JP3928434B2 - Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting - Google Patents

Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting Download PDF

Info

Publication number
JP3928434B2
JP3928434B2 JP2002030922A JP2002030922A JP3928434B2 JP 3928434 B2 JP3928434 B2 JP 3928434B2 JP 2002030922 A JP2002030922 A JP 2002030922A JP 2002030922 A JP2002030922 A JP 2002030922A JP 3928434 B2 JP3928434 B2 JP 3928434B2
Authority
JP
Japan
Prior art keywords
component
point
cutting
hard coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002030922A
Other languages
Japanese (ja)
Other versions
JP2003231002A (en
Inventor
暁裕 近藤
和則 佐藤
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002030922A priority Critical patent/JP3928434B2/en
Publication of JP2003231002A publication Critical patent/JP2003231002A/en
Application granted granted Critical
Publication of JP3928434B2 publication Critical patent/JP3928434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度と高靭性を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの断続切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに切刃が断続切削加工形態をとる面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.65を示す)を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高切り込みや高送りなどの重切削条件で行なわれる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、断続切削加工を高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の強度および靭性不足が原因でチッピング(微小割れ)が発生し易くなり、比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Ti,Al)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にAl成分を含有したTi−Al合金、他方側に金属Tiをいずれもカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブルの外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Al)N層を形成すると、この結果の(Ti,Al)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側のTi−Al合金のカソード電極(蒸発源)に最も接近した時点で層中にAl成分最高含有点が形成され、また前記超硬基体が上記の他方側の金属Tiのカソード電極に最も接近した時点で層中にTiN点(Al成分不含有点)が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al成分最高含有点とAl成分不含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al成分最高含有点から前記Al成分不含有点、前記Al最低含有点から前記Al成分不含有点へAl成分含有量が連続的に変化する成分濃度分布構造をもつようになること。
【0007】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Al)N層において、対向配置の一方側のカソード電極(蒸発源)であるTi−Al合金におけるAl成分含有量を上記の従来Ti−Al合金のAl成分含有量に相当するものとする共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Al成分最高含有点が、組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.65を示す)、
を満足し、かつ隣り合う上記Al成分最高含有点とAl成分不含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al成分最高含有点部分では、上記の従来(Ti,Al)N層のもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性(高温特性)を示し、一方上記Al成分不含有点部分では、実質的にTiN点を中心にしてAl成分含有量の著しく低いものとなるので、TiNのもつ高強度と高靭性が確保され、かつこれらAl成分最高含有点とAl成分不含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温特性を保持した状態で一段とすぐれた強度と靭性を具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Al)N層からなる被覆超硬工具は、特に各種の鋼や鋳鉄などの断続切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にAl成分最高含有点(Ti成分最低含有点)形成用Ti−Al合金、他方側にAl成分不含有点(TiN点)形成用金属Tiをカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、前記回転テーブルの外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、超硬基体の表面に、(Ti,Al)N層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる被覆超硬工具にして
上記硬質被覆層が、層厚方向にそって、Al成分最高含有点とAl成分不含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al成分最高含有点から前記Al成分不含有点、前記Al成分不含有点から前記Al成分最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有し、さらに、
上記Al成分最高含有点が、組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.65を示す)、
を満足し、かつ隣り合う上記Al成分最高含有点とAl成分不含有点の間隔が、0.01〜0.1μmである、
断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0009】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al成分最高含有点の組成
(Ti,Al)N層におけるAl成分は、高強度および高靭性を有するTiN層の高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってAl成分の含有割合が高くなればなるほど高温特性は向上したものになるが、その割合(X値)がTiとの合量に占める割合(原子比)で0.65を越えて高くなると、高強度および高靭性を有するTiN点が隣接して存在しても層自体の強度および靭性の低下は避けられず、この結果チッピングなどが発生し易くなり、一方その割合(X値)が同0.40未満では前記高温特性に所望の向上効果が得られないことから、その割合を0.40〜0.65と定めた。
【0010】
(b)Al成分最高含有点とAl成分不含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高温特性と強度および靭性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl成分最高含有点であれば強度および靭性不足、Al不含有点であれば高温特性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0011】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0012】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。
【0013】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。
【0014】
ついで、上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl成分最高含有点形成用Ti−Al合金、他方側のカソード電極(蒸発源)としてAl成分不含有点形成用金属Tiを前記回転テーブルを挟んで対向配置し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加して、他方側のカソード電極である前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に――100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al成分最高含有点形成用Ti−Al合金およびAl成分不含有点形成用金属Ti)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl成分最高含有点とAl成分不含有点(TiN点)とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al成分最高含有点から前記Al成分不含有点、前記Al成分不含有点から前記Al成分最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、図3(a)に概略斜視図で、同(b)に概略縦断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0015】
また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのAr雰囲気とし、この状態で超硬基体に−800vのバイアス電圧を印加して超硬基体表面をArガスボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al)N層からなる硬質被覆層を蒸着することにより、同じく図3に示される形状の従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0016】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:150m/min.、
切り込み:4mm、
送り:0.15mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式断続高切り込み切削加工試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:180m/min.、
切り込み:2mm、
送り:0.6mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式断続高送り切削加工試験、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:4mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式断続高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表3〜6に示した。
【0017】
【表1】

Figure 0003928434
【0018】
【表2】
Figure 0003928434
【0019】
【表3】
Figure 0003928434
【0020】
【表4】
Figure 0003928434
【0021】
【表5】
Figure 0003928434
【0022】
【表6】
Figure 0003928434
【0023】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0024】
ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のAl成分最高含有点とAl成分不含有点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記Al成分最高含有点から前記Al成分不含有点、前記Al成分不含有点から前記Al成分最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標全体層厚の硬質被覆層を蒸着することにより、図4(a)に概略正面図で、同(b)に切刃部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0025】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0026】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11の板材、
切削速度:60m/min.、
溝深さ(切り込み):4.5mm、
テーブル送り:300mm/分、
の条件での工具鋼の乾式高切り込み溝切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:50m/min.、
溝深さ(切り込み):7.5mm、
テーブル送り:250mm/分、
の条件でのステンレス鋼の乾式高切り込み溝切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM439の板材、
切削速度:100m/min.、
溝深さ(切り込み):8mm、
テーブル送り:500mm/分、
の条件での合金鋼の乾式高送り溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8、9にそれぞれ示した。
【0027】
【表7】
Figure 0003928434
【0028】
【表8】
Figure 0003928434
【0029】
【表9】
Figure 0003928434
【0030】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0031】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl成分最高含有点とAl成分不含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al成分最高含有点から前記Al成分不含有点、前記Al成分不含有点から前記Al成分最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標全体層厚の硬質被覆層を蒸着することにより、図5(a)に概略正面図で、同(b)に溝形成部の概略横断面図で示される形状を有する本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0032】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0033】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:40m/min.、
送り:0.2mm/rev、
穴深さ:8mm
の条件での工具鋼の湿式高送り穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD400の板材、
切削速度:80m/min.、
送り:0.3mm/rev、
穴深さ:16mm
の条件でのダクタイル鋳鉄の湿式高送り穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC300の板材、
切削速度:70m/min.、
送り:0.35mm/rev、
穴深さ:32mm
の条件での鋳鉄の湿式高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0034】
【表10】
Figure 0003928434
【0035】
【表11】
Figure 0003928434
【0036】
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8を構成する硬質被覆層におけるAl成分最高含有点とAl成分不含有点の組成、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の硬質被覆層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
なお、上記の本発明被覆超硬工具を構成する硬質被覆層において、Al成分最高含有点のAl含有割合が高い場合に、同Al成分不含有点に5原子%以下の割合でAlの含有が見られる場合があった。
また、これらの本発明被覆超硬工具の硬質被覆層におけるAl成分最高含有点とAl成分不含有点間の間隔、およびこれの全体層厚、並びに従来被覆超硬工具の硬質被覆層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ値を示した。
【0037】
【発明の効果】
表3〜11に示される結果から、硬質被覆層が層厚方向に、すぐれた高温硬さと耐熱性を有するAl成分最高含有点と高強度と高靭性を有するAl成分不含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al成分最高含有点から前記Al成分不含有点、前記Al成分不含有点から前記Al成分最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも各種の鋼や鋳鉄などの断続切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al)N層からなる従来被覆超硬工具においては、前記硬質被覆層がすぐれた高温硬さと耐熱性を有するものの、強度および靭性に劣るものであるために、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの断続切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。
【図3】(a)は被覆超硬チップの概略斜視図、(b)は被覆超硬チップの概略縦断面図である。
【図4】(a)は被覆超硬エンドミル概略正面図、(b)は同切刃部の概略横断面図である。
【図5】(a)は被覆超硬ドリルの概略正面図、(b)は同溝形成部の概略横断面図である。[0001]
BACKGROUND OF THE INVENTION
In this invention, the hard coating layer has high strength and high toughness, and is excellent in high-temperature hardness and heat resistance. Therefore, particularly in intermittent cutting of various steels and cast irons, The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent chipping resistance when a hard coating layer is used under heavy cutting conditions such as high feed.
[0002]
[Prior art]
In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. in which the cutting blade takes an intermittent cutting form, and the solid type by attaching the throwaway tip detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). surface, composition formula): (Ti 1-X Al X) N ( provided that an atomic ratio, X is a composite nitride of Ti and Al satisfying shown) of 0.40 to 0.65 [hereinafter, ( Coated carbide tools formed by physically vapor-depositing a hard coating layer composed of a layer of Ti, Al) N] with an average layer thickness of 1 to 15 μm have been proposed for continuous cutting and intermittent cutting of various steels and cast irons. It is used.
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa, while the cemented carbide substrate is applied to the surface of the cemented carbide substrate with a bias voltage of, for example, −100 V applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al) N layer.
[0005]
[Problems to be solved by the invention]
In recent years, the performance of cutting machines has been dramatically improved, while on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting is performed under heavy cutting conditions such as high cutting and high feed. Although there is no problem when using the above conventional coated carbide tools under normal cutting conditions, the above-mentioned conventional coated cemented carbide tools have a high cutting depth and high feed with high mechanical impact. When heavy cutting conditions such as the above are used, chipping (microcracking) is likely to occur due to insufficient strength and toughness of the hard coating layer, and the service life is reached in a relatively short time.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with an excellent hard coating layer particularly in intermittent heavy cutting. As a result of conducting research with a focus on the hard coating layer,
(A) The (Ti, Al) N layer constituting the conventional coated carbide tool formed using the arc ion plating apparatus shown in FIG. 2 has a substantially uniform composition over the entire layer thickness. Therefore, for example, the arc ion plating apparatus having the structure shown in the schematic plan view of FIG. 1A and the schematic front view of FIG. A rotating table for mounting a carbide substrate is provided in the part, and a Ti-Al alloy containing an Al component is disposed on one side and metal Ti is disposed on the other side as a cathode electrode (evaporation source) across the rotating table. Using an arc ion plating apparatus, a plurality of carbide substrates are mounted in a ring shape along the outer periphery of the rotary table of the apparatus, and in this state, the atmosphere in the apparatus is set to a nitrogen atmosphere to form the rotary table. Arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides while rotating and rotating the carbide substrate itself for the purpose of uniforming the thickness of the hard coating layer to be deposited. Then, when the (Ti, Al) N layer is formed on the surface of the cemented carbide substrate, the cemented substrate arranged in a ring shape on the rotary table is the above-mentioned (Ti, Al) N layer. When the Ti-Al alloy cathode electrode (evaporation source) closest to the Ti-Al alloy on one side is formed, the highest Al component content point is formed in the layer, and the cemented carbide substrate serves as the metal Ti cathode electrode on the other side. At the closest point, TiN points (Al component-free points) are formed in the layer, and by rotation of the rotary table, the Al component highest content point and Al component-free points are formed in the layer along the layer thickness direction. Alternately at predetermined intervals As it appears repeatedly, it has a component concentration distribution structure in which the Al component content continuously changes from the Al component highest content point to the Al component non-contained point and from the Al minimum content point to the Al component non-contained point. To become a.
[0007]
(B) In the (Ti, Al) N layer having the repeated continuous change component concentration distribution structure of (a) above, the Al component content in the Ti—Al alloy that is the cathode electrode (evaporation source) on one side facing each other is described above. The conventional Ti-Al alloy is equivalent to the Al component content, and the rotational speed of the rotary table on which the carbide substrate is mounted is controlled.
The highest Al component content point is the composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
And the distance between the adjacent Al component highest content point and the Al component non-contained point in the thickness direction is 0.01 to 0.1 μm,
The Al component highest content point shows excellent high temperature hardness and heat resistance (high temperature characteristics) corresponding to the high temperature hardness and heat resistance of the conventional (Ti, Al) N layer, while the Al component non-contained point In the portion, the Al component content is substantially low centered on the TiN point, so that the high strength and high toughness of TiN are ensured, and the highest Al component content point and the Al component non-contained point are secured. Since the spacing is extremely small, the layer has a higher strength and toughness while maintaining excellent high-temperature characteristics as a whole layer. Therefore, (Ti, Al) N having a structure in which a hard coating layer is applied. Coated carbide tools consisting of layers have excellent hard coating layers, especially when intermittent cutting of various steels and cast iron is performed under heavy cutting conditions such as high cutting with high mechanical impact and high feed. It is like exhibits chipping resistance.
The research results shown in (a) and (b) above were obtained.
[0008]
The present invention has been made based on the above research results, and is provided with a carbide substrate mounting rotary table at the center of the apparatus, sandwiching the rotary table, and having an Al component highest content point (Ti component) on one side. Using the arc ion plating apparatus in which the Ti-Al alloy for formation) and the Ti component-free point (TiN point) formation metal Ti are arranged opposite to each other as a cathode electrode (evaporation source) on the other side, A plurality of carbide substrates are mounted in a ring shape along the outer periphery, and in this state, the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere, and the cathode electrodes on both sides are rotated while the carbide substrate itself is rotated. (evaporation source) and by generating arc discharge between the anode electrode, the surface of the carbide substrate, (Ti, Al) a hard coating layer consisting of N layers in overall average layer thickness of 1~15μm In the formed by wearing coated carbide tools,
The hard coating layer has an Al component highest content point and an Al component non-contained point alternately and repeatedly at predetermined intervals along the layer thickness direction, and the Al component is not contained from the highest Al component content point. Point, having a component concentration distribution structure in which the Al component content continuously changes from the Al component-free point to the Al component highest-containing point,
The highest Al component content point is the composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
And the interval between adjacent Al component highest content point and Al component non-contained point is 0.01 to 0.1 μm,
It is characterized by a coated cemented carbide tool that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting.
[0009]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Al component in the composition (Ti, Al) N layer with the highest Al component content point is contained for the purpose of improving the high temperature hardness and heat resistance (high temperature characteristics) of the TiN layer having high strength and high toughness. Accordingly, the higher the content ratio of the Al component, the higher the high temperature characteristics, but the ratio (X value) exceeds 0.65 in the ratio (atomic ratio) to the total amount with Ti. When it becomes high, even if TiN points having high strength and high toughness are present adjacent to each other, a decrease in the strength and toughness of the layer itself is inevitable, and as a result, chipping and the like are likely to occur, while the ratio (X value) However, if the ratio is less than 0.40, a desired improvement effect cannot be obtained in the high temperature characteristics, the ratio was determined to be 0.40 to 0.65.
[0010]
(B) Spacing between Al component highest content point and Al component non-contained point If the spacing is less than 0.01 μm, it is difficult to clearly form each point with the above composition. The characteristics, strength and toughness cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if the Al component is the highest content point, the strength and toughness are insufficient, and the Al-free point Insufficient high-temperature characteristics appear locally in the layer, which may cause chipping easily and promote the progress of wear. Therefore, the interval was set to 0.01 to 0.1 μm.
[0011]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 1 μm, desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and the carbide bases A1 to A10 made of WC-based cemented carbide having ISO / CNMG120408 chip shape Formed.
[0013]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cermet carbide substrates B1 to B6 having the following chip shape were formed.
[0014]
Next, each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, on the rotary table in the arc ion plating apparatus shown in FIG. Therefore, Ti-Al alloy for forming the highest point of Al component with various composition as cathode electrode (evaporation source) on one side, Al component free point as cathode electrode (evaporation source) on the other side The forming metal Ti is disposed opposite to the rotary table, and first, the interior of the apparatus is heated to 500 ° C. with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa or less. A DC bias voltage of −1000 V is applied to a carbide substrate that rotates while rotating, and a current of 100 A flows between the metal Ti, which is the cathode electrode on the other side, and the anode electrode. An arc discharge is generated, and the surface of the carbide substrate is cleaned by Ti bombardment. Then, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, and the carbide that rotates while rotating on the rotary table. A DC bias voltage of −100 V is applied to the substrate, and 100 A is provided between each cathode electrode (the Ti-Al alloy for forming points with the highest Al component content and the metal Ti for not containing Al components) and the anode electrode. Current is caused to flow, and arc discharge is generated, so that the Al component highest content point and Al component non-contained point (TiN point) of the target composition shown in Tables 3 and 4 along the layer thickness direction on the surface of the carbide substrate. ) Alternately and repeatedly at the target intervals shown in Tables 3 and 4, and from the Al component highest content point to the Al component non-contained point, from the Al component non-contained point to the Al component By vapor-depositing a hard coating layer having a component concentration distribution structure in which the Al component content continuously changes to the highest component content point and also having the target total layer thickness shown in Tables 3 and 4, FIG. ) Is a schematic perspective view of the present invention, and the surface coated cemented carbide throwaway tip of the present invention as a coated carbide tool of the present invention having the shape shown in FIG. 1 to 16 were produced.
[0015]
Further, for the purpose of comparison, these carbide substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and then loaded into a normal arc ion plating apparatus shown in FIG. A Ti—Al alloy having various component compositions was attached as a cathode electrode (evaporation source), and the inside of the apparatus was heated to 500 ° C. with a heater while the inside of the apparatus was evacuated and kept at a vacuum of 0.5 Pa or less. Thereafter, Ar gas is introduced into the apparatus to form an Ar atmosphere of 10 Pa. In this state, a bias voltage of −800 V is applied to the cemented carbide substrate to clean the surface of the cemented carbide substrate with Ar gas bombardment, and then the reaction gas is introduced into the device. As a reaction atmosphere of 2 Pa by introducing nitrogen gas, the bias voltage applied to the cemented carbide substrate is lowered to −100 V, and an arc is formed between the cathode electrode and the anode electrode. The surface of each of the superhard substrates A1 to A10 and B1 to B6 has a target composition and a target layer thickness shown in Tables 5 and 6 and substantially along the layer thickness direction. By depositing a hard coating layer composed of a (Ti, Al) N layer having no composition change, a conventional surface-coated cemented carbide throwaway tip (hereinafter referred to as a conventional coated carbide tool) having the shape shown in FIG. 1 to 16 were manufactured.
[0016]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 150 m / min. ,
Incision: 4mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Dry interrupted high cut cutting test of alloy steel under the conditions of
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 180 m / min. ,
Cutting depth: 2mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
Carbon steel dry intermittent high feed cutting test under the conditions of
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 200 m / min. ,
Incision: 4mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
The dry interrupted high-cut cutting test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 3-6.
[0017]
[Table 1]
Figure 0003928434
[0018]
[Table 2]
Figure 0003928434
[0019]
[Table 3]
Figure 0003928434
[0020]
[Table 4]
Figure 0003928434
[0021]
[Table 5]
Figure 0003928434
[0022]
[Table 6]
Figure 0003928434
[0023]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Prepare a powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder. Each was blended in the blending composition shown in Table 7, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, then pressed into various compacts of a predetermined shape at a pressure of 100 MPa. The green compact is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then fired under furnace cooling conditions. Finally, the diameters are 8mm, 13mm, and 26 3 types of sintered carbide rod forming bodies for forming a carbide substrate of m, and further, the diameter of the cutting edge portion by the combination shown in Table 7 by grinding from the above three types of sintered rods. X Carbide substrates (end mills) C-1 to C-8 having lengths of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, were produced.
[0024]
Then, these carbide substrates (end mills) C-1 to C-8 were ultrasonically washed in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Al component highest content point and the Al component non-contained point of the target composition shown in Table 8 along the layer thickness direction are repeatedly present at the target interval shown in Table 8 alternately. And having a component concentration distribution structure in which the Al component content continuously changes from the Al component highest content point to the Al component non-content point, from the Al component non-content point to the Al component highest content point, and By depositing a hard coating layer having a target overall layer thickness shown in FIG. 8, the present invention has a shape shown in a schematic front view in FIG. 4 (a) and in a schematic cross-sectional view of the cutting edge portion in FIG. 4 (b). Surface-coated carbide of the present invention as a coated carbide tool Gold end mill (hereinafter, the present invention refers to the coating end mills) 1-8 were prepared, respectively.
[0025]
For the purpose of comparison, the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. 2 is also used. (Ti, Al) N having the target composition and target layer thickness shown in Table 9 and substantially no composition change along the layer thickness direction under the same conditions as in Example 1 above. By vapor-depositing a hard coating layer consisting of layers, conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional coated carbide tools were produced, respectively.
[0026]
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SKD11 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 300mm / min,
With respect to the tool steel dry type high cutting groove cutting test under the conditions of the present invention, the coated carbide end mills 4-6 of the present invention and the conventional coated carbide end mills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 50 m / min. ,
Groove depth (cut): 7.5 mm,
Table feed: 250 mm / min,
With respect to the dry high-grooving groove cutting test of stainless steel under the following conditions, the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SNCM439 plate material,
Cutting speed: 100 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 500 mm / min,
In each of the groove cutting tests, the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. The cutting groove length of was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0027]
[Table 7]
Figure 0003928434
[0028]
[Table 8]
Figure 0003928434
[0029]
[Table 9]
Figure 0003928434
[0030]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7, D-8) Hard substrates (drills) D-1 to D-8 were produced, respectively.
[0031]
Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. In the same conditions as in Example 1 above, the Al component highest content point and Al component non-contained point of the target composition shown in Table 10 along the layer thickness direction are also shown in Table 10 alternately. Component concentration distribution structure that repeatedly exists at a target interval, and in which the Al component content continuously changes from the Al component highest content point to the Al component non-contained point, and from the Al component non-containing point to the Al component highest content point And a hard coating layer having a target overall layer thickness also shown in Table 10 is vapor-deposited, and FIG. 5 (a) is a schematic front view, and FIG. 5 (b) is a schematic cross-sectional view of a groove forming portion. The invention coated carbide with the shape shown The present invention surface coating cemented carbide drill as (hereinafter, the present invention refers to the coating carbide drills) 1-8 were prepared, respectively.
[0032]
For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into a normal arc ion plating apparatus, had the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1, and substantially changed in composition along the layer thickness direction. By depositing a hard coating layer comprising no (Ti, Al) N layer, conventional surface-coated carbide drills (hereinafter referred to as conventional coated carbide drills ) 1 to 8 as conventional coated carbide tools are respectively provided. Manufactured.
[0033]
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 40 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm
For the wet high feed drilling test of tool steel under the conditions of the present invention, the coated carbide drills 4-6 of the present invention and the conventional coated carbide drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FCD400 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 16mm
For the wet high feed drilling test of ductile cast iron under the conditions of the present invention, the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC300 plate material,
Cutting speed: 70 m / min. ,
Feed: 0.35mm / rev,
Hole depth: 32mm
Each of the wet high-feed drilling tests of cast iron under the above conditions was conducted, and the flank wear width of the tip cutting edge surface reached 0.3 mm in any wet high-speed drilling test (using water-soluble cutting oil). The number of holes drilled was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0034]
[Table 10]
Figure 0003928434
[0035]
[Table 11]
Figure 0003928434
[0036]
In the hard coating layer which comprises this invention coated carbide tips 1-16, this invention coated carbide end mills 1-8, and this invention coated carbide drills 1-8 as this invention coated carbide tool obtained as a result. Composition of Al component highest content point and Al component non-contained point, as well as conventional coated carbide tips 1-16, conventional coated carbide end mills 1-8 as conventional coated carbide tools, and conventional coated carbide drills 1-8 When the composition of the hard coating layer was measured using an Auger spectroscopic analyzer, the composition was substantially the same as the target composition.
In addition, in the hard coating layer constituting the above-described coated carbide tool of the present invention, when the Al content ratio of the Al component highest content point is high, the Al content is not included in the Al component non-contained point and the content of Al is 5% or less. It was sometimes seen.
Further, the distance between the Al component highest content point and the Al component non-contained point in the hard coating layer of these coated carbide tools of the present invention, and the total layer thickness thereof, and the thickness of the hard coating layer of the conventional coated carbide tool When the cross-section was measured using a scanning electron microscope, all showed substantially the same value as the target value.
[0037]
【The invention's effect】
From the results shown in Tables 3 to 11, the Al component highest content point having excellent high-temperature hardness and heat resistance and the Al component-free point having high strength and high toughness alternately in the layer thickness direction of the hard coating layer. Component concentration that repeatedly exists at a predetermined interval, and the Al component content continuously changes from the Al component highest content point to the Al component non-contained point, and from the Al component non-containing point to the Al component highest content point The coated carbide tool of the present invention having a distributed structure is hard even when intermittent cutting of various types of steel and cast iron is performed under heavy cutting conditions such as high cutting with high mechanical impact and high feed. In the conventional coated carbide tool consisting of a (Ti, Al) N layer in which the hard coating layer has substantially no composition change along the layer thickness direction, while the coating layer exhibits excellent chipping resistance, Excellent hard coating layer Although having a temperature hardness and heat resistance, because it is inferior in strength and toughness, chipping occurs and this is apparent that lead to a relatively short time service life due.
As described above, the coated cemented carbide tool of the present invention is not only for cutting under normal conditions, but also for intermittent cutting of various steels and cast iron, in particular, high cutting and high feed with high mechanical impact. Even when performed under heavy cutting conditions such as the above, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time. It is possible to cope with the above sufficiently.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used to form a hard coating layer constituting a conventional coated carbide tool.
FIG. 3A is a schematic perspective view of a coated carbide chip, and FIG. 3B is a schematic longitudinal sectional view of the coated carbide chip.
4A is a schematic front view of a coated carbide end mill, and FIG. 4B is a schematic cross-sectional view of the cutting edge portion.
5A is a schematic front view of a coated carbide drill, and FIG. 5B is a schematic cross-sectional view of the groove forming portion.

Claims (1)

装置中央部に炭化タングステン基超硬合金基体および炭窒化チタン系サーメット基体のいずれか、または両方の装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にAl成分最高含有点(Ti成分最低含有点)形成用Ti−Al合金、他方側にAl成分不含有点(TiN点)形成用金属Tiをカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、前記回転テーブルの外周部に沿って複数の前記基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、前記基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記基体の表面に、TiとAlの複合窒化物層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具にして
上記硬質被覆層が、層厚方向にそって、Al成分最高含有点とAl成分不含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al成分最高含有点から前記Al成分不含有点、前記Al成分不含有点から前記Al成分最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有し、さらに、
上記Al成分最高含有点が、組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.65を示す)、
を満足し、かつ隣り合う上記Al成分最高含有点とAl成分不含有点の間隔が、0.01〜0.1μmであること、
を特徴とする断続重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
A rotating table for mounting either or both of a tungsten carbide base cemented carbide substrate and a titanium carbonitride-based cermet substrate is provided at the center of the apparatus, and the Al component highest content point (Ti component) is placed on one side of the rotating table. Using the arc ion plating apparatus in which the Ti-Al alloy for formation) and the Ti component-free point (TiN point) formation metal Ti are arranged opposite to each other as a cathode electrode (evaporation source) on the other side, A plurality of the substrates are mounted in a ring shape along the outer periphery, and in this state, the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere, and the cathodes (evaporation) on both sides are rotated while the substrate itself rotates. source) and by generating arc discharge between the anode electrode, the surface of the substrate, the hard coating layer made of a composite nitride layer of Ti and Al In the overall average layer surface-coated cemented carbide cutting tool comprising depositing a thickness of 15 m,
The hard coating layer has an Al component highest content point and an Al component non-contained point alternately and repeatedly at predetermined intervals along the layer thickness direction, and the Al component is not contained from the highest Al component content point. Point, having a component concentration distribution structure in which the Al component content continuously changes from the Al component-free point to the Al component highest-containing point,
The highest Al component content point is the composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
And the interval between adjacent Al component highest content point and Al component non-contained point is 0.01 to 0.1 μm,
This is a surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting.
JP2002030922A 2002-02-07 2002-02-07 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting Expired - Fee Related JP3928434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030922A JP3928434B2 (en) 2002-02-07 2002-02-07 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030922A JP3928434B2 (en) 2002-02-07 2002-02-07 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting

Publications (2)

Publication Number Publication Date
JP2003231002A JP2003231002A (en) 2003-08-19
JP3928434B2 true JP3928434B2 (en) 2007-06-13

Family

ID=27774481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030922A Expired - Fee Related JP3928434B2 (en) 2002-02-07 2002-02-07 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting

Country Status (1)

Country Link
JP (1) JP3928434B2 (en)

Also Published As

Publication number Publication date
JP2003231002A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP3669334B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4389152B2 (en) Surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under heavy cutting conditions.
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3928461B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3962910B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3944900B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928434B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting
JP3928452B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP3928459B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP3951292B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent chipping resistance with a hard coating layer in high-speed intermittent machining
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4320707B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3944901B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting
JP4320706B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3948015B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP4304586B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees