JP4375527B2 - Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. - Google Patents

Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. Download PDF

Info

Publication number
JP4375527B2
JP4375527B2 JP2003139712A JP2003139712A JP4375527B2 JP 4375527 B2 JP4375527 B2 JP 4375527B2 JP 2003139712 A JP2003139712 A JP 2003139712A JP 2003139712 A JP2003139712 A JP 2003139712A JP 4375527 B2 JP4375527 B2 JP 4375527B2
Authority
JP
Japan
Prior art keywords
content point
cutting
highest
lowest
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003139712A
Other languages
Japanese (ja)
Other versions
JP2004338058A (en
Inventor
浩一 前田
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003139712A priority Critical patent/JP4375527B2/en
Publication of JP2004338058A publication Critical patent/JP2004338058A/en
Application granted granted Critical
Publication of JP4375527B2 publication Critical patent/JP4375527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が一段とすぐれた高温強度を有し、かつ高温硬さと耐熱性、さらに耐熱塑性変形性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高い発熱を伴なう高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
組成式:(Ti1- Si )N(ただし、原子比で、Aは0.45〜0.60を示す)、
を満足するTiとSiの複合窒化物[以下、(Ti,Si)Nで示す]層からなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、かかる被覆超硬工具が、硬質被覆層を構成する前記(Ti,Si)N層がSiによるすぐれた高温硬さおよび耐熱性、さらにTiによるすぐれた高温強度を有することから、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられることも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば400℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−200Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
【0005】
【特許文献1】
特開平8−118106号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削速度は高速化し、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、高い発熱を伴なう高速切削加工を機械的衝撃の高い高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の高温強度不足が原因でチッピング(微小割れ)が発生し易く、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Ti,Si)N層は、厚さ全体に亘って実質的に均一な組成を有し、したがって均質な性質を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に上記の従来(Ti,Si)N層の形成にカソード電極(蒸発源)として用いられたTi−Si合金に、さらにY成分を合金成分として含有させてなるTi−Si−Y合金を配置し、他方側には前記Ti−Si−Y合金に比して相対的にSi含有割合の低いTi−Si−Y合金をいずれもカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Si,Y)N層を形成すると、この結果の(Ti,Si,Y)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側のTi−Si−Y合金のカソード電極(蒸発源)に最も接近した時点で層中にSi最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にSi含有割合の低いTi−Si−Y合金のカソード電極に最も接近した時点で層中にSi最低含有点が形成され、上記回転テーブルの回転によって層中には厚さ方向にそって前記Si最高含有点とSi最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Si,Y)N層において、対向配置の一方側のカソード電極(蒸発源)であるTi−Si−Y合金におけるSi含有割合を上記の従来(Ti,Si)N層形成用Ti−Si合金のSi含有割合に相当するものとし、同他方側のカソード電極(蒸発源)であるTi−Si−Y合金におけるSi含有割合を上記の従来Ti−Si合金のSi含有割合に比して相対的に低いものとすると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Si最高含有点が、組成式:(Ti1-( + )Si )N(ただし、原子比で、Aは0.45〜0.60、Z:0.03〜0.10を示す)、
上記Si最低含有点が、組成式:(Ti1-( + )Si )N(ただし、原子比で、Bは0.03〜0.25、Z:0.03〜0.10を示す)、
を満足し、かつ隣り合う上記Si最高含有点とSi最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Si最高含有点部分では、上記の従来(Ti,Si)N層の具備する高温硬さおよび耐熱性に相当するすぐれた高温硬さおよび耐熱性を有し、かつY成分含有によって耐熱塑性変形性も向上し、さらにTi成分による高温強度も具備し、一方上記Si最低含有点部分では、前記Si最高含有点部分に比してSi含有割合が低く、相対的にTi含有割合の高いものとなるので、一段と高い高温強度を有するようになり、しかもこれらSi最高含有点とSi最低含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性、および耐熱塑性変形性を保持した状態で、さらに一段とすぐれた高温強度を具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Si,Y)N層からなる被覆超硬工具は、特に各種の鋼や鋳鉄などの切削加工を、高い発熱を伴なう速い切削速度で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Ti,Si,Y)N層からなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる被覆超硬工具にして、上記硬質被覆層を、層厚方向にそって、Si最高含有点とSi最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、
さらに、上記Si最高含有点が、
組成式:(Ti1-( + )Si )N(ただし、原子比で、Aは0.45〜0.60、Z:0.03〜0.10を示す)、
上記Si最低含有点が、
組成式:(Ti1-( + )Si )N(ただし、原子比で、Bは0.03〜0.25、Z:0.03〜0.10を示す)、
を満足し、かつ隣り合う上記Si最高含有点とSi最低含有点の間隔が、0.01〜0.1μmである、
硬質被覆層で構成してなる、高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Si最高含有点の組成
Si最高含有点の(Ti,Si,Y)Nにおいて、Ti成分は高温強度を向上させ、同Siは高温硬さと耐熱性、さらにY成分は耐熱塑性変形性を向上させる作用があり、したがってSiの含有割合が高くなればなるほど高温硬さおよび耐熱性は向上したものになり、高熱発生を伴う高速切削に適応したものになるが、Siの含有割合を示すA値がTiとYの合量に占める割合(原子比)で0.60を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、すぐれた高温強度を有するSi最低含有点が隣接して存在しても層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同A値が同0.45未満になると、所定のすぐれた高温硬さと耐熱性を確保することが困難になり、摩耗が急速に進行するようになることから、A値を0.45〜0.60と定めた。
さらに、Y成分には上記の通り耐熱塑性変形性を向上させる作用があるが、Yの含有割合を示すZ値がSiとTiの合量に占める割合(原子比)で0.05未満では所望の耐熱塑性変形性向上効果が得られず、さらに同Z値が0.15を超えると、高温強度が低下するようになることから、Z値を0.03〜0.10と定めた。
【0011】
(b)Si最低含有点の組成
上記の通りSi最高含有点はSi成分の高含有によりすぐれた高温硬さと耐熱性を有するが、反面高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件での高速切削加工では高温強度不足が避けられず、このSi最高含有点の高温強度不足を補う目的で、Ti含有割合が相対的に高く、一方Si含有割合が低く、これによって一段とすぐれた高温強度を有するようになるSi最低含有点を厚さ方向に交互に介在させるものであり、したがってSiの割合を示すB値がTiおよびY成分との合量に占める割合(原子比)で0.25を越えると、相対的にTiの含有割合が少なくなり過ぎて、所望のすぐれた高温強度を確保することができず、一方同B値が0.03未満になると、所定の高温硬さおよび耐熱性の確保が困難になり、これが原因で高温硬さおよび耐熱性のすぐれたSi最高含有点が隣接して存在しても層自体の摩耗進行が促進するようになることから、Si最低含有点でのSiの含有割合を示すB値を0.03〜0.25と定めた。
さらに、Si最低含有点におけるY成分も、上記の通り耐熱塑性変形性を向上させ、もって高熱発生を伴う高速切削に適応させる目的で含有するものであり、したがってZ値が0.05未満では所望の耐熱塑性変形性向上効果が得られず、一方Z値が0.15を越えると高温強度が低下するようになって、切刃部にチッピングが発生し易くなることから、Z値を0.03〜0.10と定めた。
【0012】
(c)Si最高含有点とSi最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層にSi最高含有点によるすぐれた高温硬さと耐熱性と、Si最低含有点による一段とすぐれた高温強度を確保することができなくなり、またその間隔が0.1μmを越えると重切削条件での高速切削加工でそれぞれの点がもつ欠点、すなわちSi最高含有点であれば高温強度不足、Si最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の平均層厚
その層厚が0.5μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで48時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1420℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120412のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1520℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120412のチップ形状をもったTiCN系サーメット製の超硬基体B−1〜B−6を形成した。
【0016】
ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったSi最高含有点形成用Ti−Si−Y合金、他方側のカソード電極(蒸発源)としてSi最低含有点形成用Ti−Si−Y合金を前記回転テーブルを挟んで対向配置し、またボンバード洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−30Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Si最高含有点形成用Ti−Si−Y合金およびSi最低含有点形成用Ti−Si−Y合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、厚さ方向に沿って表3,4に示される目標組成のSi最高含有点とSi最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Si合金を装着し、またボンバード洗浄用金属Tiも装置し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−200Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S50Cの丸棒、
切削速度:300m/min.、
切り込み:4.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:2mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC300の丸棒、
切削速度:320m/min.、
切り込み:4mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式連続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0019】
【表1】

Figure 0004375527
【0020】
【表2】
Figure 0004375527
【0021】
【表3】
Figure 0004375527
【0022】
【表4】
Figure 0004375527
【0023】
【表5】
Figure 0004375527
【0024】
【表6】
Figure 0004375527
【0025】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で50時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の6枚刃スクエア形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0026】
ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のSi最高含有点とSi最低含有点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0027】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0028】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11の板材、
切削速度:250m/min.、
軸方向切り込み:5mm、
径方向切り込み:0.6mm、
テーブル送り:4500mm/分、
の条件での工具鋼の乾式高速高切り込み側面切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:300m/min.、
軸方向切り込み:10mm、
径方向切り込み:0.8mm、
テーブル送り:5000mm/分、
の条件での炭素鋼の乾式高速高切り込み側面切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM439の板材、
切削速度:280m/min.、
軸方向切り込み:15mm、
径方向切り込み:0.5mm、
テーブル送り:3200mm/分、
の条件での合金鋼の乾式高速高送り側面切削加工試験をそれぞれ行い、いずれの乾式側面切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表8,9にそれぞれ示した。
【0029】
【表7】
Figure 0004375527
【0030】
【表8】
Figure 0004375527
【0031】
【表9】
Figure 0004375527
【0032】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0033】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のSi最高含有点とSi最低含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0034】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0035】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC300の板材、
切削速度:180m/min.、
送り:0.16mm/rev、
穴深さ:8mm
の条件での鋳鉄の湿式高速高送り穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:150m/min.、
送り:0.21mm/rev、
穴深さ:15mm
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM435の板材、
切削速度:150m/min.、
送り:0.25mm/rev、
穴深さ:25mm
の条件での合金鋼の湿式高速高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10,11にそれぞれ示した。
【0036】
【表10】
Figure 0004375527
【0037】
【表11】
Figure 0004375527
【0038】
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8を構成する硬質被覆層について、厚さ方向に沿ってTi、Si、およびYの含有割合をオージェ分光分析装置を用いて測定したところ、前記本発明被覆超硬工具の硬質被覆層では、Si最高含有点とSi最低含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、さらに硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。一方、前記従来被覆超硬工具の硬質被覆層では、目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すものの、厚さ方向に沿った組成変化は見られず、層全体に亘って均質な組成を示すものであった。
【0039】
【発明の効果】
表3〜11に示される結果から、硬質被覆層が層全体に亘ってすぐれた耐熱塑性変形性を具備した状態で、厚さ方向にすぐれた高温硬さと耐熱性を有するSi最高含有点と一段とすぐれた高温強度を有するSi最低含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる従来被覆超硬工具においては、重切削条件での高速切削加工では前記硬質被覆層の高温強度不足が原因で、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
This invention has a high temperature strength with a hard coating layer that is further superior, high temperature hardness and heat resistance, and also excellent heat resistance plastic deformation, and therefore high speed cutting with high heat generation especially for various steels and cast irons. A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance even when heavy cutting conditions such as high cutting and high feed with high mechanical impact are performed (hereinafter referred to as coating) This is related to carbide tools.
[0002]
[Prior art]
In general, coated carbide tools are used for throwaway inserts that are detachably attached to the tip of a cutting tool for drilling and cutting of various materials such as steel and cast iron, and for flat cutting. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and cutting is performed in the same way as the solid type end mill Throwaway end mill tools are known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface)
Composition formula: (Ti 1- A Si A ) N (however, in atomic ratio, A represents 0.45 to 0.60),
Coated carbide tool formed by physical vapor deposition of hard coating layer composed of Ti and Si composite nitride (hereinafter referred to as (Ti, Si) N) layer satisfying the requirements with an average layer thickness of 0.5 to 15 μm In such a coated carbide tool, the (Ti, Si) N layer constituting the hard coating layer has excellent high-temperature hardness and heat resistance due to Si, and excellent high-temperature strength due to Ti. It is also known that it is used for continuous cutting and intermittent cutting processing of cast iron and cast iron (for example, see Patent Document 1).
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in the state heated to a temperature of 400 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Si alloy having a predetermined composition is set, for example, at a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied with a bias voltage of, for example, -200 V on the surface of the carbide substrate. It is also known that it is produced by vapor-depositing a hard coating layer composed of a (Ti, Si) N layer.
[0005]
[Patent Document 1]
JP-A-8-118106 [0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. With this, cutting speed has been increased, and high cutting depth and high feed are required. Although there is a tendency to strongly demand cutting under heavy cutting conditions, the above conventional coated carbide tool has no problem when used under normal cutting conditions, but involves high heat generation. When high-speed cutting is performed under heavy cutting conditions such as high cutting and high feed with high mechanical impact, chipping (microcracks) is likely to occur due to insufficient high-temperature strength of the hard coating layer, and it is relatively short. The current situation is that the service life is reached in time.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer particularly in high-speed heavy cutting. As a result of conducting research with a focus on the hard coating layer,
(A) The (Ti, Si) N layer constituting the conventional coated carbide tool formed by using the arc ion plating apparatus shown in FIG. 2 has a substantially uniform composition over the entire thickness. Therefore, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. A rotation table for mounting the substrate is provided, and the Y-component is further added to the Ti-Si alloy used as the cathode electrode (evaporation source) for forming the conventional (Ti, Si) N layer on one side with the rotation table interposed therebetween. A Ti—Si—Y alloy containing Nb as an alloy component is disposed, and a Ti—Si—Y alloy having a relatively low Si content as compared with the Ti—Si—Y alloy is disposed on the other side. As cathode electrode (evaporation source) Using an arc ion plating apparatus disposed opposite to each other, a plurality of cemented carbide substrates are mounted in a ring shape along the outer periphery at a position spaced apart from the central axis in a radial direction on the rotary table of the apparatus. In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotating table is rotated, and the carbide substrate itself is rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. When a (Ti, Si, Y) N layer is formed on the surface of the cemented carbide substrate by generating an arc discharge between the source and the anode electrode, in the resulting (Ti, Si, Y) N layer, When the cemented carbide substrate arranged in a ring shape on the rotary table is closest to the cathode electrode (evaporation source) of the Ti-Si-Y alloy on one side, the highest Si content point is formed in the layer. , Ma When the cemented carbide substrate is closest to the cathode electrode of the Ti-Si-Y alloy having a relatively low Si content on the other side, the lowest Si content point is formed in the layer, In the layer, the Si highest content point and the Si lowest content point alternately appear at predetermined intervals along the thickness direction, and the Si highest content point to the Si lowest content point and the Si lowest content point to the Si To have a component concentration distribution structure in which the Si content rate continuously changes to the highest content point.
[0008]
(B) In the (Ti, Si, Y) N layer having the repeated continuous change component concentration distribution structure of (a) above, Si content in the Ti—Si—Y alloy which is the cathode electrode (evaporation source) on one side facing each other The ratio corresponds to the Si content of the conventional Ti—Si alloy for forming a (Ti, Si) N layer, and the Si content in the Ti—Si—Y alloy which is the cathode electrode (evaporation source) on the other side. Is relatively low compared to the Si content of the conventional Ti-Si alloy, and the rotational speed of the rotary table on which the carbide substrate is mounted is controlled,
The highest Si content point is the composition formula: (Ti 1- ( A + Z ) Si A YZ ) N (however, in atomic ratio, A represents 0.45 to 0.60, Z represents 0.03 to 0.10),
The minimum Si content point is the composition formula: (Ti 1- ( B + Z ) Si B Y Z ) N (however, in atomic ratio, B represents 0.03 to 0.25, Z represents 0.03 to 0.10),
And the interval in the thickness direction of the adjacent Si highest content point and Si lowest content point adjacent to each other is 0.01 to 0.1 μm,
The highest Si content point has excellent high-temperature hardness and heat resistance corresponding to the high-temperature hardness and heat resistance of the conventional (Ti, Si) N layer, and heat-resistant plastic deformation due to the Y component. In addition, the Si minimum content point portion has a lower Si content rate than the Si highest content point portion, and a relatively high Ti content rate. As a result, it has a much higher high-temperature strength, and the distance between the highest Si content point and the lowest Si content point has been made extremely small, so that it has excellent high-temperature hardness, heat resistance, and heat-resistant plastic deformation. Coated carbide tool comprising a (Ti, Si, Y) N layer having a structure with a hard coating layer, which has a further excellent high-temperature strength while maintaining its properties. Especially when cutting various steels and cast irons at high cutting speed with high heat generation and heavy cutting conditions such as high cutting and high feed with high mechanical impact. The layer should have excellent chipping resistance.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results, and a hard coating layer composed of a (Ti, Si, Y) N layer is formed on the surface of a cemented carbide substrate with an average layer thickness of 0.5 to 15 μm. In the coated carbide tool formed by physical vapor deposition, the hard coating layer is repeatedly present along the layer thickness direction with the Si highest content point and the Si lowest content point alternately present at predetermined intervals, and the Si From the highest content point to the Si lowest content point, having a component concentration distribution structure in which the Si content rate continuously changes from the Si lowest content point to the Si highest content point,
Furthermore, the Si maximum content point is
Composition formula: (Ti 1- ( A + Z ) Si A YZ ) N (however, in atomic ratio, A represents 0.45 to 0.60, Z represents 0.03 to 0.10),
The Si minimum content point is
Composition formula: (Ti 1- ( B + Z ) Si B Y Z ) N (however, in atomic ratio, B represents 0.03 to 0.25, Z represents 0.03 to 0.10),
And the distance between adjacent Si highest content point and Si lowest content point is 0.01 to 0.1 μm.
It is characterized by a coated carbide tool that is composed of a hard coating layer and exhibits excellent chipping resistance under high-speed heavy cutting conditions.
[0010]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) Composition of the highest Si content point In (Ti, Si, Y) N with the highest Si content point, the Ti component improves high temperature strength, the Si is high temperature hardness and heat resistance, and the Y component is heat plastic deformation resistance. Therefore, the higher the Si content, the higher the high-temperature hardness and heat resistance, and it is suitable for high-speed cutting with high heat generation. When the A value exceeds 0.60 in the ratio (atomic ratio) to the total amount of Ti and Y, the content ratio of the Ti component becomes relatively small, and the Si minimum content point having excellent high-temperature strength is adjacent. Even if it exists, a decrease in the high-temperature strength of the layer itself is unavoidable, and as a result, chipping or the like tends to occur. On the other hand, when the A value is less than 0.45, a predetermined excellent high-temperature hardness and heat resistance Difficult to secure , Since it becomes wear progresses rapidly, it was defined as 0.45 to 0.60 the A value.
Furthermore, the Y component has the effect of improving the heat-resistant plastic deformation as described above, but it is desirable if the Z value indicating the Y content is less than 0.05 in terms of the ratio (atomic ratio) to the total amount of Si and Ti. Thus, when the Z value exceeds 0.15, the high-temperature strength decreases. Therefore, the Z value is determined to be 0.03 to 0.10.
[0011]
(B) Composition of the lowest Si content point As described above, the highest Si content point has excellent high-temperature hardness and heat resistance due to the high Si content, but on the other hand, heavy cutting such as high cutting and high feed with high mechanical impact. In high-speed cutting under conditions, insufficient high-temperature strength is inevitable, and in order to make up for the lack of high-temperature strength at this Si highest content point, the Ti content rate is relatively high, while the Si content rate is low, which further improves Si minimum content points that have high-temperature strength are alternately interposed in the thickness direction, and therefore, the B value indicating the ratio of Si is 0 in the ratio (atomic ratio) to the total amount of Ti and Y components. If it exceeds .25, the content ratio of Ti becomes relatively small, and the desired excellent high-temperature strength cannot be ensured. On the other hand, if the B value is less than 0.03, a predetermined high-temperature hardness is obtained. And heat resistance It becomes difficult to ensure, and this causes the wear progress of the layer itself to be promoted even if there is an adjacent Si highest content point with excellent high-temperature hardness and heat resistance. B value which shows the content rate of Si was defined as 0.03-0.25.
Furthermore, the Y component at the Si minimum content point is also included for the purpose of improving the heat-resistant plastic deformability and adapting to high-speed cutting with high heat generation as described above. Therefore, if the Z value is less than 0.05, it is desirable. On the other hand, if the Z value exceeds 0.15, the high-temperature strength decreases, and chipping tends to occur at the cutting edge portion. It was set as 03-0.10.
[0012]
(C) Interval between the highest Si content point and the lowest Si content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. Excellent high-temperature hardness and heat resistance, as well as excellent high-temperature strength due to the lowest Si content point can no longer be secured, and if the spacing exceeds 0.1 μm, each point will be in high-speed cutting under heavy cutting conditions. Disadvantages, i.e., the highest Si content point, insufficient high-temperature strength, and the lowest Si content point, local high-temperature hardness and insufficient heat resistance appear locally in the layer, which is likely to cause chipping and wear. Since the progress is promoted, the interval is set to 0.01 to 0.1 μm.
[0013]
(D) Average layer thickness of hard coating layer If the layer thickness is less than 0.5 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 0.5 to 15 μm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. The mixture is blended for 48 hours by a ball mill, dried and then pressed into a green compact at a pressure of 100 MPa, and this green compact is vacuumed at 6 Pa at a temperature of 1420 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and a cemented carbide substrate A-1 made of WC-based cemented carbide having a chip shape of ISO standard / CNMG120212 ~ A-10 was formed.
[0015]
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder were prepared, and these raw material powders were blended in the blending composition shown in Table 2, wet mixed by a ball mill for 72 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1520 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and ISO standard / CNMG120212. TiCN-based cermet carbide substrates B-1 to B-6 having the following chip shape were formed.
[0016]
Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. A plurality of cemented carbide substrates are mounted in a ring shape along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table, and various component compositions are used as a cathode electrode (evaporation source) on one side. A Ti-Si-Y alloy for forming the highest Si content point with a Ti-Si-Y alloy for forming the lowest Si content point as a cathode electrode (evaporation source) on the other side, with the rotary table interposed therebetween, and The metal Ti for bombard cleaning is also mounted. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then rotates while rotating on the rotary table. Carbide substrate A DC bias voltage of 1000 V was applied and a current of 100 A was passed between the metal Ti and the anode electrode of the cathode electrode to generate an arc discharge, thereby cleaning the surface of the carbide substrate with Ti bombardment, and then in the apparatus. Nitrogen gas was introduced as a reaction gas to give a reaction atmosphere of 3 Pa, a DC bias voltage of −30 V was applied to the carbide substrate rotating while rotating on the rotary table, and each cathode electrode (the Si maximum) The content of Ti-Si-Y alloy for content point formation and Ti-Si-Y alloy for Si content minimum point formation) and an anode electrode are used to generate an arc discharge, and thereby the surface of the cemented carbide substrate. Further, along the thickness direction, the highest Si content point and the lowest Si content point of the target composition shown in Tables 3 and 4 are alternately changed at the target intervals shown in Tables 3 and 4. It has a component concentration distribution structure that repeatedly exists and the Si content ratio continuously changes from the Si highest content point to the Si lowest content point, and from the Si lowest content point to the Si highest content point, and also in Table 3. , 4 to deposit a hard coating layer having a target layer thickness, the surface coated cemented carbide throwaway tip (hereinafter referred to as the present coated carbide tip) 1 as the coated carbide tool of the present invention 1 ~ 16 were produced respectively.
[0017]
For comparison purposes, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and each of the ordinary arcs shown in FIG. Inserted into an ion plating apparatus, mounted with Ti-Si alloys having various component compositions as a cathode electrode (evaporation source), and also mounted a metal Ti for bombard cleaning. The apparatus was heated to 400 ° C. with a heater while maintaining a vacuum of .5 Pa or less, and then a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and between the metal Ti of the cathode electrode and the anode electrode. Then, a 90 A current is passed to generate arc discharge, and the surface of the carbide substrate is cleaned with Ti bombardment, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa. The bias voltage applied to the hard substrate is lowered to −200 V, and arc discharge is generated between the cathode electrode and the anode electrode, thereby the carbide substrates A-1 to A-10 and B-1 to B-6. A hard coating layer composed of a (Ti, Si) N layer having a target composition and a target layer thickness shown in Table 5 and having substantially no composition change along the thickness direction is deposited on each surface of Thus, conventional surface-coated cemented carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools were produced, respectively.
[0018]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S50C round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 4.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-cut cutting test of carbon steel under the conditions of
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 2mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed high-feed cutting test of alloy steel under the conditions of
Work material: JIS / FC300 round bar,
Cutting speed: 320 m / min. ,
Incision: 4mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed, high-cut cutting test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.
[0019]
[Table 1]
Figure 0004375527
[0020]
[Table 2]
Figure 0004375527
[0021]
[Table 3]
Figure 0004375527
[0022]
[Table 4]
Figure 0004375527
[0023]
[Table 5]
Figure 0004375527
[0024]
[Table 6]
Figure 0004375527
[0025]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Prepare a powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder. Each was blended in the blending composition shown in Table 7, further added with wax, mixed in ball mill in acetone for 50 hours, dried under reduced pressure, and then pressed into various compacts of a predetermined shape at a pressure of 100 MPa. The green compact is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then fired under furnace cooling conditions. Finally, the diameters are 8mm, 13mm, and 26 3 types of sintered carbide rod forming bodies for forming a carbide substrate of m, and further, the diameter of the cutting edge portion by the combination shown in Table 7 by grinding from the above three types of sintered rods. × Carbide substrates (end mills) C-1 to C-8 having a 6-blade square shape with lengths of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and a twist angle of 30 degrees Were manufactured respectively.
[0026]
Then, these carbide substrates (end mills) C-1 to C-8 were ultrasonically washed in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Si highest content point and the Si lowest content point of the target composition shown in Table 8 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 8, and A target layer thickness having a component concentration distribution structure in which the Si content continuously changes from the Si highest content point to the Si lowest content point, and from the Si lowest content point to the Si highest content point, and also shown in Table 8 The hard coating layer of the present invention was used to produce end mills made of the surface coated cemented carbide alloy (hereinafter referred to as the present coated carbide end mill) 1 to 8 as the coated carbide tool of the present invention.
[0027]
For the purpose of comparison, the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. 2 is also used. (Ti, Si) N having the target composition and target layer thickness shown in Table 9 and substantially no composition change along the thickness direction under the same conditions as in Example 1 above. By vapor-depositing a hard coating layer consisting of layers, conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional coated carbide tools were produced, respectively.
[0028]
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SKD11 plate material,
Cutting speed: 250 m / min. ,
Axial cut: 5mm,
Radial incision: 0.6mm,
Table feed: 4500 mm / min,
With respect to the tool steel dry high-speed high-cut side cutting test, the coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 of the present invention,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S45C plate,
Cutting speed: 300 m / min. ,
Axial cut: 10 mm
Radial notch: 0.8mm,
Table feed: 5000 mm / min,
With respect to the dry high-speed high-cut side cutting test of carbon steel under the conditions of the present invention, the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SNCM439 plate material,
Cutting speed: 280 m / min. ,
Axial cut: 15mm,
Radial notch: 0.5mm,
Table feed: 3200 mm / min,
In each dry side cutting test, the flank wear width of the outer peripheral edge of the cutting edge is set to 0.1 mm, which is a guide for the service life. The cutting length was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0029]
[Table 7]
Figure 0004375527
[0030]
[Table 8]
Figure 0004375527
[0031]
[Table 9]
Figure 0004375527
[0032]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were produced.
[0033]
Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. In the same conditions as in Example 1 above, the target spacing shown in Table 10 in which the Si highest content point and the Si lowest content point of the target composition shown in Table 10 are alternately shown along the layer thickness direction. And a component concentration distribution structure in which the Si content ratio continuously changes from the Si highest content point to the Si lowest content point, and from the Si lowest content point to the Si highest content point. By depositing a hard coating layer having a target layer thickness shown in FIG. 10, drills made of the surface coated cemented carbide of the present invention (hereinafter referred to as the present coated carbide drill) 1 to 8 as the coated carbide tool of the present invention. Each was manufactured.
[0034]
For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into a normal arc ion plating apparatus, had the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1, and substantially changed in composition along the thickness direction. By vapor-depositing a hard coating layer consisting of no (Ti, Si) N layer, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools are respectively provided. Manufactured.
[0035]
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC300 plate material,
Cutting speed: 180 m / min. ,
Feed: 0.16mm / rev,
Hole depth: 8mm
For the cast iron wet high-speed high-feed drilling test under the conditions of the present invention, the present invention coated carbide drills 4-6 and conventional coated carbide drills 4-6,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S45C plate,
Cutting speed: 150 m / min. ,
Feed: 0.21mm / rev,
Hole depth: 15mm
With respect to the carbon steel wet high-speed high-feed drilling test, the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCM435 plate material,
Cutting speed: 150 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 25mm
Wet high-speed high-feed drilling test of alloy steel under the above conditions, respectively, and in any wet high-speed drilling test (using water-soluble cutting oil), the flank wear width of the cutting edge surface is 0.3 mm The number of drilling processes was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0036]
[Table 10]
Figure 0004375527
[0037]
[Table 11]
Figure 0004375527
[0038]
As a result, the coated carbide tips 1 to 16 of the present invention, the coated carbide end mills 1 to 8 of the present invention, the coated carbide drills 1 to 8 of the present invention, and the conventionally coated carbide tools of the present invention. Conventionally coated carbide tips 1 to 16, conventional coated carbide end mills 1 to 8, and conventional coated carbide drills 1 to 8 are coated with Ti, Si, and Y along the thickness direction. When the content ratio was measured using an Auger spectroscopic analyzer, in the hard coating layer of the coated carbide tool of the present invention, the Si maximum content point and the Si minimum content point were respectively substantially the same composition and interval as the target values. It has a component concentration distribution structure that repeats alternately and the content ratio of Si continuously changes from the highest Si content point to the lowest Si content point and from the lowest Si content point to the highest Si content point. Rukoto is confirmed, further the average layer thickness of the hard layer shown the target layer thickness substantially the same value. On the other hand, the hard coating layer of the conventional coated carbide tool shows a composition substantially the same as the target composition and an average layer thickness substantially the same as the target layer thickness, but there is no composition change along the thickness direction. The composition showed a homogeneous composition throughout the entire layer.
[0039]
【The invention's effect】
From the results shown in Tables 3 to 11, in the state in which the hard coating layer has excellent heat plastic deformation throughout the entire layer, the highest Si content point having excellent high temperature hardness and heat resistance in the thickness direction and further Si lowest content points having excellent high-temperature strength are alternately present at predetermined intervals, and Si content from the Si highest content point to the Si lowest content point, from the Si lowest content point to the Si highest content point The coated carbide tool of the present invention having a component concentration distribution structure in which the ratio continuously changes is used for high-speed cutting such as various steels and cast iron, and heavy cutting such as high cutting and high feed with high mechanical impact. Even when performed under the conditions, the hard coating layer exhibits excellent chipping resistance, whereas the hard coating layer is formed from a (Ti, Si) N layer having substantially no composition change along the thickness direction. Conventional coated carbide In ingredients, due to the high temperature insufficient strength of the hard coating layer is a fast cutting of heavy cutting conditions, chipping occurs and this is apparent that lead to a relatively short time service life due.
As described above, the coated carbide tool according to the present invention can be used not only for cutting under normal conditions, but also for high-speed cutting such as various types of steel and cast iron, with high cutting and high feed with high mechanical impact. Even when performed under heavy cutting conditions such as the above, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time. It is possible to cope with the above sufficiently.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used to form a hard coating layer constituting a conventional coated carbide tool.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、TiとSiとY(イットリウム)の複合窒化物層からなる硬質被覆層を0.5〜15μmの全体平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具にして、
上記硬質被覆層を、層厚方向にそって、Si最高含有点とSi最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、
さらに、上記Si最高含有点が、組成式:(Ti1-( + )Si )N(ただし、原子比で、Aは0.45〜0.60、Z:0.03〜0.10を示す)、
上記Si最低含有点が、組成式:(Ti1-( + )Si )N(ただし、原子比で、Bは0.03〜0.25、Z:0.03〜0.10を示す)、
を満足し、かつ隣り合う上記Si最高含有点とSi最低含有点の間隔が、0.01〜0.1μmである、
硬質被覆層で構成したことを特徴とする高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する
表面被覆超硬合金製切削工具。
Physical vapor deposition of a hard coating layer composed of a composite nitride layer of Ti, Si and Y (yttrium) on the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate with an overall average layer thickness of 0.5 to 15 μm A surface-coated cemented carbide cutting tool made of
In the hard coating layer, the Si highest content point and the Si lowest content point are alternately present at predetermined intervals along the layer thickness direction, and from the Si highest content point, the Si lowest content point, the Si A component concentration distribution structure in which the Si content ratio continuously changes from the lowest content point to the Si highest content point,
Furthermore, the Si highest content point is the composition formula: (Ti 1- ( A + Z ) Si A YZ ) N (however, in atomic ratio, A represents 0.45 to 0.60, Z represents 0.03 to 0.10),
The minimum Si content point is the composition formula: (Ti 1- ( B + Z ) Si B Y Z ) N (however, in atomic ratio, B represents 0.03 to 0.25, Z represents 0.03 to 0.10),
And the distance between adjacent Si highest content point and Si lowest content point is 0.01 to 0.1 μm.
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance under high-speed heavy cutting conditions characterized by comprising a hard coating layer.
JP2003139712A 2003-05-19 2003-05-19 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions. Expired - Fee Related JP4375527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139712A JP4375527B2 (en) 2003-05-19 2003-05-19 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139712A JP4375527B2 (en) 2003-05-19 2003-05-19 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.

Publications (2)

Publication Number Publication Date
JP2004338058A JP2004338058A (en) 2004-12-02
JP4375527B2 true JP4375527B2 (en) 2009-12-02

Family

ID=33528663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139712A Expired - Fee Related JP4375527B2 (en) 2003-05-19 2003-05-19 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.

Country Status (1)

Country Link
JP (1) JP4375527B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960051B (en) 2008-03-07 2013-03-13 山高刀具公司 Thermally stabilized (Ti, Si)n layer for cutting tool insert
JP5234926B2 (en) * 2008-04-24 2013-07-10 株式会社神戸製鋼所 Hard film and hard film forming target
JP5692635B2 (en) * 2010-11-16 2015-04-01 三菱マテリアル株式会社 Surface coated cutting tool
JP5692636B2 (en) * 2010-11-16 2015-04-01 三菱マテリアル株式会社 Surface coated cutting tool
CN104160060A (en) 2012-03-07 2014-11-19 山高刀具公司 A body with a metal based nitride layer and a method for coating the body
CN116121702A (en) * 2023-03-29 2023-05-16 纳狮新材料有限公司杭州分公司 TiSiNiYN coating for enhancing high-temperature wear resistance

Also Published As

Publication number Publication date
JP2004338058A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP3991272B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928461B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3962910B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP3928452B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP4320707B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3928459B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP3962921B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4304586B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3972293B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4120458B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4375527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees