JP4375527B2 - Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions - Google Patents

Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions

Info

Publication number
JP4375527B2
JP4375527B2 JP2003139712A JP2003139712A JP4375527B2 JP 4375527 B2 JP4375527 B2 JP 4375527B2 JP 2003139712 A JP2003139712 A JP 2003139712A JP 2003139712 A JP2003139712 A JP 2003139712A JP 4375527 B2 JP4375527 B2 JP 4375527B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2003139712A
Other languages
Japanese (ja)
Other versions
JP2004338058A (en )
Inventor
浩一 前田
裕介 田中
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
この発明は、硬質被覆層が一段とすぐれた高温強度を有し、かつ高温硬さと耐熱性、さらに耐熱塑性変形性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高い発熱を伴なう高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。 This invention has a high temperature strength of the hard coating layer is more excellent, and high-temperature hardness and heat resistance, further excellent in heat plastic deformation resistance, thus especially accompanied high-speed cutting of high heat generation, such as various types of steel and cast iron processing, even when conducted in heavy cutting conditions such as high cut and high feed with high mechanical impact, the surface coating cemented carbide cutting tools which exhibits chipping resistance of the hard coating layer has excellent (hereinafter, the coating it relates to that carbide tools).
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 Generally, the coating cemented carbide tools, various steel or workpiece of turning or planing to byte tip detachably mounted indexable used such as cast iron, used in such drilling cutting drill or miniature drill further scalping processing or grooving, include end mills solid type used in such shoulder processing, also performs cutting as in the solid type end mill is attached detachably to said indexable It is known, such as throw-away end mill tool.
【0003】 [0003]
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、 Further, as the coating cemented carbide, tungsten carbide (hereinafter, indicated by WC) based cemented carbide or titanium carbonitride (hereinafter, shown by TiCN) consisting based cermet substrate (hereinafter, referred to as cemented carbide substrate collectively these on the surface of),
組成式:(Ti 1- Si Formula: (Ti 1- A Si A )N(ただし、原子比で、Aは0.45〜0.60を示す)、 ) N (provided that an atomic ratio, A is shows the 0.45 to 0.60),
を満足するTiとSiの複合窒化物[以下、(Ti,Si)Nで示す]層からなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案され、かかる被覆超硬工具が、硬質被覆層を構成する前記(Ti,Si)N層がSiによるすぐれた高温硬さおよび耐熱性、さらにTiによるすぐれた高温強度を有することから、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられることも知られている(例えば特許文献1参照)。 Composite nitride of Ti and Si satisfies the following, (Ti, Si) shown in N] is coated cemented carbide formed by physical vapor deposition of hard coating layer with an average layer thickness of 0.5~15μm consisting layer proposed is, according coated cemented carbide tool, wherein for constituting the hard layer (Ti, Si) high-temperature hardness N layer has superior by Si and heat resistance, further comprising a high-temperature strength superior by Ti, various steels it is also known to be used in the continuous cutting or intermittent cutting such or cast iron (for example, see Patent Document 1).
【0004】 [0004]
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば400℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−200Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。 Furthermore, the above coated cemented carbide tool was charged with the above carbide substrates arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown in schematic illustration in FIG. 2, for example, in the apparatus with a heater, for example while heating to a temperature of 400 ° C., between the cathode electrode Ti-Si alloy having an anode electrode and a predetermined composition is set (evaporation source), for example, current: 90A condition to generate arc discharge in the, by introduction of nitrogen gas as a reaction gas at the same time in the apparatus, for example, a reaction atmosphere of 2 Pa, whereas the above carbide substrate, for example under the conditions of applying a bias voltage of -200 V, the surface of the cemented carbide substrate, the (Ti, Si) is also known to be produced by depositing a hard coating layer consisting of N layers.
【0005】 [0005]
【特許文献1】 [Patent Document 1]
特開平8−118106号公報【0006】 JP-A-8-118106 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削速度は高速化し、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、高い発熱を伴なう高速切削加工を機械的衝撃の高い高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の高温強度不足が原因でチッピング(微小割れ)が発生し易く、比較的短時間で使用寿命に至るのが現状である。 Performance of recent cutting device is remarkable, while the labor saving and energy saving for cutting, further cost reduction strongly required, along with this, the cutting speed is faster, and such high-cut or high-feed tends to cutting in heavy cutting conditions are strongly demanded, in the conventional coated cemented carbide tool described above, there is no problem if it was used in the normal cutting conditions accompanied with high heat generation fast cutting a when conducted in heavy cutting conditions such as high high cut and high feed mechanical impact, easy chipping (micro-cracks) occurs especially because the high-temperature strength shortage of the hard coating layer, relatively short time to reach the service life is at present in.
【0007】 [0007]
【課題を解決するための手段】 In order to solve the problems]
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、 The present inventors have, from the viewpoint as described above, in particular to develop a coated cemented carbide tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting, conventional coating cemented carbide tool of the focusing on the hard coating layer forming was performed studies,
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Ti,Si)N層は、厚さ全体に亘って実質的に均一な組成を有し、したがって均質な性質を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に上記の従来(Ti,Si)N層の形成にカソード電極(蒸発源)として用いられたTi−Si合金に、さらにY成分を合金成分として含有させてなるTi−Si−Y合金を配置し、他方側には前記Ti−Si−Y合金に比して相対的にSi含有割合の低いTi−Si−Y合金をいずれもカソード電極(蒸発源)とし (A) constituting the conventional coating cemented carbide tool is formed using the arc ion plating apparatus shown in FIG. 2 (Ti, Si) N layer is substantially uniform composition throughout the thickness has, thus has a homogeneous nature, for example in the schematic plan view in FIG. 1 (a), an arc ion plating apparatus having a structure shown in schematic front view the same (b), i.e. carbide to the apparatus central portion provided rotary table for base mounted on the sides of the rotary table, whereas the above prior to the side (Ti, Si) cathode to the formation of the N layer (evaporation source) Ti-Si alloy used as further Y component the place Ti-Si-Y alloy formed by incorporating as an alloying element, the other side both low Ti-Si-Y alloy having a relatively Si content than that of the Ti-Si-Y alloy cathode (evaporation source), and 対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Si,Y)N層を形成すると、この結果の(Ti,Si,Y)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側のTi−Si−Y合金のカソード電極(蒸発源)に最も接近した時点で層中にSi最高含有点が形成され、ま Using an arc ion plating apparatus opposed, said on a rotating table, a plurality of carbide substrates mounted in a ring shape along the outer peripheral portion at a predetermined distance in a radial direction from the center axis of the device, the the apparatus internal atmosphere is rotated the rotary table as a nitrogen atmosphere in a state, while carbide substrate itself is rotating in order to achieve thickness uniformity of the hard coating layer is vapor deposited, wherein on both sides of the cathode electrode (evaporation source) and by generating arc discharge between the anode electrode and the a surface of the carbide substrate (Ti, Si, Y) to form a N layer, the result (Ti, Si, Y) in N layer , Si maximum content point is formed in a layer at the time when the cemented carbide substrate which is arranged in a ring on the rotating table is closest to the cathode (evaporation source) of Ti-Si-Y alloy on one side of the , or 前記超硬基体が上記の他方側の相対的にSi含有割合の低いTi−Si−Y合金のカソード電極に最も接近した時点で層中にSi最低含有点が形成され、上記回転テーブルの回転によって層中には厚さ方向にそって前記Si最高含有点とSi最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造をもつようになること。 The cemented carbide substrate is Si minimum content point in the layer at the point closest to the cathode electrode of the low Ti-Si-Y alloy having a relatively Si content of the above-mentioned the other side is formed by the rotation of the rotary table together with the Si maximum content point along the thickness direction in the layer and the Si minimum content point appears alternately repeated at predetermined intervals, the Si minimum content point from the Si highest content point, the from the Si lowest content point Si Si content to the highest content point varies continuously to become to have a component concentration distribution structure.
【0008】 [0008]
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Si,Y)N層において、対向配置の一方側のカソード電極(蒸発源)であるTi−Si−Y合金におけるSi含有割合を上記の従来(Ti,Si)N層形成用Ti−Si合金のSi含有割合に相当するものとし、同他方側のカソード電極(蒸発源)であるTi−Si−Y合金におけるSi含有割合を上記の従来Ti−Si合金のSi含有割合に比して相対的に低いものとすると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、 (B) the repetition of continuous change component concentration distribution structure (a) (Ti, Si, Y) in the N layer, Si-containing in Ti-Si-Y alloy is a cathode electrode of one side of the opposed (evaporation source) conventional proportions of the (Ti, Si) and corresponds to the Si content of the N layer forming Ti-Si alloy, Si content in the Ti-Si-Y alloy is a cathode electrode of the other side (evaporation source) together with assumed relatively low compared to the Si content of the above-mentioned conventional Ti-Si alloy, to control the rotational speed of the rotary table carbide substrate is mounted,
上記Si最高含有点が、組成式:(Ti 1-( + ) Si The Si maximum content point, composition formula: (Ti 1- (A + Z ) Si A )N(ただし、原子比で、Aは0.45〜0.60、Z:0.03〜0.10を示す)、 Y Z) N (provided that an atomic ratio, A is 0.45 to 0.60, Z: shows the 0.03-0.10)
上記Si最低含有点が、組成式:(Ti 1-( + ) Si The Si minimum content point, composition formula: (Ti 1- (B + Z ) Si B )N(ただし、原子比で、Bは0.03〜0.25、Z:0.03〜0.10を示す)、 Y Z) N (provided that an atomic ratio, B is 0.03 to 0.25, Z: shows the 0.03-0.10)
を満足し、かつ隣り合う上記Si最高含有点とSi最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、 Satisfied, and when the thickness direction of the spacing of the Si highest content point and Si lowest containing point adjacent to 0.01~0.1μm a
上記Si最高含有点部分では、上記の従来(Ti,Si)N層の具備する高温硬さおよび耐熱性に相当するすぐれた高温硬さおよび耐熱性を有し、かつY成分含有によって耐熱塑性変形性も向上し、さらにTi成分による高温強度も具備し、一方上記Si最低含有点部分では、前記Si最高含有点部分に比してSi含有割合が低く、相対的にTi含有割合の高いものとなるので、一段と高い高温強度を有するようになり、しかもこれらSi最高含有点とSi最低含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性、および耐熱塑性変形性を保持した状態で、さらに一段とすぐれた高温強度を具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Si,Y)N層からなる被覆超硬工具 In the above Si highest content point portion, the above conventional (Ti, Si) has excellent high-temperature hardness and heat resistance corresponding to the high-temperature hardness and heat resistance comprising the N layer, and heat the plastic deformation by the Y component containing also improved sex, further comprising the high temperature strength due to the Ti component, while in the Si lowest containing point portion, the Si maximum content point Si content is lower than the portion, and those having a relatively high Ti content It becomes so will have a much higher temperature strength, yet because it has a very small spacing of Si up to contain point and Si minimum content point, high-temperature hardness with excellent as the characteristics of the entire layer and heat resistance, and heat resistance plastic deformation while holding the sex, further now including a more excellent high-temperature strength, therefore, the hard coating layer such a structure of the (Ti, Si, Y) composed of N layers coated cemented carbide 、特に各種の鋼や鋳鉄などの切削加工を、高い発熱を伴なう速い切削速度で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。 , In particular the cutting of various kinds of steel and cast iron, high fever accompanied by Nau fast cutting speeds, and even when conducted in heavy cutting conditions such as high cut and high feed with high mechanical impact, hard coating be like exhibits chipping resistance of the layer is excellent.
以上(a)および(b)に示される研究結果を得たのである。 Or (a) and than that give the research results shown in (b).
【0009】 [0009]
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Ti,Si,Y)N層からなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる被覆超硬工具にして、上記硬質被覆層を、層厚方向にそって、Si最高含有点とSi最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、 The present invention was made based on the above findings, the surface of the carbide substrate, (Ti, Si, Y) a hard coating layer consisting of N layer with an average layer thickness of 0.5~15μm in the coated cemented carbide formed by physical vapor deposition, the hard layer, along the thickness direction, Si and the highest content point and Si minimum content point repeatedly exist alternately at predetermined intervals, and the Si wherein the maximum content point Si minimum content point, have a component concentration distribution structure Si content from the Si lowest content point to the Si maximum content point is changed continuously,
さらに、上記Si最高含有点が、 Furthermore, the Si maximum content point,
組成式:(Ti 1-( + ) Si Formula: (Ti 1- (A + Z ) Si A )N(ただし、原子比で、Aは0.45〜0.60、Z:0.03〜0.10を示す)、 Y Z) N (provided that an atomic ratio, A is 0.45 to 0.60, Z: shows the 0.03-0.10)
上記Si最低含有点が、 The Si lowest containing point,
組成式:(Ti 1-( + ) Si Formula: (Ti 1- (B + Z ) Si B )N(ただし、原子比で、Bは0.03〜0.25、Z:0.03〜0.10を示す)、 Y Z) N (provided that an atomic ratio, B is 0.03 to 0.25, Z: shows the 0.03-0.10)
を満足し、かつ隣り合う上記Si最高含有点とSi最低含有点の間隔が、0.01〜0.1μmである、 Intervals of the Si highest content point and Si lowest containing points satisfy, and adjacent to it, is 0.01 to 0.1 m,
硬質被覆層で構成してなる、高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。 Formed by of a hard coating layer, and it has the characteristics to the coating cemented carbide tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions.
【0010】 [0010]
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。 Next, the coated cemented carbide tool of the present invention, the structure of the hard coating layer that constitutes this explains why for limiting as described above.
(a)Si最高含有点の組成Si最高含有点の(Ti,Si,Y)Nにおいて、Ti成分は高温強度を向上させ、同Siは高温硬さと耐熱性、さらにY成分は耐熱塑性変形性を向上させる作用があり、したがってSiの含有割合が高くなればなるほど高温硬さおよび耐熱性は向上したものになり、高熱発生を伴う高速切削に適応したものになるが、Siの含有割合を示すA値がTiとYの合量に占める割合(原子比)で0.60を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、すぐれた高温強度を有するSi最低含有点が隣接して存在しても層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同A値が同0.45未満になると、所定のすぐれた高温硬さと耐熱性を確保することが困難にな (A) Si up containing point composition Si up containing points (Ti, Si, Y) in N, Ti component improves the high temperature strength, the Si is high-temperature hardness and heat resistance, further Y component heat plastic deformation resistance It has the effect of improving, thus the more high-temperature hardness the higher content ratio and heat resistance of Si becomes what improved, but becomes an adaptation to high-speed cutting associated with high heat generation, indicating the content of Si If the a value exceeds 0.60 at a ratio (atomic ratio) occupied in the total amount of Ti and Y, too small proportion of the relatively Ti component, Si lowest containing points having excellent high-temperature strength is adjacent the inevitable decrease in high-temperature strength of the layer itself be present in, the result chipping, etc. are likely to occur, whereas if the a value is less than the 0.45, given excellent high-temperature hardness and heat resistance difficult it is possible to ensure the 、摩耗が急速に進行するようになることから、A値を0.45〜0.60と定めた。 , Since it becomes wear progresses rapidly, it was defined as 0.45 to 0.60 the A value.
さらに、Y成分には上記の通り耐熱塑性変形性を向上させる作用があるが、Yの含有割合を示すZ値がSiとTiの合量に占める割合(原子比)で0.05未満では所望の耐熱塑性変形性向上効果が得られず、さらに同Z値が0.15を超えると、高温強度が低下するようになることから、Z値を0.03〜0.10と定めた。 Furthermore, although the Y component has an effect of improving the street heat plastic deformation of the, desired is less than 0.05 in a ratio Z value indicating a content of Y occupies the total amount of Si and Ti (atomic ratio) heat the plastic deformation resistance improving effect can not be obtained, further the Z value is greater than 0.15, since it becomes high-temperature strength decreases, defined as 0.03 to 0.10 the Z value.
【0011】 [0011]
(b)Si最低含有点の組成上記の通りSi最高含有点はSi成分の高含有によりすぐれた高温硬さと耐熱性を有するが、反面高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件での高速切削加工では高温強度不足が避けられず、このSi最高含有点の高温強度不足を補う目的で、Ti含有割合が相対的に高く、一方Si含有割合が低く、これによって一段とすぐれた高温強度を有するようになるSi最低含有点を厚さ方向に交互に介在させるものであり、したがってSiの割合を示すB値がTiおよびY成分との合量に占める割合(原子比)で0.25を越えると、相対的にTiの含有割合が少なくなり過ぎて、所望のすぐれた高温強度を確保することができず、一方同B値が0.03未満になると、所定の高温硬さおよび耐熱性 (B) as Si highest content point of the composition above Si lowest containing point has a high-temperature hardness and heat resistance which is superior due to the high content of the Si component, contrary high cut height involving mechanical shocks and heavy cutting such as high feed unavoidably insufficient high-temperature strength in a high-speed cutting under the condition, in order to compensate for the high temperature strength shortage of the Si maximum content point, Ti content is relatively high, whereas Si content is low, whereby a more excellent the Si minimum content point will have a high temperature strength in the thickness direction is intended to be interposed alternately, thus 0 at a ratio (atomic ratio) of B value indicating the proportion of Si occupying the total amount of the Ti and Y component exceeds .25, the content of relatively Ti becomes too small, it is impossible to ensure a desired excellent high-temperature strength, whereas when the B value is less than 0.03, a predetermined high-temperature hardness and heat resistance 確保が困難になり、これが原因で高温硬さおよび耐熱性のすぐれたSi最高含有点が隣接して存在しても層自体の摩耗進行が促進するようになることから、Si最低含有点でのSiの含有割合を示すB値を0.03〜0.25と定めた。 Securing becomes difficult, which since the wear progress of the layer itself be high-temperature hardness and heat resistance of the excellent Si highest containing points present adjacent is to promote due in Si lowest containing point the B value indicating the content ratio of Si was defined as 0.03 to 0.25.
さらに、Si最低含有点におけるY成分も、上記の通り耐熱塑性変形性を向上させ、もって高熱発生を伴う高速切削に適応させる目的で含有するものであり、したがってZ値が0.05未満では所望の耐熱塑性変形性向上効果が得られず、一方Z値が0.15を越えると高温強度が低下するようになって、切刃部にチッピングが発生し易くなることから、Z値を0.03〜0.10と定めた。 In addition, the Y component in Si minimum content point, improves as heat plastic deformation of the foregoing, have been and those containing the purpose of adapting to the high-speed cutting associated with high heat generation, thus desired in the Z value is less than 0.05 heat the plastic deformation resistance improving effect can not be obtained, whereas Z value so high-temperature strength is lowered when exceeding 0.15, since the easily chipping occurs in the cutting edge, the Z value 0. It was defined as 03 to 0.10.
【0012】 [0012]
(c)Si最高含有点とSi最低含有点間の間隔その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層にSi最高含有点によるすぐれた高温硬さと耐熱性と、Si最低含有点による一段とすぐれた高温強度を確保することができなくなり、またその間隔が0.1μmを越えると重切削条件での高速切削加工でそれぞれの点がもつ欠点、すなわちSi最高含有点であれば高温強度不足、Si最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。 (C) Si The highest content point and Si less than the minimum distance that the spacing between the content point 0.01μm is difficult to clearly form each point in the above composition by Si maximum content point to the result layer and excellent high-temperature hardness and heat resistance, it becomes impossible to ensure a more excellent high-temperature strength by Si minimum content point, also each of the points in the high-speed cutting with heavy cutting conditions when the interval exceeds 0.1μm drawback, i.e. the high temperature strength is insufficient if Si highest containing points having, if Si lowest content point temperature hardness and heat resistance insufficient locally appear in the layer, or it becomes easy chipping caused by wear since progress is to be accelerated, it determined the interval between 0.01 to 0.1 m.
【0013】 [0013]
(d)硬質被覆層の平均層厚その層厚が0.5μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜15μmと定めた。 (D) is less than the average layer thickness the layer thickness of the hard coating layer is 0.5 [mu] m, can not be ensured the desired abrasion resistance, whereas when the average layer thickness exceeds 15 [mu] m, easily chipping occurs , it was determined the average layer thickness and 0.5 to 15 m.
【0014】 [0014]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。 Next, specifically described by the coated cemented carbide tool embodiment of the present invention.
(実施例1) (Example 1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr 32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで48時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1420℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120412のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder was prepared, these raw powders, Table 1 formulated into formulation compositions shown in, 48 hours wet mixed in a ball mill, dried, and pressed into a green compact under a pressure of 100 MPa, in a vacuum of 6Pa the green compact, temperature: 1 hour 1420 ° C. sintered under the conditions of retention, after sintering, R the cutting edge portion: 0.03 WC-based cemented carbide made with a tip shape of ISO standard · CNMG120412 subjected to honing of carbide substrate a-1 It was formed ~A-10.
【0015】 [0015]
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo 2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1520℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120412のチップ形状をもったTiCN系サーメット製の超硬基体B−1〜B−6を形成した。 Further, as the raw material powder, both the average particle (TiC / TiN = 50/50 in weight ratio) TiCN having a diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder , prepared Co powder and Ni powder, and these raw material powders were blended in the formulation composition shown in Table 2, 72 h wet mixed in a ball mill, dried, and pressed into a green compact at a pressure of 100MPa during this green compact nitrogen atmosphere 2 kPa, temperature: 1520 to sintering under the conditions of 1 hour hold time at ° C., after sintering, R the cutting edge portion: ISO standards and subjected to honing of 0.03 CNMG120412 to form a carbide substrate B-1 to B-6 manufactured with chip-shaped TiCN cermet.
【0016】 [0016]
ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったSi最高含有点形成用Ti−Si−Y合金、他方側のカソード電極(蒸発源)としてSi最低含有点形成用Ti−Si−Y合金を前記回転テーブルを挟んで対向配置し、またボンバード洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に Then, each of the above carbide substrate A-1 to A-10 and B-1 to B-6, was subjected to ultrasonic cleaning in acetone, in a dry state, arc ion plating apparatus shown in FIG. 1 on the rotary table, from the central axis along the peripheral portion at a predetermined distance in the radial direction is mounted a plurality of carbide substrate in a ring shape, whereas the side of the cathode (evaporation source), various chemical composition across the rotary table Si highest content point forming Ti-Si-Y alloy, the other side of the cathode electrode (vapor source) as Si minimum content point forming Ti-Si-Y alloy having a face arranged, also also mounted bombardment cleaning metals Ti, first, while holding by evacuating the apparatus to a vacuum below 0.5 Pa, after heating the inside of the apparatus to 500 ° C. by the heater, rotates while rotating on the turntable the cemented carbide substrate 1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−30Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Si最高含有点形成用Ti−Si−Y合金およびSi最低含有点形成用Ti−Si−Y合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、厚さ方向に沿って表3,4に示される目標組成のSi最高含有点とSi最低含有点とが交互に同じく表3,4に示される目標間隔で Applying a DC bias voltage of 1000V, and by flowing a 100A current between said metallic Ti and the anode electrode of the cathode electrode to generate arc discharge, with the carbide substrate surface was washed Ti bombardment and then into the apparatus by introduction of nitrogen gas as the reaction gas with a reaction atmosphere of 3 Pa, the DC bias voltage of -30V to carbide substrate rotates while rotating on a rotary table is applied, and each of the cathode electrode (the Si highest by flowing a 150A current between the Ti-Si-Y alloy and Si minimum content point forming Ti-Si-Y alloy for containing point formation) and the anode electrode to generate arc discharge, with the surface of the carbide substrate , in the target interval Si highest content point along the thickness direction target composition shown in tables 3, 4 and the Si minimum content point are shown in also tables 3 and 4 alternately 繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。 Repeatedly exists, and has the Si up from said containing point Si minimum content point, the Si from said lowest-containing point Si highest Si content to content point continuously varying component concentration distribution structure, and also Table 3 , by depositing a hard coating layer of the target layer thicknesses shown in 4, the present invention coated carbide tool as the present invention the surface coating cemented carbide indexable (hereinafter, referred to as the present invention coated carbide inserts) 1 to 16 were prepared, respectively.
【0017】 [0017]
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Si合金を装着し、またボンバード洗浄用金属Tiも装置し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記 For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6, was subjected to ultrasonic cleaning in acetone, in a dry state, ordinary arc respectively shown in Figure 2 was charged to the ion plating apparatus, a Ti-Si alloy having various component compositions as a cathode electrode (vapor source) is mounted, and also to apparatus bombardment cleaning metals Ti, firstly, by evacuating the device 0 while maintaining the following vacuum .5Pa, after heating the inside of the apparatus to 400 ° C. by the heater, between the metallic Ti and the anode electrode of the cemented carbide substrates by applying a DC bias voltage of -1000 V, and the cathode electrode by flowing a 90A current to generate an arc discharge, with the carbide substrate surface was washed Ti bombardment with, as well as the reaction atmosphere of 2Pa then introducing nitrogen gas as a reaction gas into the apparatus, the 硬基体に印加するバイアス電圧を−200Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。 Lowering the bias voltage applied to hard substrates -200 V, the cathode electrode and to generate arc discharge between the anode electrode, the carbide substrate with A-1 to A-10 and B-1 to B-6 on each surface of a target composition and target layer thicknesses shown in Table 5, and depositing a hard coating layer composed of substantially no compositional change (Ti, Si) N layer in the thickness direction it allows conventional coating conventional surface-coated cemented carbide indexable as cemented carbide (hereinafter, conventional coating called carbide inserts) were 1-16 were prepared, respectively.
【0018】 [0018]
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、 Next, the the present invention coated carbide inserts 1 through 16 and conventional coated carbide inserts 1 to 16, in a state in which it was set screw in the tool steel byte tip fixture,
被削材:JIS・S50Cの丸棒、 Workpiece: JIS · S50C round bar,
切削速度:300m/min. Cutting speed: 300m / min. ,
切り込み:4.5mm、 Cut: 4.5mm,
送り:0.25mm/rev. Feed: 0.25mm / rev. ,
切削時間:10分、 Cutting Time: 10 minutes,
の条件での炭素鋼の乾式連続高速高切り込み切削加工試験、 Dry continuous fast high cut machining test carbon steel in the conditions,
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、 Workpiece: JIS · SCM440 length direction at equal intervals of four longitudinal grooves containing round bar,
切削速度:280m/min. Cutting speed: 280m / min. ,
切り込み:2mm、 Cut: 2mm,
送り:0.4mm/rev. Feed: 0.4mm / rev. ,
切削時間:5分、 Cutting time: 5 minutes,
の条件での合金鋼の乾式断続高速高送り切削加工試験、さらに、 Dry intermittent high-speed and high-alloy steels in conditions feed cutting test, further,
被削材:JIS・FC300の丸棒、 Workpiece: JIS · FC300 round bar,
切削速度:320m/min. Cutting speed: 320m / min. ,
切り込み:4mm、 Cut: 4mm,
送り:0.3mm/rev. Feed: 0.3mm / rev. ,
切削時間:10分、 Cutting Time: 10 minutes,
の条件での鋳鉄の乾式連続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。 Perform dry continuous high-speed high-cut machining test cast iron with conditions, to measure the flank wear width of the cutting edge in any of the cutting test. この測定結果を表6に示した。 The measurement results are shown in Table 6.
【0019】 [0019]
【表1】 [Table 1]
【0020】 [0020]
【表2】 [Table 2]
【0021】 [0021]
【表3】 [Table 3]
【0022】 [0022]
【表4】 [Table 4]
【0023】 [0023]
【表5】 [Table 5]
【0024】 [0024]
【表6】 [Table 6]
【0025】 [0025]
(実施例2) (Example 2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr 32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で50時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26 As the raw material powder having an average particle diameter coarse WC powder in with 5.5 [mu] m, the 0.8μm of fine WC powder, TaC powder of the 1.3 .mu.m, the 1.2 [mu] m of NbC powder, the same 1.2 [mu] m ZrC powder, Cr 3 C 2 powder in the same 2.3 .mu.m, VC powder of the same 1.5 [mu] m, the same 1.0μm (Ti, W) C powder, and prepared Co powder of the same 1.8 .mu.m, these raw powders each incorporated in the formulation compositions shown in table 7, in addition to wax and mixed for 50 hours ball milling in acetone, dried under reduced pressure, and press-molded into various green compact of a predetermined shape at a pressure of 100 MPa, these baked green compact in a vacuum atmosphere of 6 Pa, the temperature was raised to a predetermined temperature in the range of 1,370-1,470 ° C. at a heating rate of 7 ° C. / min, after a 1 hour hold time at this temperature, under the condition of furnace cooling and forming a diameter of 8 mm, 13 mm and 26, mの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の6枚刃スクエア形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 Forming a three carbide substrate for forming a round rod sintered body m, further from three round bar sintered body of said at grinding, in combinations shown in Table 7, the diameter of the cutting edge × length 6 mm × 13 mm, respectively, 10 mm × 22 mm, and the dimensions of 20 mm × 45 mm, as well as any twist angle: 30 ° 6 flute square shape with ultrahard substrate (end mills) C-1 through C-8 It was prepared, respectively.
【0026】 [0026]
ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のSi最高含有点とSi最低含有点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。 Then, these carbide substrates (end mills) C-1 through C-8, was subjected to ultrasonic cleaning in acetone, in a dry state, also charged into the arc ion plating apparatus shown in FIG. 1, the above-described example 1 under the same conditions as are present repeatedly in the target interval and Si maximum content point and Si lowest content point of the target composition shown in Table 8 along the thickness direction are shown also in Table 8 alternately, and wherein wherein the Si highest content point Si minimum content point, having said Si minimum from said containing point Si highest Si content to content point continuously varying component concentration distribution structure, and the target layer thickness which is likewise shown in Table 8 by depositing the hard coating layer, the present invention cover the present invention the surface coating cemented carbide end mill of the cemented carbide (hereinafter, the present invention refers to the coating end mills) 1-8 were prepared, respectively.
【0027】 [0027]
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the carbide substrates (end mills) C-1 through C-8, was subjected to ultrasonic cleaning in acetone, in a dry state, like ordinary arc ion plating apparatus shown in FIG. 2 It was charged, in the same conditions as described above in example 1, having a target composition and target layer thicknesses shown in Table 9, and with substantially no compositional change along the thickness direction (Ti, Si) N by depositing a hard coating layer comprising a layer, a conventional coating conventional surface-coated cemented carbide end mill of the cemented carbide (hereinafter, conventional coating called end mills) was 1-8 were prepared, respectively.
【0028】 [0028]
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、 Next, the present invention coated cemented carbide end mills 1-8 and of the conventional coated cemented carbide end mills 1-8, the present invention coated cemented carbide end mills 1 to 3 and the conventional coated cemented carbide end mills 1-3,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · SKD11,
切削速度:250m/min. Cutting speed: 250m / min. ,
軸方向切り込み:5mm、 Axial cut: 5mm,
径方向切り込み:0.6mm、 Radial depth of cut: 0.6mm,
テーブル送り:4500mm/分、 Table feed: 4500mm / min,
の条件での工具鋼の乾式高速高切り込み側面切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、 Conditions dry fast high cut side cutting test tool steel in the, for the present invention coated cemented carbide end mills 4-6 and the conventional coated cemented carbide end mills 4-6,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm in JIS · S45C,
切削速度:300m/min. Cutting speed: 300m / min. ,
軸方向切り込み:10mm、 Axial cut: 10mm,
径方向切り込み:0.8mm、 Radial depth of cut: 0.8mm,
テーブル送り:5000mm/分、 Table feed: 5000mm / min,
の条件での炭素鋼の乾式高速高切り込み側面切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、 Dry High-Speed ​​High cut side cutting test of carbon steel under the conditions of, the present invention coated cemented carbide end mills 7 and 8 and the conventional coated cemented carbide end mills 7 and 8,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM439の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · SNCM439,
切削速度:280m/min. Cutting speed: 280m / min. ,
軸方向切り込み:15mm、 Axial cut: 15mm,
径方向切り込み:0.5mm、 Radial depth of cut: 0.5mm,
テーブル送り:3200mm/分、 Table feed: 3200mm / min,
の条件での合金鋼の乾式高速高送り側面切削加工試験をそれぞれ行い、いずれの乾式側面切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。 Perform dry speed and high alloy steels in conditions feed side cutting test, respectively, to the 0.1mm the flank wear width of the peripheral cutting edge of the cutting edge is a measure of the service life in any dry side cutting test cutting length ranging were measured. この測定結果を表8,9にそれぞれ示した。 The measurement results are shown in Tables 8 and 9.
【0029】 [0029]
【表7】 [Table 7]
【0030】 [0030]
【表8】 [Table 8]
【0031】 [0031]
【表9】 [Table 9]
【0032】 [0032]
(実施例3) (Example 3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。 Diameter produced in the above Example 2 is 8 mm (for cemented carbide substrates C-1 through C-3 form), 13 mm (for cemented carbide substrates C-4~C-6 form), and 26 mm (carbide substrates C- 7, using a C-8 three round bar sintered body forming), from the three round bar sintered at grinding, respectively in diameter × length of the groove forming portion 4 mm × 13 mm ( carbide substrate D-1~D-3), 8mm × 22mm (carbide substrates D-4~D-6), and dimensions of 16 mm × 45 mm (carbide substrates D-7, D-8), as well as any helix angle: 30 degrees carbide substrate having a two-edge shape (the drill) D-1~D-8 were prepared, respectively.
【0033】 [0033]
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のSi最高含有点とSi最低含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。 Then, the cutting edge of these carbide substrates (drills) D-1~D-8, subjected to honing, ultrasonic cleaning in acetone, in a dry state, like an arc ion plating apparatus shown in FIG. 1 was charged, in the same conditions as described above in example 1, the target interval and Si maximum content point and Si lowest content point of the target composition shown in Table 10 along the thickness direction are shown also in Table 10 alternately in repeatedly it exists, and has the Si up from said containing point Si minimum content point, the Si lowest Si content from content point to the Si maximum content point is continuously changing component concentration distribution structure, and also Table by depositing a hard coating layer of the target layer thicknesses shown in 10, the present invention surface-coated cemented carbide drills of the present invention coated cemented carbide (hereinafter, referred to as the present invention coated cemented carbide drills) 1-8 and It was produced, respectively.
【0034】 [0034]
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the cutting edge of the carbide substrate (drills) D-1~D-8, subjected to honing, as shown with the ultrasonic cleaning in acetone, and dried, similarly to FIG. 2 was charged to a conventional arc ion plating apparatus, under the same conditions as in example 1, having a target composition and target layer thicknesses shown in Table 11, and substantially the composition varies along the thickness direction no (Ti, Si) by depositing hard coating layer consisting of N layers, the conventional prior art surface coating cemented carbide drill as coated cemented carbide (hereinafter, referred to as conventional coated cemented carbide drills) 1-8 respectively It was produced.
【0035】 [0035]
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、 Next, the present invention coating of carbide drill 1-8 and the conventional coated cemented carbide drills 1-8, the present invention coated cemented carbide drills 1 to 3 and the conventional coated cemented carbide drills 1-3,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC300の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · FC300,
切削速度:180m/min. Cutting speed: 180m / min. ,
送り:0.16mm/rev、 Feed: 0.16mm / rev,
穴深さ:8mm Hole depth: 8mm
の条件での鋳鉄の湿式高速高送り穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、 Wet high-speed high feed drilling cutting test of cast iron in the conditions, the present invention coated cemented carbide drills 4-6 and the conventional coated cemented carbide drills 4-6,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm in JIS · S45C,
切削速度:150m/min. Cutting speed: 150m / min. ,
送り:0.21mm/rev、 Feed: 0.21mm / rev,
穴深さ:15mm Hole depth: 15mm
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、 Wet high-speed high feed drilling cutting test of carbon steel in the conditions of, the present invention coated cemented carbide drills 7 and 8 and the conventional coated cemented carbide drills 7 and 8,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM435の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · SCM435,
切削速度:150m/min. Cutting speed: 150m / min. ,
送り:0.25mm/rev、 Feed: 0.25mm / rev,
穴深さ:25mm Hole depth: 25mm
の条件での合金鋼の湿式高速高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。 Wet high-speed high feed drilling cutting test under the conditions of alloy steel, carried out respectively, in any wet fast drilling cutting test flank wear width of (water-soluble cutting oil used) even tip cutting surfaces is 0.3mm the drilling number of leading up was measured. この測定結果を表10,11にそれぞれ示した。 The measurement results are shown in Tables 10 and 11.
【0036】 [0036]
【表10】 [Table 10]
【0037】 [0037]
【表11】 [Table 11]
【0038】 [0038]
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8を構成する硬質被覆層について、厚さ方向に沿ってTi、Si、およびYの含有割合をオージェ分光分析装置を用いて測定したところ、前記本発明被覆超硬工具の硬質被覆層では、Si最高含有点とSi最低含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有 The resulting invention coated invention coated carbide inserts 1 to 16 as a carbide tool, the present invention coated cemented carbide end mills 1-8, and the present invention coated cemented carbide drills 1-8 and the conventional coated cemented carbide tool, conventional coating hard tip 1 to 16 as the conventional coated cemented carbide end mills 1-8, and the hard coating layer of the conventional coated cemented carbide drills 1-8, along the thickness direction Ti, Si, and Y When the content was measured using the Auger spectroscopic analysis apparatus, wherein the hard coating layer of the present invention coated cemented carbide, Si and the highest content point and Si minimum content point at a target value substantially the same composition and spacing, respectively there repeated alternately, and have the said Si up from said containing point Si minimum content point, the Si minimum from said containing point Si highest content of the content points Si are respectively continuously changing component concentration distribution structure ることが確認され、さらに硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。 Rukoto is confirmed, further the average layer thickness of the hard layer shown the target layer thickness substantially the same value. 一方、前記従来被覆超硬工具の硬質被覆層では、目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すものの、厚さ方向に沿った組成変化は見られず、層全体に亘って均質な組成を示すものであった。 Meanwhile, in the hard coating layer of the conventional coated cemented carbide tool, while indicating the target substantially the same average layer thickness substantially the same composition and the target layer thickness and composition, composition change along the thickness direction is not observed , it was indicative of homogeneous composition throughout the layer.
【0039】 [0039]
【発明の効果】 【Effect of the invention】
表3〜11に示される結果から、硬質被覆層が層全体に亘ってすぐれた耐熱塑性変形性を具備した状態で、厚さ方向にすぐれた高温硬さと耐熱性を有するSi最高含有点と一段とすぐれた高温強度を有するSi最低含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が厚さ方向に沿って実質的に組成変化のない(Ti,Si)N層からなる従来被覆超硬 From the results shown in Table 3 to 11, with the hard coating layer is provided with excellent heat plastic deformation resistance over the entire layer, further a Si highest containing points having excellent high-temperature hardness and heat resistance in the thickness direction Si-containing excellent and Si lowest containing points having high-temperature strength is present repeatedly at predetermined intervals alternately, and the Si lowest containing points from the Si highest content point, from the Si lowest content point to the Si highest content point ratio invention coated cemented carbide tool having a continuously varying component concentration distribution structure, heavy cutting of both the high-speed cutting of various steels and cast iron, such as high cut and high feed with high mechanical impact even when conducted under conditions, whereas exhibits chipping resistance of the hard coating layer has excellent, with no substantial composition change hard coating layer along a thickness direction (Ti, Si) from the N layer comprising conventionally coated cemented carbide 具においては、重切削条件での高速切削加工では前記硬質被覆層の高温強度不足が原因で、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。 In ingredients, due to the high temperature insufficient strength of the hard coating layer is a fast cutting of heavy cutting conditions, chipping occurs and this is apparent that lead to a relatively short time service life due.
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coating cemented carbide tool of the present invention, it of course is cutting under normal conditions, in particular high-speed cutting of various steels and cast iron, feeding high cut and high with high mechanical impact heavy cutting even when conducted under conditions, excellent exhibits chipping resistance was, but to indicate the excellent wear resistance for a long time, labor saving and energy saving of the cutting, further cost reduction, such as to those that can respond to satisfactory.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。 [1] shows an arc ion plating apparatus used to form the hard coating layer constituting the coating cemented carbide tool of the present invention, (a) represents a schematic plan view, (b) is a schematic front view.
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。 2 is a schematic illustration of a conventional arc ion plating apparatus used to form the hard coating layer that constitutes the conventional coated cemented carbide tools.

Claims (1)

  1. 炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、TiとSiとY(イットリウム)の複合窒化物層からなる硬質被覆層を0.5〜15μmの全体平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具にして、 Tungsten carbide based cemented carbide substrate or the surface of the titanium carbonitride-based cermet substrate, the physical vapor deposition of hard coating layer made of a composite nitride layer of Ti, Si and Y (yttrium) in overall average layer thickness of 0.5~15μm in the surface-coated cemented carbide cutting tools and comprising,
    上記硬質被覆層を、層厚方向にそって、Si最高含有点とSi最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Si最高含有点から前記Si最低含有点、前記Si最低含有点から前記Si最高含有点へSi含有割合が連続的に変化する成分濃度分布構造を有し、 The hard coating layer, along the thickness direction, repeatedly alternate presence Si and maximum content point and Si lowest containing points at predetermined intervals, and the Si lowest containing points from the Si highest content point, the Si a Si content from the lowest content point to the Si maximum content point continuously varying component concentration distribution structure,
    さらに、上記Si最高含有点が、組成式:(Ti 1-( + ) Si Furthermore, the Si maximum content point, composition formula: (Ti 1- (A + Z ) Si A )N(ただし、原子比で、Aは0.45〜0.60、Z:0.03〜0.10を示す)、 Y Z) N (provided that an atomic ratio, A is 0.45 to 0.60, Z: shows the 0.03-0.10)
    上記Si最低含有点が、組成式:(Ti 1-( + ) Si The Si minimum content point, composition formula: (Ti 1- (B + Z ) Si B )N(ただし、原子比で、Bは0.03〜0.25、Z:0.03〜0.10を示す)、 Y Z) N (provided that an atomic ratio, B is 0.03 to 0.25, Z: shows the 0.03-0.10)
    を満足し、かつ隣り合う上記Si最高含有点とSi最低含有点の間隔が、0.01〜0.1μmである、 Intervals of the Si highest content point and Si lowest containing points satisfy, and adjacent to it, is 0.01 to 0.1 m,
    硬質被覆層で構成したことを特徴とする高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。 Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions, characterized by being configured with a hard coating layer.
JP2003139712A 2003-05-19 2003-05-19 Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions Active JP4375527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139712A JP4375527B2 (en) 2003-05-19 2003-05-19 Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139712A JP4375527B2 (en) 2003-05-19 2003-05-19 Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions

Publications (2)

Publication Number Publication Date
JP2004338058A true JP2004338058A (en) 2004-12-02
JP4375527B2 true JP4375527B2 (en) 2009-12-02

Family

ID=33528663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139712A Active JP4375527B2 (en) 2003-05-19 2003-05-19 Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions

Country Status (1)

Country Link
JP (1) JP4375527B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2262924B1 (en) 2008-03-07 2014-12-03 Seco Tools AB Thermally stabilized (ti, si)n layer for cutting tool insert
JP5234926B2 (en) 2008-04-24 2013-07-10 株式会社神戸製鋼所 Hard coating and the hard film forming target
JP5692635B2 (en) * 2010-11-16 2015-04-01 三菱マテリアル株式会社 Surface-coated cutting tool
JP5692636B2 (en) * 2010-11-16 2015-04-01 三菱マテリアル株式会社 Surface-coated cutting tool
EP2823080A1 (en) 2012-03-07 2015-01-14 Seco Tools AB A body with a metal based nitride layer and a method for coating the body

Also Published As

Publication number Publication date Type
JP2004338058A (en) 2004-12-02 application

Similar Documents

Publication Publication Date Title
JP2004050381A (en) Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2011224715A (en) Surface-coated cutting tool with hard coating layer for exhibiting excellent abrasion resistance
JP2003260603A (en) Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP2004225065A (en) Method for forming hard coating layer exhibiting superior resistance to chipping and wearing under high-speed deep cutting condition, on cutting tool surface
CN1820880A (en) Cutting tool made of surface-coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting operation of high hardnes steel
JP2003340608A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent abrasion resistance in high speed heavy cutting condition
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP2005230926A (en) Surface-coated cermet-made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed deep cutting condition
JP2011152627A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2007007764A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2006346777A (en) Surface coated cemented carbide cutting tool having lubricative coating layer exhibiting excellent wear resistance
JP2003340606A (en) Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2006198731A (en) Cutting tool made of surface coated cermet with hard coating layer displaying excellent chipping resistance in high speed cutting
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2009012139A (en) Surface coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high speed cutting
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2005028484A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in chipping resistance under heavy cutting condition
JP2009125834A (en) Surface-coated cutting tool
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2006289538A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2009125832A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090819

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120918

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4