JP5692635B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5692635B2
JP5692635B2 JP2010255656A JP2010255656A JP5692635B2 JP 5692635 B2 JP5692635 B2 JP 5692635B2 JP 2010255656 A JP2010255656 A JP 2010255656A JP 2010255656 A JP2010255656 A JP 2010255656A JP 5692635 B2 JP5692635 B2 JP 5692635B2
Authority
JP
Japan
Prior art keywords
cutting
tool
coated
layer
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010255656A
Other languages
Japanese (ja)
Other versions
JP2012106297A (en
Inventor
英利 淺沼
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010255656A priority Critical patent/JP5692635B2/en
Publication of JP2012106297A publication Critical patent/JP2012106297A/en
Application granted granted Critical
Publication of JP5692635B2 publication Critical patent/JP5692635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、ステンレス鋼、耐熱鋼などの、高熱発生が伴い、かつ切刃に対して断熱的、衝撃的負荷がかかる被削材を高速条件で切削加工した場合に、硬質被覆層が長期にわたって優れた耐摩耗性を発揮する表面被覆切削工具に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, high-heat generation such as stainless steel and heat-resistant steel is involved, and an adiabatic and impact load is applied to the cutting blade. The present invention relates to a surface-coated cutting tool in which a hard coating layer exhibits excellent wear resistance over a long period of time when a work material is cut under high-speed conditions.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, coated tools are used for throwaway inserts that are detachably attached to the tip of cutting tools for drilling and cutting of various materials such as steel and cast iron. There are drills and miniature drills used, as well as solid type end mills used for chamfering, grooving and shoulder machining of work materials, etc. A slow-away end mill tool that performs cutting is known.

また、被覆工具としては、例えば、工具基体表面に、ZrN層を設けた被覆工具も知られており、特に、構成成分であるZrによって高温硬さと耐熱性を具備することから、ZrN層がすぐれた高温硬さ、耐熱性を示すことも知られている。   Further, as a coated tool, for example, a coated tool in which a ZrN layer is provided on the surface of a tool base is known, and in particular, the ZrN layer is excellent because it has high-temperature hardness and heat resistance due to Zr as a constituent component. It is also known to exhibit high temperature hardness and heat resistance.

さらに、前記従来被覆工具が、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、金属Zrと、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に、ZrN層からなる硬質被覆層を蒸着することにより製造されることも知られている。   Furthermore, the conventional coated tool is loaded with a tool base in an arc ion plating apparatus which is one of physical vapor deposition apparatuses shown schematically in FIG. 2, for example, at a temperature of 500 ° C., for example. In the heated state, an arc discharge is generated between the cathode electrode in which an alloy corresponding to the composition of the hard coating layer is set, for example, the metal Zr and the anode electrode, for example, at a current of 90 A, and at the same time Nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of, for example, 2 Pa. On the other hand, a ZrN layer is applied to the tool base surface under the condition that a bias voltage of, for example, −100 V is applied. It is also known to be produced by vapor-depositing a hard coating layer.

特表昭63−502123号公報JP-T63-502123

ところが、近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、前記従来被覆工具においては、これを、ステンレス鋼、耐熱鋼などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの被削材を、高い発熱をともなうとともに、切刃部に対して断続的、衝撃的負荷がかかる高速条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, in recent years, the FA of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting tools have as much influence on the type of work material as possible. However, in the above-mentioned conventional coated tool, this is applied to work materials such as stainless steel and heat-resistant steel. There is no problem when it is used for cutting at normal cutting speed, but when these materials are cut under high-speed conditions with high heat generation and intermittent and impact load on the cutting edge. The heat generated during cutting increases the viscosity of the work material and the chips by heating to a high temperature, which increases the weldability to the surface of the hard coating layer. Mappings generation of (small chipping) increases rapidly, which is at present, leading to a relatively short time service life due.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高熱発生を伴う高速条件で切削した場合においてもすぐれた耐熱性および耐摩耗性を発揮する被覆工具を提供することである。   Therefore, a technical problem to be solved by the present invention, that is, an object of the present invention is to provide a coated tool that exhibits excellent heat resistance and wear resistance even when cutting under high-speed conditions with high heat generation. It is.

そこで、本発明者らは、前述のような観点から、特に、ステンレス鋼、耐熱鋼などの難削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性とすぐれた耐摩耗性を併せ持つ被覆工具を開発すべく、鋭意研究を行った結果、工具基体の表面に、Zrとの合量に占めるYの含有割合が1〜15原子%となるようにY成分を含有させたZrとYの複合窒化物層(以下、(Zr,Y)N層で示す)を硬質被覆層として0.5〜5μmの平均層厚で形成した場合には、難削材の高速切削加工において、この被覆工具はすぐれた耐熱性とすぐれた耐摩耗性を発揮することを見出したのである。   In view of the above, the present inventors, in particular, have excellent heat resistance with a hard coating layer when cutting difficult-to-cut materials such as stainless steel and heat-resistant steel under high-speed cutting conditions. As a result of diligent research to develop a coated tool having excellent wear resistance, the Y content in the total amount of Zr on the surface of the tool base is 1 to 15 atomic%. When a Zr and Y composite nitride layer containing components (hereinafter referred to as a (Zr, Y) N layer) is formed as a hard coating layer with an average layer thickness of 0.5 to 5 μm, a difficult-to-cut material In this high-speed cutting process, this coated tool was found to exhibit excellent heat resistance and excellent wear resistance.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、0.5〜5μmの平均層厚を有し、かつ、
組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層の単層からなることを特徴とする表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer has an average layer thickness of 0.5 to 5 μm, and
A composite nitride of Zr and Y satisfying the composition formula: (Zr 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.15) A surface-coated cutting tool comprising a single layer . "
It is characterized by.

つぎに、本発明の被覆工具の硬質被覆層に関し、前記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)硬質被覆層を構成する(Zr,Y)N層の組成
硬質被覆層を構成するZrとYの複合窒化物(Zr,Y)N層は、所定の耐熱性、耐摩耗性を有するとともに、その構成成分であるY成分によって、すぐれた高温熱伝導性、高温硬さを備えるようになり、そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐溶着性を発揮するようになるが、Yの含有割合を示すγ値がZrとの合量に占める割合(原子比、以下同じ)で0.01未満になると、高温硬さを確保することができないために耐溶着効果を期待することはできず、一方、Yの割合を示すγ値が同0.15を越えると、相対的にZrの含有割合が減少し、難削材の高速切削加工で必要とされる潤滑性を確保することができないばかりか、耐溶着性も低下し、チッピング発生を防止することが困難になることから、γ値を0.01〜0.15(原子比、以下同じ)と定めた。
(A) Composition of (Zr, Y) N layer constituting hard coating layer The composite nitride (Zr, Y) N layer of Zr and Y constituting the hard coating layer has predetermined heat resistance and wear resistance. At the same time, the component Y component provides excellent high-temperature thermal conductivity and high-temperature hardness, so that it maintains a low coefficient of friction even under high-temperature cutting conditions and exhibits excellent welding resistance. However, if the γ value indicating the Y content ratio is less than 0.01 in terms of the total amount with Zr (atomic ratio, the same shall apply hereinafter), the high temperature hardness cannot be ensured, so the welding resistance effect On the other hand, if the γ value indicating the Y ratio exceeds 0.15, the Zr content ratio is relatively reduced, and the lubrication required for high-speed cutting of difficult-to-cut materials In addition to being unable to secure the properties, the welding resistance also decreases, Since it is difficult to prevent the occurrence, it was defined as the γ value from 0.01 to 0.15 (atomic ratio, hereinafter the same).

(b)硬質被覆層を構成する(Zr,Y)N層の平均層厚
そして、(Zr,Y)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐熱性、耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、難削材の高速切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
(B) Average layer thickness of (Zr, Y) N layer constituting the hard coating layer And, if the average layer thickness of (Zr, Y) N layer is less than 0.5 μm, its own excellent heat resistance and wear resistance On the other hand, if the average layer thickness exceeds 5 μm, chipping is likely to occur at the cutting edge part in high-speed cutting of difficult-to-cut materials. The thickness was set to 0.5-5 μm.

そして、(Zr,Y)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のZr−Y合金からなるカソード電極(蒸発源)を配置し、アノード電極と前記カソード電極(蒸発源)との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3Paの反応雰囲気とし、一方、前記基体には、例えば、−150Vのバイアス電圧を印加した条件で蒸着することにより、(Zr,Y)N層からなる単層を蒸着することにより本発明の硬質被覆層を蒸着形成することができる。   The (Zr, Y) N layer is, for example, charged in an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. A cathode electrode (evaporation source) made of a Zr—Y alloy having a predetermined composition is placed in the apparatus while being heated to a temperature of 500 ° C., and, for example, an electric current is provided between the anode electrode and the cathode electrode (evaporation source). : Arc discharge was generated under the condition of 110 A, and simultaneously nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa, for example, while a bias voltage of −150 V, for example, was applied to the substrate. By vapor-depositing under conditions, the hard coating layer of the present invention can be vapor-deposited by vapor-depositing a single layer composed of (Zr, Y) N layers.

本発明の被覆工具によれば、単層の(Zr,Y)N層からなる硬質被覆層は優れた耐熱性と耐摩耗性を備えることから、特に、ステンレス鋼や耐熱鋼等の難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐熱性を示し、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものである。   According to the coated tool of the present invention, a hard coating layer composed of a single layer (Zr, Y) N layer has excellent heat resistance and wear resistance, and therefore, particularly difficult-to-cut materials such as stainless steel and heat resistant steel. Even in the case of high-speed cutting with large heat generation and high load, it exhibits excellent heat resistance and exhibits excellent chipping resistance and wear resistance over a long period of time.

本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 比較被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus used in forming the hard coating layer which comprises a comparative coating tool.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-based cemented carbide with ISO standard / CNMG120408 chip shape were formed. .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, the green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base B made of TiCN-based cermet having an ISO standard / CNMG120408 chip shape was obtained. -1 to B-6 were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、カソード電極(蒸発源)として所定組成の硬質被膜層形成用のZr−Y合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Zr−Y合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、目標層厚の単層としての(Zr,Y)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
前記(a)〜(c)により硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. It is mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and cathode electrodes (evaporation sources) are arranged on opposite sides across the rotary table. A Zr-Y alloy for forming a hard coating layer having a predetermined composition as an evaporation source),
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied and a current of 100 A is passed between the cathode electrode and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by flowing a current of 120 A between the Zr-Y alloy of the cathode electrode and the anode electrode, and the target composition and target layer thickness shown in Tables 3 and 4 are formed on the surface of the tool base. After the (Zr, Y) N layer as a layer is formed by vapor deposition with an average layer thickness of 0.5 to 5 μm, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
Hard coating layers were formed by vapor deposition according to (a) to (c), and surface-coated throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 as the present invention-coated tools were produced.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成の金属Zrを装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の金属Zrとアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記金属Zrでボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−90Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚のZrN層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. Insert the metal Zr with a predetermined composition as the cathode electrode (evaporation source), and first heat the interior to 500 ° C with a heater while evacuating the interior and maintaining a vacuum of 0.1 Pa or less. After that, a DC bias voltage of −1000 V is applied to the tool base, and a current of 150 A is passed between the metal Zr and the anode of the cathode electrode to generate an arc discharge. Then, a bombard cleaning is performed, and then nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a bias voltage applied to the tool base is lowered to −90 V, Arc discharge is generated between each cathode electrode and anode electrode having a constant composition, and the surfaces of the tool bases A-1 to A-10 and B-1 to B-6 are respectively shown in Tables 5 and 6. Surface-coated throwaway tips (hereinafter referred to as comparative coated tips) 1 to 16 as comparative coated tools are manufactured by vapor-depositing a hard coating layer composed of a ZrN layer having a target composition and target layer thickness as shown. did.

つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・SUS304(HB180)の丸棒、
切削速度: 140m/min.、
切り込み: 2mm、
送り: 0.3mm/rev.、
切削時間: 5分、
の条件(切削条件A)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、130m/min.、0.2mm/rev.)、
被削材:Ti−6Al−4V合金(HB250)の丸棒、
切削速度: 60m/min.、
切り込み: 2mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件B)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.、0.15mm/rev.)、
被削材:Ni−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB430)の丸棒、
切削速度: 40m/min.、
切り込み: 3mm、
送り: 0.15mm/rev.、
切削時間: 5分、
の条件(切削条件C)でのNi基耐熱合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.15mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、表8に示した。
Next, in the state where each of the various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / SUS304 (HB180) round bar,
Cutting speed: 140 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Wet continuous high-speed cutting test of stainless steel under the following conditions (cutting conditions A) (normal cutting speed and feed are 13 m / min. And 0.2 mm / rev., Respectively),
Work material: Ti-6Al-4V alloy (HB250) round bar,
Cutting speed: 60 m / min. ,
Cutting depth: 2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Wet continuous high-speed cutting test of Ti alloy under the following conditions (cutting condition B) (normal cutting speed and feed are 50 m / min. And 0.15 mm / rev., Respectively),
Work material: Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB4 30) round bar,
Cutting speed: 40 m / min. ,
Cutting depth: 3mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes
Wet continuous high-speed cutting test of Ni-base heat-resistant alloy under the following conditions (cutting condition C) (normal cutting speed and feed are 30 m / min. And 0.15 mm / rev., Respectively),
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Tables 7 and 8.

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder consisting of the above is blended in the composition shown in Table 1, wet mixed for 72 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured, respectively. .

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Zr,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜10をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. The surface-coated carbide of the present invention as a coated tool of the present invention is formed by vapor-depositing a hard coating layer composed of a (Zr, Y) N layer having the target composition and target layer thickness shown in Table 9 under the same conditions as in Table 1. End mills (hereinafter referred to as the present invention coated end mills) 1 to 10 were produced.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表10に示される目標組成および目標層厚のZrN層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜10をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-10 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, by depositing a hard coating layer composed of a ZrN layer having the target composition and target layer thickness shown in Table 10 under the same conditions as in Example 1, a surface-coated carbide end mill (hereinafter referred to as a comparative coating tool) (Referred to as comparative coated end mills) 1 to 10 were produced.

つぎに、本発明被覆エンドミル1〜10および比較被覆エンドミル1〜10について、
被削材−平面寸法:100 mm×250 mm、厚さ:50 mmのJIS・SUS304(HB170)の板材、
切削速度: 140m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 290mm/分、
の条件(切削条件D)でのステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、110m/min.、280mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、
切削速度: 50m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 120 mm/分、
の条件(切削条件E)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、100mm/分)、
被削材:平面寸法:100 mm×250 mm、厚さ:50 mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB430)の板材、
切削速度: 50m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 80mm/分、
の条件(切削条件F)でのNi基耐熱合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、40m/min.、70mm/分)、
寿命の目安とされる0.1 mmに至るまでの切削溝長を測定した。この測定結果を表9、表10にそれぞれ示した。
Next, for the present invention coated end mills 1-10 and comparative coated end mills 1-10,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 (HB1700) plate material,
Cutting speed: 140 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 290mm / min,
Wet high-speed grooving test of stainless steel under the following conditions (cutting condition D) (normal cutting speed and table feed are 110 m / min, 280 mm / min, respectively),
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB250) plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 120 mm / min,
Wet high-speed grooving test of Ti alloy under the following conditions (cutting condition E) (normal cutting speed and table feed are 35 m / min. And 100 mm / min, respectively),
Work material: Plane size: 100 mm × 250 mm, thickness: 50 mm, Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB430) plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 15mm,
Table feed: 80mm / min,
Wet high-speed grooving test of Ni-base heat-resistant alloy under the following conditions (cutting condition F) (normal cutting speed and table feed are 40 m / min. And 70 mm / min, respectively),
The length of the cutting groove up to 0.1 mm, which is a standard of life, was measured. The measurement results are shown in Table 9 and Table 10, respectively.

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

実施例2で製造した直径が13 mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8 mm×22 mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。   Using the round bar sintered body with a diameter of 13 mm produced in Example 2, from this round bar sintered body, the diameter x length of the groove forming portion was 8 mm x 22 mm, respectively, by grinding, In addition, WC-base cemented carbide tool bases (drills) A-1 to A-10 having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表11に示される目標組成および目標層厚の(Zr,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜10をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The hard coating layer comprising the (Zr, Y) N layer having the target composition and the target layer thickness shown in Table 11 is formed by vapor deposition under the same conditions as in Example 1, thereby providing the coated tool of the present invention. The surface-coated carbide drills of the present invention (hereinafter referred to as the present invention-coated drills) 1 to 10 were produced.

また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表12に示される目標組成および目標層厚を有するZrN層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜10をそれぞれ製造した。   For the purpose of comparison, honing is performed on the surfaces of the tool bases (drills) A-1 to A-10, ultrasonic cleaning is performed in acetone, and the arc ion plate shown in FIG. The surface as a comparative coating tool was charged by depositing a hard coating layer comprising a ZrN layer having the target composition and target layer thickness shown in Table 12 under the same conditions as in Example 1 Coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 10 were produced.

つぎに、本発明被覆ドリル1〜10および比較被覆ドリル1〜10について、
被削材−平面寸法:100 mm×250 mm、厚さ:50 mmのJIS・SUS304(HB180)の板材、
切削速度: 85m/min.、
送り: 0.35mm/rev、
穴深さ: 5mm、
の条件(切削条件G)でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、
切削速度: 45m/min.、
送り: 0.25mm/rev.、
穴深さ: 5mm、
の条件(切削条件H)でのTi合金の湿式高速穴あけ切削加工試験((通常の切削速度および送りは、それぞれ、40m/min.、0.15mm/rev.)、
被削材:平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB430)の板材、
切削速度: 45m/min.、
送り: 0.2mm/rev.、
穴深さ: 5mm、
の条件(切削条件I)での焼入れ合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.1mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11、表12にそれぞれ示した。
Next, for the present invention coated drills 1-10 and comparative coated drills 1-10,
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 (HB180) plate material,
Cutting speed: 85 m / min. ,
Feed: 0.35mm / rev,
Hole depth: 5mm,
Wet high-speed drilling test of stainless steel under the following conditions (cutting condition G) (normal cutting speed and feed are 80 m / min. And 0.2 mm / rev., Respectively),
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB250) plate material,
Cutting speed: 45 m / min. ,
Feed: 0.25 mm / rev. ,
Hole depth: 5mm,
Wet high-speed drilling test of Ti alloy under the following conditions (cutting condition H) ((normal cutting speed and feed are 40 m / min. And 0.15 mm / rev., Respectively),
Work material: Plane size: 100 mm × 250 mm, thickness: 50 mm Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB430) plate material,
Cutting speed: 45 m / min. ,
Feed: 0.2 mm / rev. ,
Hole depth: 5mm,
Wet high-speed drilling test of quenched alloy steel under the conditions (cutting condition I) (normal cutting speed and feed are 30 m / min. And 0.1 mm / rev., Respectively),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 0005692635
Figure 0005692635

Figure 0005692635
Figure 0005692635

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜10、および本発明被覆ドリル1〜10の硬質被覆層を構成する単層の(Zr,Y)N層、並びに、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜10、および比較被覆ドリル1〜10のZrN層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the coated chips 1 to 16 of the present invention, the coated end mills 1 to 10 of the present invention, and the hard coated layers of the coated drills 1 to 10 of the present invention (Zr, Y) The composition of the hard coating layer consisting of the N layer and the ZrN layers of the comparative coating tips 1 to 16, the comparative coating end mills 1 to 10, and the comparative coating drills 1 to 10 as a comparative coating tool was measured using a transmission electron microscope. When measured by an energy dispersive X-ray analysis method, each showed substantially the same composition as the target composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7〜12に示される結果から、本発明被覆工具は、(Zr,Y)N層のもつ優れた高温熱伝導性、高温硬さによって、高い発熱を伴う鋼の高速切削に用いても切刃の摩耗進行が抑制され、長期にわたって優れた耐摩耗性を発揮するようになる。   From the results shown in Tables 7 to 12, the coated tool of the present invention can be used for high-speed cutting of steel with high heat generation due to the excellent high-temperature thermal conductivity and high-temperature hardness of the (Zr, Y) N layer. The progress of wear of the blade is suppressed, and excellent wear resistance is exhibited over a long period of time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特にTi合金、ステンレス鋼等の難削材の高速切削加工でもすぐれた耐摩耗性と耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent wear resistance and welding resistance not only for cutting of general work materials but also for high-speed cutting of difficult-to-cut materials such as Ti alloy and stainless steel. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can fully satisfactorily respond to FA conversion of cutting processing equipment, labor saving and energy saving of cutting processing, and cost reduction. .

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、0.5〜5μmの平均層厚を有し、かつ、
組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層の単層からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer has an average layer thickness of 0.5 to 5 μm, and
A composite nitride of Zr and Y satisfying the composition formula: (Zr 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.15) A surface-coated cutting tool comprising a single layer .
JP2010255656A 2010-11-16 2010-11-16 Surface coated cutting tool Expired - Fee Related JP5692635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255656A JP5692635B2 (en) 2010-11-16 2010-11-16 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255656A JP5692635B2 (en) 2010-11-16 2010-11-16 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2012106297A JP2012106297A (en) 2012-06-07
JP5692635B2 true JP5692635B2 (en) 2015-04-01

Family

ID=46492505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255656A Expired - Fee Related JP5692635B2 (en) 2010-11-16 2010-11-16 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5692635B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895765A (en) * 1985-09-30 1990-01-23 Union Carbide Corporation Titanium nitride and zirconium nitride coating compositions, coated articles and methods of manufacture
JP3712241B2 (en) * 1995-01-20 2005-11-02 日立ツール株式会社 Coated cutting tool / Coated wear resistant tool
US6645639B1 (en) * 2000-10-13 2003-11-11 Applied Thin Films, Inc. Epitaxial oxide films via nitride conversion
JP4375527B2 (en) * 2003-05-19 2009-12-02 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
US20060188345A1 (en) * 2005-02-18 2006-08-24 Greenwood Mark L Rotary cutting tool with pairs of helical cutting edges having different helix angles
JP2009119550A (en) * 2007-11-14 2009-06-04 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2009255233A (en) * 2008-04-17 2009-11-05 Mitsubishi Materials Corp Surface coated cutting tool

Also Published As

Publication number Publication date
JP2012106297A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5838769B2 (en) Surface coated cutting tool
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2009119551A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work
JP2009125832A (en) Surface-coated cutting tool
JP2009125834A (en) Surface-coated cutting tool
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5692635B2 (en) Surface coated cutting tool
JP2006289537A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel
JP2011240436A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5692636B2 (en) Surface coated cutting tool
JP2009285764A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed high-feed cutting work
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP5287383B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed cutting
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2011240435A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP2011173174A (en) Surface coated cutting tool superior in heat resistance and deposition resistance
JP2011173176A (en) Surface coated cutting tool superior in heat resistance and deposition resistance
JP2011240437A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5796354B2 (en) Surface coated cutting tool with excellent heat resistance and welding resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent or registration of utility model

Ref document number: 5692635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees