結晶微粒を形成するほか、残りのS
iがきわめてすぐれた耐熱性を有するスケルトン構造の
非晶質SiNを形成するものであり、したがって組成
式:(Ti 1-(X+Y)AlXSiY)NのX値が原子比(以
下同じ)で、0.2未満では前記(Ti−Al−Si)
N結晶微粒に所望の高温硬さおよび耐熱性を確保するこ
とができず、同じくY値が0.15未満では、特にすぐ
れた耐熱性を有する非晶質SiNスケルトン構造の形成
が不十分で、さらに一段の耐熱性向上効果は困難であ
り、一方X値が0.5を越えても、前記スケルトン構造
の形成が抑制されるようになって、所望のすぐれた耐熱
性を確保することができなくなり、またY値が0.30
を越えると、硬質被覆層の強度が急激に低下し、これが
原因で切刃にチッピングが発生し易くなると云う理由に
よりX値を0.2〜0.5、Y値を0.15〜0.30
と定めた。また、下部層の平均層厚が0.5μm未満で
は、所望のすぐれた耐摩耗性を長期に亘って確保するこ
とができず、一方その平均層厚が5μmを越えると、切
刃にチッピングが発生し易くなることから、その平均層
厚を0.5〜5μmと定めた。 【0009】(b)硬質被覆層の上部層 上記上部層を構成する(Al,Si)N層においては、
Siの一部がすぐれた熱伝導性(放熱性)を有するAl
Nに固溶して、これの耐熱性を向上させ、もってすぐれ
た熱伝導性と耐熱性を有する(Al−Si)N結晶微粒
を形成し、さらに残りのSiが、同じくきわめてすぐれ
た耐熱性を有するスケルトン構造の非晶質SiNを形成
するものであり、したがってZ値が0.15未満では、
同じく特にすぐれた耐熱性を有するスケルトン構造の非
晶質SiNの形成が不十分で、所望のすぐれた耐熱性を
確保するこができず、一方Z値が0.30を越えると、
本来AlNのもつすぐれた熱伝導性が急激に低下するよ
うになることから、Z値を0.15〜0.30と定め
た。また、上部層の平均層厚が0.5μm未満では、上
部層のもつ上記の特性を十分にすることができず、一方
その平均層厚が5μmを越えると、切刃にチッピングが
発生し易くなることから、その平均層厚を0.5〜5μ
mと定めた。 【0010】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、ZrC粉末、V
C粉末、TaC粉末、NbC粉末、Cr3 2 粉末、T
iN粉末、TaN粉末、およびCo粉末を用意し、これ
ら原料粉末を、表1に示される配合組成に配合し、ボー
ルミルで72時間湿式混合し、乾燥した後、100MP
a の圧力で圧粉体にプレス成形し、この圧粉体を6P
aの真空中、温度:1400℃に1時間保持の条件で焼
結し、焼結後、切刃部分にR:0.05のホーニング加
工を施してISO規格・CNMG120408のチップ
形状をもったWC基超硬合金製の超硬基体A1〜A10
を形成した。 【0011】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。 【0012】ついで、これら超硬基体A1〜A10およ
びB1〜B6のそれぞれを、アセトン中で超音波洗浄
し、乾燥した状態で、同じく図1に例示される通常のア
ークイオンプレーティング装置に装着し、一方カソード
電極(蒸発源)として、種々の成分組成をもったTi−
Al―Si合金とAl−Si合金を装置内の所定位置に
装着し、またボンバート洗浄用金属Tiも装着し、まず
装置内を排気して0.5Paの真空に保持しながら、ヒ
ーターで装置内を500℃に加熱した後、前記回転テー
ブル上で回転する超硬基体に−1000Vの直流バイア
ス電圧を印加して、カソード電極の前記金属Tiとアノ
ード電極との間にアーク放電を発生させ、もって超硬基
体表面をTiボンバート洗浄し、ついで装置内に反応ガ
スとして窒素ガスを導入して10Paの反応雰囲気とす
ると共に、前記超硬基体に−300Vの直流バイアス電
圧を印加して、前記カソード電極(前記Ti−Al−S
i合金またはAl−Si合金)とアノード電極との間に
アーク放電を発生させ、もって前記超硬基体の表面に、
表3,4に示される目標組成および目標層厚の(Ti,
Al,Si)N層で構成された下部層と(Al,Si)
N層で構成された上部層からなる硬質被覆層を蒸着する
ことにより、図2(a)に概略斜視図で、同(b)に概
略縦断面図で示される形状を有する本発明被覆超硬工具
としての本発明表面被覆超硬合金製スローアウエイチッ
プ(以下、本発明被覆超硬チップと云う)1〜16をそ
れぞれ製造した。 【0013】また、比較の目的で、上記の超硬基体A1
〜A10およびB1〜B6のそれぞれを、アセトン中で
超音波洗浄し、乾燥した状態で、同じく図1に例示され
る通常のアークイオンプレーティング装置に装着し、一
方カソード電極(蒸発源)として、種々の成分組成をも
ったTi−Al合金と金属Alを装置内の所定位置に装
着し、またボンバート洗浄用金属Tiも装着し、まず装
置内を排気して0.5Paの真空に保持しながら、ヒー
ターで装置内を500℃に加熱した後、前記超硬基体に
−1000Vの直流バイアス電圧を印加して、カソード
電極の前記金属Tiとアノード電極との間にアーク放電
を発生させ、もって超硬基体表面をTiボンバート洗浄
し、ついで装置内に反応ガスとして窒素ガスを導入して
4Paの反応雰囲気とすると共に、前記超硬基体に−1
50Vの直流バイアス電圧を印加する条件で、前記カソ
ード電極(前記Ti−Al合金または金属Al)とアノー
ド電極との間にアーク放電を発生させ、もって前記超硬
基体の表面に表5に示される目標組成および目標層厚の
(Ti,Al)N層で構成された下部層とAlN層で構
成された上部層からなる硬質被覆層を蒸着することによ
り、従来被覆超硬工具としての従来表面被覆超硬合金製
スローアウエイチップ(以下、従来被覆超硬チップと云
う)1〜16をそれぞれ製造した。 【0014】つぎに、上記本発明被覆超硬チップ1〜1
6および従来被覆超硬チップ1〜16について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SCM440の丸棒、 切削速度:350m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高速連続旋削加工試験、 被削材:JIS・S50Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:300m/min.、 切り込み:1.5mm、 送り:0.2mm/rev.、 切削時間:5分、 の条件での炭素鋼の乾式高速断続旋削加工試験、さら
に、 被削材:JIS・FC300の長さ方向等間隔4本縦溝
入り丸棒、 切削速度:250m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:5分、 の条件での鋳鉄の乾式高速断続旋削加工試験を行い、い
ずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表6に示した。 【0015】 【表1】 【0016】 【表2】 【0017】 【表3】【0018】 【表4】 【0019】 【表5】【0020】 【表6】 【0021】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表7に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、さらに前記
の3種の丸棒焼結体から、研削加工にて、表7に示され
る組合せで、切刃部の直径×長さがそれぞれ6mm×1
3mm、10mm×22mm、および20mm×45m
mの寸法をもったエンドミル用超硬基体C−1〜C−8
をそれぞれ製造した。 【0022】ついで、これらの超硬基体C−1〜C−8
を、それぞれアセトン中で超音波洗浄し、乾燥した状態
で、同じく図1に例示される通常のアークイオンプレー
ティング装置に装入し、これらの表面に上記実施例1と
同一の条件で、表8に示される目標組成および目標層厚
の(Ti,Al,Si)N層で構成された下部層と(A
l,Si)N層で構成された上部層からなる硬質被覆層
を蒸着することにより、図3(a)に概略正面図で、同
(b)に切刃部の概略横断面図で示される形状を有する
本発明被覆超硬工具としての本発明表面被覆超硬合金製
エンドミル(以下、本発明被覆超硬エンドミルと云う)
1〜8をそれぞれ製造した。 【0023】また、比較の目的で、上記の超硬基体C−
1〜C−8を、それぞれアセトン中で超音波洗浄し、乾
燥した状態で、同じく図1に例示される通常のアークイ
オンプレーティング装置に装入し、これらの表面に上記
実施例1における従来被覆超硬チップ1〜16の製造条
件と同じ条件で、表9に示される目標組成および目標層
厚の(Ti,Al)N層で構成された下部層とAlN層
で構成された上部層からなる硬質被覆層を蒸着すること
により、従来被覆超硬工具としての従来表面被覆超硬合
金製エンドミル(以下、従来被覆超硬エンドミルと云
う)1〜8をそれぞれ製造した。 【0024】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SNCM439の板材、 切削速度:160m/min.、 溝深さ(切り込み):3mm、 テーブル送り:650mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル4〜6および従来被覆超硬エンドミル
4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC300の板材、 切削速度:180m/min.、 溝深さ(切り込み):5mm、 テーブル送り:600mm/分、 の条件での鋳鉄の乾式高速溝切削加工試験、本発明被覆
超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:60m/min.、 溝深さ(切り込み):10mm、 テーブル送り:150mm/分、 の条件でのステンレス鋼の乾式高速溝切削加工試験、を
それぞれ行い、いずれの溝切削加工試験でも外周刃の逃
げ面摩耗量が使用寿命の目安とされる0.1mmに至る
までの切削溝長を測定した。この測定結果を表8,9に
それぞれ示した。 【0025】 【表7】 【0026】 【表8】【0027】 【表9】 【0028】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体C−1〜C−3形成用)、13m
m(超硬基体C−4〜C−6形成用)、および26mm
(超硬基体C−7、C−8形成用)の3種の丸棒焼結体
を用い、この3種の丸棒焼結体から、研削加工にて、溝
形成部の直径×長さがそれぞれ4mm×13mm(超硬
基体D−1〜D−3)、8mm×22mm(超硬基体D
−4〜D−6)、および16mm×45mm(超硬基体
D−7、D−8)の寸法をもったドリル用超硬基体D−
1〜D−8をそれぞれ製造した。 【0029】ついで、これらの超硬基体D−1〜D−8
を、アセトン中で超音波洗浄し、乾燥した状態で、同じ
く図1に例示される通常のアークイオンプレーティング
装置に装入し、これら超硬基体の表面に、上記実施例1
と同一の条件で、表10に示される目標組成および目標
層厚の(Ti,Al,Si)N層で構成された下部層と
(Al,Si)N層で構成された上部層からなる硬質被
覆層を蒸着することにより、図4(a)に概略正面図
で、同(b)に溝形成部の概略横断面図で示される形状
を有する本発明被覆超硬工具としての本発明表面被覆超
硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)
1〜8をそれぞれ製造した。 【0030】また、比較の目的で、上記の超硬基体D−
1〜D−8を、それぞれアセトン中で超音波洗浄し、乾
燥した状態で、同じく図1に例示される通常のアークイ
オンプレーティング装置に装入し、これらの表面に上記
実施例1における従来被覆超硬チップ1〜16の製造条
件と同じ条件で、表11に示される目標組成および目標
層厚の(Ti,Al)N層で構成された下部層とAlN
層で構成された上部層からなる硬質被覆層を蒸着するこ
とにより、従来被覆超硬工具としての従来表面被覆超硬
合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜
8をそれぞれ製造した。 【0031】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S50Cの板材、 切削速度:140m/min.、 送り:0.18mm/rev、 の条件での炭素鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:100m/min.、 送り:0.18mm/rev、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル7,8および従来被覆超硬ドリル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:90m/min.、 送り:0.27mm/rev、 の条件での鋳鉄の湿式高速穴あけ切削加工試験、をそれ
ぞれ行い、いずれの湿式高速穴あけ切削加工試験(いず
れの試験も水溶性切削油使用)でも先端切刃面の逃げ面
摩耗幅が0.3mmに至るまでの穴あけ加工数を測定し
た。この測定結果を表10,11にそれぞれ示した。 【0032】 【表10】 【0033】 【表11】 【0034】また、この結果得られた本発明被覆超硬工
具としての本発明被覆超硬チップ1〜16、本発明被覆
超硬エンドミル1〜8、および本発明被覆超硬ドリル1
〜8、並びに従来被覆超硬工具としての従来被覆超硬チ
ップ1〜16、従来被覆超硬エンドミル1〜8、および
従来被覆超硬ドリル1〜8の硬質被覆層の組成および層
厚について、それぞれの構成層の厚さ方向中央部を、エ
ネルギー分散型X線測定装置およびオージェ分光分析装
置、さらに走査型電子顕微鏡を用いて測定したところ、
表3〜11の目標組成および目標層厚と実質的に同じ組
成および平均層厚(任意5ヶ所測定の平均値との比較)
を示し、また、組織に関しては、同じく構成層の厚さ方
向中央部を透過型電子顕微鏡により観察したところ、前
記本発明被覆超硬工具は、いずれも下部層が(Ti−A
l−Si)N結晶微粒をスケルトン構造(骨格構造)を
もった非晶質SiNが取り囲む組織、上部層が(Al−
Si)N結晶微粒をスケルトン構造をもった非晶質Si
Nが取り囲む組織を示し、さらに前記従来被覆超硬工具
は、いずれも下部層が結晶質の(Ti,Al)N、上部
層が同じく結晶質のAlNからなる組織を示した。 【0035】 【発明の効果】表3〜11に示される結果から、本発明
被覆超硬工具は、いずれも鋼や鋳鉄の切削加工を高い発
熱を伴う高速で行っても、硬質被覆層のもつすぐれた耐
熱性によって硬質被覆層が高温加熱されるにもかかわら
ず、摩耗進行が著しく抑制され、切刃に欠けやチッピン
グなどの発生なく、すぐれた耐摩耗性を発揮するのに対
して、従来被覆超硬工具においては、いずれも高速切削
時に発生する高熱で温度上昇した硬質被覆層は十分な耐
熱性を具備したものでないために、摩耗進行が著しく促
進し、比較的短時間で使用寿命に至ることが明らかであ
る。上述のように、この発明の被覆超硬工具は、各種の
鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、
特に高速切削加工においてもすぐれた耐摩耗性を発揮す
るものであるから、切削加工の省力化および省エネ化、
さらに低コスト化に十分満足に対応できるものである。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION The present invention relates to the generation of high heat
Excellent hard coating layer for high-speed cutting of accompanying steel and cast iron
Demonstrate heat resistance to prevent wear progress due to overheating.
Surface coating that enables longer service life
Regarding cemented carbide cutting tools (hereinafter referred to as coated carbide tools)
Is what you do. [0002] 2. Description of the Related Art Generally, cutting tools include various types of steel and cast iron.
For turning or planing of work materials such as
Throw-away heads that are detachably attached to
And drills used for drilling and cutting the work material.
Tools and miniature drills, as well as face milling of the work material
Solid type end used for groove processing, shoulder processing, etc.
Domill, etc.
Removably attached to the solid type end mill
Similarly, a slow-away end mill tool that performs cutting
Which is known. [0003] Tungsten carbide is used as a cutting tool.
(Hereinafter referred to as WC) base cemented carbide or titanium carbonitride
Substrate made of base cermet (hereinafter referred to as TiCN)
(Hereinafter, these are collectively referred to as a carbide substrate)
(A) having an average layer thickness of 0.5 to 5 μm and a composition formula: (T
i1-XAlX) When represented by N,
X: 0.3 in atomic ratio as measured by a G. spectrometer.
Ti-Al composite nitride satisfying 0 to 0.70
Lower layer represented by (Ti, Al) N], (b)
Aluminum nitride having an average layer thickness of 0.5 to 5 μm
(Hereinafter, referred to as AlN), the lower layer,
And a hard coating layer consisting of an upper layer
Coated carbide tools are known, and the coated carbide tools
In the above, the lower layer of the hard coating layer constituting the
It has excellent high-temperature hardness and heat resistance, and the upper layer has excellent heat.
Since it has conductivity, it can be used for various types of steel and cast iron.
When used for continuous or interrupted cutting, the upper layer
Combined with excellent heat dissipation, the lower layer is excellent
It is also well known that it exhibits excellent wear resistance.
You. [0004] Furthermore, the above coated carbide tool is
1 is a kind of a physical vapor deposition apparatus schematically shown in FIG.
The above-mentioned carbide substrate is loaded into the ion plating system
Then, the inside of the apparatus is heated with a heater to, for example, an atmosphere of 0.13 Pa.
After heating to a temperature of 400 ° C. as a vacuum,
Electrode and Ti-Al alloy having predetermined composition and metal A
of the cathode electrode (evaporation source)
During the period, for example, under the conditions of a voltage: 35 V and a current: 90 A,
Discharge, and at the same time, nitrogen
The gas was introduced and the pressure of the reaction atmosphere was set to 1 Pa.
A bias voltage of, for example, -150 V is applied to the carbide substrate.
Under the added conditions, the surface of the cemented carbide substrate is
(Ti, Al) N layer as part layer and Al as upper layer
It is also known to be manufactured by depositing an N layer.
You. [0005] On the other hand, cutting in recent years
Need to save labor and energy and reduce costs
There is a strong demand, and with this, the cutting process has improved the performance of the cutting machine
In conjunction with this, there is a tendency to increase the speed, but
For hard tools, this can be done under normal conditions such as steel or cast iron.
There is no problem when used for cutting of
When used under cutting conditions, the heat generated during cutting is extremely high.
Al constituting the upper layer of the hard coating layer
The heat dissipation effect of the N layer sufficiently satisfies the temperature rise of the hard coating layer.
The foot cannot be prevented and the temperature of such a hard coating layer
Is relatively short because the increase in
At present, the service life is reached in hours. [0006] Means for Solving the Problems Accordingly, the present inventors have
In view of the above, the hardness of the conventional coated carbide tool
Focusing on the coating layer, especially for temperature rise during high-speed cutting
To develop a hard coating layer that exhibits excellent wear resistance
As a result of the research, (A) a constituent layer of the hard coating layer of the conventional coated carbide tool;
S (Ti, Al) N layer and AlN layer
i, and the composition formula: (Ti1- (X + Y)AlXSiY)
When represented by N, Auger spectroscopy at the center in the thickness direction
X: 0.20 to 0.5 in atomic ratio as measured by the apparatus.
0, Y: T having a composition satisfying 0.15 to 0.30
i-Al-Si composite nitride [hereinafter, (Ti, Al, S
i) N]] layer, and the composition formula: (Al1-ZSiZ) N
In the case of, the Auger spectrum at the center in the thickness direction
As measured by an analyzer, the atomic ratio was Z: 0.15 to 0.5.
Al-Si composite nitride having a composition satisfying 30
Under (Al, Si) N) layers.
(Ti, Al, Si) N layer and (Al, Si) N layer
Formation, for example by an arc ion plating device
In this case, the bias voltage applied to the carbide substrate and the
And the pressure of the nitrogen atmosphere which is the reaction atmosphere,
Heating temperature is kept relatively high, for example, 500 ° C
Relatively high, for example -300V bias
The operation was performed under the conditions of a voltage and a nitrogen atmosphere pressure of 10 Pa.
The (Ti, Al, Si) N layer and the (Al,
Each of the Si) N layers was observed by a transmission electron microscope.
Ultra-fine crystal Ti-Al-Si composite nitride particles [hereinafter, referred to as
(Ti, Al, Si) N crystal grains]
Crystalline Al-Si composite nitride particles [hereinafter, (Al, Si)
N crystal grains] also have a skeleton structure (skeleton structure)
Amorphous silicon nitride (hereinafter referred to as amorphous SiN)
To have a surrounding organization. (B) the (Ti, Al, Si) N layer of (a) and
The (Al, Si) N layer constitutes this (Ti, Al,
Si) N crystal grains and (Al, Si) N crystal grains are S
not only has excellent heat resistance due to i content
And the amorphous SiN having a skeleton structure
With excellent heat resistance, the hard coating layer itself
The thermal properties are further improved, thus forming this hard coating layer.
Coated carbide tools made of steel, especially steel and cast iron
Hard coating layer even when used for high speed cutting with high heat generation
Exhibits excellent heat resistance and wear due to overheating of itself
Since the progress is suppressed, the wear resistance is further improved,
To achieve stable cutting performance over a period of time.
When. The research results shown in (a) and (b) above were obtained.
It is. The present invention has been made based on the above research results.
(A) 0.5% on the surface of the cemented carbide substrate.
Having an average layer thickness of 55 μm and a composition formula: (Ti1- (X + Y)A
lXSiY) When expressed by N, the
X: 0.20 by atomic ratio as measured by a spectrophotometer.
To 0.50, Y: 0.15 to 0.30
Observation with a transmission electron microscope revealed that (Ti-A
l-Si) N crystal fine particles with skeleton structure (skeleton structure)
Shows the structure surrounded by the amorphous SiN (Ti, A
(b) 0.5 to 5 μm
It has an average layer thickness and has a composition formula: (Al1-ZSiZ) N
, The Auger spectrometer at the center in the thickness direction
By atomic ratio, Z: 0.15 to 0.30
Have the same composition, and also by transmission electron microscopy
Observation shows that (Al-Si) N crystal grains have a skeleton structure
Shows a structure surrounded by amorphous SiN (Al, S
i) Upper layer made of N, lower part of (a) and (b) above
Layer and a hard coating layer consisting of an upper layer
, A hard coated layer that exhibits excellent heat resistance
The tool has features. Next, in the coated carbide tool of the present invention,
The composition of the lower layer and the upper layer constituting the hard coating layer,
Further, the reason for limiting the average layer thickness as described above will be described.
You. (A) Lower layer of hard coating layer In the (Ti, Al, Si) N layer constituting the lower layer,
In some cases, Ti, Al and a part of Si
High toughness, excellent high-temperature hardness and heat resistance by Al, and
It has much higher heat resistance due to some Si (T
i-Al-Si) N crystal grains are formed, and the remaining S
i has a skeleton structure with extremely excellent heat resistance
Which form amorphous SiN and therefore have a composition
Formula: (Ti 1- (X + Y)AlXSiY) The X value of N is the atomic ratio (hereinafter
The same applies to (Ti-Al-Si) below 0.2.
To ensure desired high-temperature hardness and heat resistance for N crystal fine particles
And if the Y value is less than 0.15, especially immediately
Of amorphous SiN skeleton structure with improved heat resistance
Is insufficient, and it is difficult to further improve the heat resistance.
On the other hand, even if the X value exceeds 0.5, the skeleton structure
Formation is suppressed and the desired excellent heat resistance
Property cannot be ensured, and the Y value is 0.30
If it exceeds, the strength of the hard coating layer sharply decreases,
The reason that chipping easily occurs on the cutting blade due to the cause
X value is 0.2-0.5 and Y value is 0.15-0.30
It was decided. When the average thickness of the lower layer is less than 0.5 μm,
Ensure that the desired excellent wear resistance is maintained over a long period of time.
If the average layer thickness exceeds 5 μm,
Since chipping is likely to occur on the blade, the average layer
The thickness was determined to be 0.5-5 μm. (B) Upper layer of hard coating layer In the (Al, Si) N layer constituting the upper layer,
Al with a part of Si having excellent thermal conductivity (heat dissipation)
Solid solution in N to improve its heat resistance, excellent
(Al-Si) N crystal grains with excellent thermal conductivity and heat resistance
And the remaining Si is also very good
Of amorphous SiN with skeleton structure with excellent heat resistance
Therefore, if the Z value is less than 0.15,
Skeleton structure with excellent heat resistance
Insufficient formation of crystalline SiN and desired excellent heat resistance
If the Z value exceeds 0.30,
Originally, the excellent thermal conductivity of AlN suddenly decreases
The Z value is set to 0.15 to 0.30
Was. If the average thickness of the upper layer is less than 0.5 μm,
The above properties of the component layer cannot be made sufficient.
If the average layer thickness exceeds 5 μm, chipping will occur on the cutting edge.
The average layer thickness is 0.5 to 5 μm
m. [0010] DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a coated carbide tool of the present invention
Will be specifically described with reference to examples. (Example 1) As raw material powders,
WC powder, TiC powder, ZrC powder, V
C powder, TaC powder, NbC powder, CrThreeCTwoPowder, T
Prepare iN powder, TaN powder, and Co powder, and
Raw material powder is blended to the composition shown in Table 1 and
100 hours after wet mixing with a dry mill and drying.
a into a green compact at the pressure of a
b. Vacuum in a vacuum at a temperature of 1400 ° C for 1 hour.
After sintering, add R: 0.05 honing to the cutting edge.
The chip of ISO standard and CNMG120408
Carbide substrates A1 to A10 made of WC-based cemented carbide having a shape
Was formed. In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
TiN = 50/50) powder, MoTwoC powder, ZrC powder
Powder, NbC powder, TaC powder, WC powder, Co powder,
And Ni powder were prepared, and these raw material powders are shown in Table 2.
For 24 hours with a ball mill
And after drying, press into a green compact at a pressure of 100 MPa
The green compact is molded in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered at 1500 ° C for 1 hour, after sintering, cutting edge
Honing process of R: 0.03 to the part
TiC with chip shape of case-MGG120408
Carbide substrates B1 to B6 made of N-based cermet were formed. Next, these super-hard substrates A1 to A10 and
And ultrasonic cleaning of each of B1 to B6 in acetone
Then, in the dry state, the usual arc also illustrated in FIG.
Attached to the ion plating system while the cathode
As an electrode (evaporation source), Ti-
Place Al-Si alloy and Al-Si alloy at predetermined positions in the device
Attach, and also attach Bombard cleaning metal Ti.
While evacuating the inside of the apparatus and maintaining the vacuum at 0.5 Pa,
After heating the inside of the device to 500 ° C with a heater,
-1000V DC via on a carbide substrate rotating on
A voltage is applied to the metal Ti of the cathode electrode and the anode.
An arc discharge is generated between the electrode and the
The body surface is cleaned with Ti bombard, and then the reaction gas is
Nitrogen gas is introduced as a source to make a reaction atmosphere of 10 Pa.
And a DC bias voltage of -300 V
A pressure is applied to the cathode electrode (the Ti-Al-S
i alloy or Al-Si alloy) and the anode electrode
An arc discharge is generated, so that the surface of the super hard substrate is
The target composition and target layer thickness (Ti,
A lower layer composed of an (Al, Si) N layer and (Al, Si)
Deposit a hard coating layer consisting of an upper layer composed of N layers
As a result, FIG. 2A is a schematic perspective view, and FIG.
The coated carbide tool of the present invention having a shape shown in a schematic longitudinal sectional view
Of the surface coated cemented carbide alloy of the present invention
(Hereinafter referred to as coated carbide tips) 1 to 16
Manufactured respectively. For the purpose of comparison, the above-mentioned super-hard substrate A1
~ A10 and each of B1-B6 in acetone
In an ultrasonically cleaned and dried state, also illustrated in FIG.
Attached to a normal arc ion plating system
Various cathode components (evaporation source)
The Ti-Al alloy and metal Al
First, wear the metal Ti for bombarding.
While evacuating the chamber and maintaining the vacuum at 0.5 Pa,
After heating the inside of the device to 500 ° C with a
Apply a DC bias voltage of -1000 V to the cathode
Arc discharge between the metal Ti of the electrode and the anode electrode
And then clean the super hard substrate surface with Ti bomber
Then, introduce nitrogen gas as a reaction gas into the device.
A reaction atmosphere of 4 Pa and -1
Under the condition that a DC bias voltage of 50 V is applied,
Anode electrode (the Ti-Al alloy or metal Al) and an anode
Arc discharge between the electrode and the
On the surface of the substrate, the target composition and the target layer thickness shown in Table 5
A lower layer composed of a (Ti, Al) N layer and an AlN layer
By depositing a hard coating layer consisting of the upper layer
Made of conventional surface coated cemented carbide as conventional coated carbide tool
Throwaway tips (hereinafter referred to as conventional coated carbide tips)
U) 1 to 16 were produced respectively. Next, the coated carbide tips 1 to 1 according to the present invention will be described.
6 and conventional coated carbide tips 1 to 16
Screwed to the tip of a tool steel tool with a fixing jig
State Work material: JIS SCM440 round bar, Cutting speed: 350 m / min. , Cut: 1.5 mm, Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous turning test of alloy steel under the conditions of Work material: JIS S50C with 4 longitudinal grooves at regular intervals in the length direction
Round bar, Cutting speed: 300 m / min. , Cut: 1.5 mm, Feed: 0.2 mm / rev. , Cutting time: 5 minutes, High-speed intermittent turning test of carbon steel under various conditions
To Work material: 4 vertical grooves at equal intervals in the length direction of JIS / FC300
Round bar, Cutting speed: 250 m / min. , Cut: 1.5 mm, Feed: 0.3 mm / rev. , Cutting time: 5 minutes, A dry high-speed intermittent turning test of cast iron under the conditions
The flank wear width of the cutting edge is also measured in the turning
Was. Table 6 shows the measurement results. [0015] [Table 1] [0016] [Table 2] [0017] [Table 3][0018] [Table 4] [0019] [Table 5][0020] [Table 6] (Example 2) As raw material powder, average particle size:
Medium coarse WC powder with 5.5 μm, fine with 0.8 μm
Granular WC powder, 1.3 μm TaC powder, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m CrThreeCTwoPowder, 1.5 μm VC powder, 1.0 μm
μm of (Ti, W) C powder and 1.8 μm of Co
Powders are prepared, and these raw material powders are shown in Table 7 respectively.
And then add wax and acetone
After mixing in a ball mill for 24 hours and drying under reduced pressure,
Press molding into various compacts of specified shape at 0MPa pressure
Then, these green compacts are placed in a vacuum atmosphere of 6 Pa at 7 ° C. /
At a temperature rise rate of 1370-1470 ° C.
Temperature, hold at this temperature for 1 hour, and then
Sintered to 8mm, 13mm and 26mm diameter
Three kinds of round bar sintered bodies for forming a cemented carbide substrate were formed,
Table 7 shows the three types of round rod sintered bodies
The diameter x length of the cutting edge is 6mm x 1
3mm, 10mm x 22mm, and 20mm x 45m
Carbide substrate C-1 to C-8 for end mill having dimension of m
Was manufactured respectively. Next, these cemented carbide substrates C-1 to C-8
Are ultrasonically cleaned in acetone and dried.
And a normal arc ion play also illustrated in FIG.
And the above-mentioned Example 1 was placed on these surfaces.
Under the same conditions, the target composition and target layer thickness shown in Table 8
(Ti, Al, Si) N layer and a lower layer (A
Hard coating layer consisting of an upper layer composed of (1, Si) N layers
By vapor deposition, FIG.
(B) has a shape shown in a schematic cross-sectional view of the cutting blade portion
Made of the surface-coated cemented carbide of the present invention as the coated carbide tool of the present invention
End mill (hereinafter referred to as coated carbide end mill of the present invention)
1 to 8 were produced respectively. For the purpose of comparison, the above-mentioned cemented carbide substrate C-
Each of 1 to C-8 was ultrasonically washed in acetone and dried.
In the dry state, a normal arc nozzle also illustrated in FIG.
Charge the on-plating device and apply
Manufacturing conditions of conventional coated carbide tips 1 to 16 in Example 1
Target composition and target layer shown in Table 9 under the same conditions as
Lower layer composed of thick (Ti, Al) N layer and AlN layer
Depositing a hard coating layer consisting of an upper layer composed of
The conventional surface-coated cemented carbide as a conventional coated carbide tool
Gold end mills (hereinafter referred to as conventional coated carbide end mills)
C) 1 to 8 were produced respectively. Next, the coated carbide end mill 1 of the present invention will be described.
-8 and conventional coated carbide end mills 1-8
Bright coated carbide end mills 1-3 and conventional coated carbide end mills
For mills 1-3, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS / SNCM439 plate material, Cutting speed: 160 m / min. , Groove depth (cut): 3 mm Table feed: 650 mm / min, High-speed groove cutting test of alloy steel under the conditions of
Coated carbide end mills 4-6 and conventional coated carbide end mills
For 4-6, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS FC300 plate material, Cutting speed: 180 m / min. , Groove depth (cut): 5 mm, Table feed: 600mm / min, -Speed high-speed groove cutting test of cast iron under the conditions of
Carbide end mills 7, 8 and conventional coated carbide end mills
About 7,8, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS SUS304 plate, Cutting speed: 60 m / min. , Groove depth (cut): 10 mm, Table feed: 150 mm / min, Dry high-speed groove cutting test of stainless steel under the conditions of the
Each time, and in any of the groove cutting tests,
The surface wear amount reaches 0.1 mm, which is the standard of service life
The cutting groove length up to was measured. Tables 8 and 9 show the measurement results.
Each is shown. [0025] [Table 7] [0026] [Table 8][0027] [Table 9] (Example 3)
Diameter 8mm (for forming super hard substrate C-1 to C-3), 13m
m (for forming the super-hard substrate C-4 to C-6), and 26 mm
Three types of round bar sintered bodies (for forming carbide substrates C-7 and C-8)
From these three types of round bar sintered bodies by grinding
The diameter x length of the forming part is 4mm x 13mm (carbide
Substrates D-1 to D-3), 8 mm x 22 mm (Carbide substrate D
-4 to D-6), and 16 mm × 45 mm (carbide substrate)
D-7, D-8) Carbide substrate for drill D-
1 to D-8 were produced respectively. Next, these super-hard substrates D-1 to D-8
The same as above, ultrasonically washed in acetone and dried
Normal arc ion plating illustrated in FIG.
The above-mentioned Example 1 was placed on the surface of the super-hard substrate after being charged into the apparatus.
Target composition and target shown in Table 10 under the same conditions as
A lower layer composed of a (Ti, Al, Si) N layer having a thickness of
A hard coating composed of an upper layer composed of an (Al, Si) N layer
FIG. 4 (a) is a schematic front view showing a state in which a cover layer is deposited.
The shape shown in the schematic cross-sectional view of the groove forming portion in FIG.
Surface-coated super alloy of the present invention as coated carbide tool of the present invention having
Hard alloy drill (hereinafter referred to as coated carbide drill of the present invention)
1 to 8 were produced respectively. For the purpose of comparison, the above-mentioned carbide substrate D-
1 to D-8 were ultrasonically washed in acetone and dried.
In the dry state, a normal arc nozzle also illustrated in FIG.
Charge the on-plating device and apply
Manufacturing conditions of conventional coated carbide tips 1 to 16 in Example 1
Target composition and target shown in Table 11 under the same conditions as
A lower layer composed of a (Ti, Al) N layer having a layer thickness and AlN
A hard coating layer consisting of an upper layer consisting of
With the conventional surface-coated carbide as a conventional coated carbide tool
Alloy drill (hereinafter referred to as conventional coated carbide drill) 1
8 were each produced. Next, the above-described coated carbide drills 1 to 8 of the present invention will be described.
And, among the conventional coated carbide drills 1 to 8, the coated
Hard drills 1-3 and conventional coated carbide drills 1-3
The Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS S50C plate, Cutting speed: 140 m / min. , Feed: 0.18 mm / rev, High-speed wet drilling test of carbon steel under the following conditions
Bright coated carbide drills 4-6 and conventional coated carbide drills 4 ~
About 6, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS SCM440 plate, Cutting speed: 100 m / min. , Feed: 0.18 mm / rev, High speed drilling cutting test of alloy steel under the conditions of
Bright coated carbide drills 7, 8 and conventional coated carbide drills 7,
For 8, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0mm JIS FC250 plate material, Cutting speed: 90 m / min. , Feed: 0.27 mm / rev, Wet high speed drilling cutting test of cast iron under the conditions of it,
Each of the wet high-speed drilling cutting tests (Izu
The flank surface of the cutting edge of the tip, even when using water-soluble cutting oil
Measure the number of holes drilled until the wear width reaches 0.3 mm.
Was. The measurement results are shown in Tables 10 and 11, respectively. [0032] [Table 10] [0033] [Table 11] The resulting coated cemented carbide according to the present invention
Coated carbide tips 1-16 as tools, coated with the present invention
Carbide end mills 1 to 8, and coated carbide drill of the present invention 1
To 8 as well as conventional coated carbide tools as conventional coated carbide tools
1 to 16, conventional coated carbide end mills 1 to 8, and
Composition and Layer of Hard Coating Layer of Conventional Coated Carbide Drills 1 to 8
Regarding the thickness, the center in the thickness direction of each constituent layer is
Energy dispersion type X-ray measuring device and Auger spectroscopic analyzer
When measured using a scanning electron microscope,
A set substantially the same as the target composition and the target layer thickness in Tables 3 to 11
Composition and average layer thickness (comparison with the average value of measurement at five arbitrary locations)
And for the organization, also the thickness of the constituent layers
When the central part was observed with a transmission electron microscope,
In any of the coated carbide tools of the present invention, the lower layer (Ti-A
l-Si) N crystal fine particles with skeleton structure (skeleton structure)
The structure surrounded by the amorphous SiN and the upper layer is (Al-
Si) Amorphous Si having skeleton structure with N crystal fine particles
N shows a structure surrounded by N, and further comprises the conventional coated carbide tool
Means that the lower layer is crystalline (Ti, Al) N and the upper layer is
The layer showed a texture consisting of crystalline AlN as well. [0035] According to the results shown in Tables 3 to 11, the present invention
All coated carbide tools are capable of cutting steel and cast iron.
Even at high speeds with heat, the hard coating layer has excellent resistance
Despite the fact that the hard coating layer is heated to high temperature due to thermal properties
And the progress of wear is remarkably suppressed, resulting in chipping and chipping of the cutting edge.
It has excellent abrasion resistance without
In the case of conventional coated carbide tools,
The hard coating layer, whose temperature has risen due to the high heat generated during
Since it does not have thermal properties, wear progresses significantly.
Progress in a relatively short time,
You. As described above, the coated carbide tool of the present invention
Not only cutting under normal conditions such as steel and cast iron,
Excellent wear resistance, especially in high-speed cutting
, Which saves labor and energy in cutting.
Further, it is possible to sufficiently satisfy cost reduction.

【図面の簡単な説明】 【図1】アークイオンプレーティング装置の概略説明図
である。 【図2】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。 【図3】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。 【図4】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of an arc ion plating apparatus. FIG. 2A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic vertical sectional view of a coated carbide tip. FIG. 3 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic transverse sectional view of the cutting blade portion. FIG. 4A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/16 C23C 14/16 B (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF25 4K029 AA02 AA04 BA58 BB02 BC10 BD05 CA04 DD06 EA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI theme coat ゛ (Reference) C23C 14/16 C23C 14/16 B (72) Inventor Yusuke Tanaka 179 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo Prefecture 1 FMC Term Co., Ltd. F term (reference) 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF25 4K029 AA02 AA04 BA58 BB02 BC10 BD05 CA04 DD06 EA01

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、 (a)0.5〜5μmの平均層厚を有し、組成式:(T
1-(X+Y)AlXSiY)Nで表わした場合、厚さ方向中
央部のオージェ分光分析装置による測定で、原子比で、
X:0.20〜0.50、Y:0.15〜0.30を満
足する組成を有し、かつ透過型電子顕微鏡による観察
で、超微細結晶Ti−Al−Si複合窒化物粒子をスケ
ルトン構造(骨格構造)をもった非晶質窒化珪素が取り
囲む組織を示すTi−Al−Si複合窒化物からなる下
部層、 (b)0.5〜5μmの平均層厚を有し、組成式:(A
1-ZSiZ)Nで表わした場合、同じく厚さ方向中央部
のオージェ分光分析装置による測定で、原子比で、Z:
0.15〜0.30を満足する組成を有し、かつ同じく
透過型電子顕微鏡による観察で、超微細結晶Al−Si
複合窒化物粒子をスケルトン構造(骨格構造)をもった
非晶質窒化珪素が取り囲む組織を示すAl−Si複合窒
化物からなる上部層、上記(a)および(b)の下部層
および上部層で構成された硬質被覆層を物理蒸着してな
る、硬質被覆層がすぐれた耐熱性を発揮する表面被覆超
硬合金製切削工具。
Claims: 1. A surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate, comprising: (a) an average layer thickness of 0.5 to 5 μm;
i 1- (X + Y) Al X Si Y ) N, when measured by an Auger spectrometer at the center in the thickness direction, the atomic ratio is:
It has a composition satisfying X: 0.20 to 0.50 and Y: 0.15 to 0.30, and the ultra-fine crystalline Ti-Al-Si composite nitride particles are skeletonized by observation with a transmission electron microscope. A lower layer made of a Ti-Al-Si composite nitride exhibiting a structure surrounded by amorphous silicon nitride having a structure (skeleton structure); (b) having an average layer thickness of 0.5 to 5 µm, and a composition formula: (A
l 1-Z Si Z ) N, similarly measured by an Auger spectrometer at the center in the thickness direction, and expressed by atomic ratio:
It has a composition that satisfies 0.15 to 0.30, and is also observed by a transmission electron microscope to find that the ultrafine crystal Al-Si
An upper layer made of Al-Si composite nitride showing a structure in which the composite nitride particles are surrounded by amorphous silicon nitride having a skeleton structure (skeleton structure), and a lower layer and an upper layer of (a) and (b) Surface-coated cemented carbide cutting tool with a hard coating layer exhibiting excellent heat resistance, obtained by physical vapor deposition of the formed hard coating layer.
JP2001369487A 2001-12-04 2001-12-04 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer Expired - Fee Related JP3948010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369487A JP3948010B2 (en) 2001-12-04 2001-12-04 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369487A JP3948010B2 (en) 2001-12-04 2001-12-04 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2003170303A true JP2003170303A (en) 2003-06-17
JP3948010B2 JP3948010B2 (en) 2007-07-25

Family

ID=19178870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369487A Expired - Fee Related JP3948010B2 (en) 2001-12-04 2001-12-04 Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP3948010B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262388A (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2015136752A (en) * 2014-01-22 2015-07-30 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
EP3404126A1 (en) * 2017-05-19 2018-11-21 Walter Ag Metal cutting tool with multi-layer coating
CN108883480A (en) * 2016-03-28 2018-11-23 京瓷株式会社 Rotation tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262388A (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2015136752A (en) * 2014-01-22 2015-07-30 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
CN108883480A (en) * 2016-03-28 2018-11-23 京瓷株式会社 Rotation tool
US10953472B2 (en) 2016-03-28 2021-03-23 Kyocera Corporation Rotary tool
EP3404126A1 (en) * 2017-05-19 2018-11-21 Walter Ag Metal cutting tool with multi-layer coating
WO2018210866A1 (en) * 2017-05-19 2018-11-22 Walter Ag Metal cutting tool with multi-layer coating
CN110603342A (en) * 2017-05-19 2019-12-20 瓦尔特公开股份有限公司 Metal cutting tool with multi-layer coating
US11104986B2 (en) 2017-05-19 2021-08-31 Walter Ag Metal cutting tool with multi-layer coating
CN110603342B (en) * 2017-05-19 2021-12-14 瓦尔特公开股份有限公司 Metal cutting tool with multi-layer coating

Also Published As

Publication number Publication date
JP3948010B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JP2003127003A (en) Cemented carbide-made cutting tool with surface clad whose rigid clad layer exerts excellent wear resistance in high velocity cutting machining
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003170303A (en) Cutting tool made of surface coated cemented carbide having hard coating layer exerting high heat resistance
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP3508754B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer for excellent chip lubrication
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3632667B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP3928461B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3928459B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP3508748B2 (en) Surface-coated cemented carbide cutting tool with excellent heat-resistant plastic deformation with wear-resistant coating layer
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3962910B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP3951292B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent chipping resistance with a hard coating layer in high-speed intermittent machining
JP2003200306A (en) Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition
JP3478276B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent chipping resistance in high-speed heavy cutting
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting
JP3928434B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting
JP2003145318A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coated layer having excellent adhesion performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees