JP5692635B2 - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP5692635B2
JP5692635B2 JP2010255656A JP2010255656A JP5692635B2 JP 5692635 B2 JP5692635 B2 JP 5692635B2 JP 2010255656 A JP2010255656 A JP 2010255656A JP 2010255656 A JP2010255656 A JP 2010255656A JP 5692635 B2 JP5692635 B2 JP 5692635B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
cutting
layer
tool
surface
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010255656A
Other languages
Japanese (ja)
Other versions
JP2012106297A (en )
Inventor
英利 淺沼
英利 淺沼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、ステンレス鋼、耐熱鋼などの、高熱発生が伴い、かつ切刃に対して断熱的、衝撃的負荷がかかる被削材を高速条件で切削加工した場合に、硬質被覆層が長期にわたって優れた耐摩耗性を発揮する表面被覆切削工具に関するものである。 The present invention is a surface-coated cutting tool (hereinafter, referred to as coated tool) relates, more particularly, for example, stainless steel, such as heat-resistant steel, heat generation is accompanied, and adiabatic, impact load is applied against the cutting edge when cutting a workpiece at a high speed condition, the hard coating layer is related to surface-coated cutting tool exhibits excellent abrasion resistance for a long time.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 Generally, the coated tool, the various steel and workpiece of turning or planing indexable used in removably attached to the distal end of the byte processing such as cast iron, etc. drilling cutting of the workpiece drill or miniature drill used, further scalping processing and groove processing of the workpiece, include end mills solid type used in such shoulder machining, also similar to the solid type end mill fitted with indexable detachably such as throw-away end mill tool to perform the cutting process is known.

また、被覆工具としては、例えば、工具基体表面に、ZrN層を設けた被覆工具も知られており、特に、構成成分であるZrによって高温硬さと耐熱性を具備することから、ZrN層がすぐれた高温硬さ、耐熱性を示すことも知られている。 As the coated tool, for example, a tool substrate surface, also known coated tool having a ZrN layer, in particular, since having a high-temperature hardness and heat resistance by a constituent Zr, superior is ZrN layer hot hardness, it is also known to exhibit heat resistance.

さらに、前記従来被覆工具が、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、金属Zrと、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に、ZrN層からなる硬質被覆層を蒸着することにより製造されることも知られている。 Furthermore, the conventional coated tool, for example, charged with tool substrate in an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown in schematic illustration in FIG. 2, in the apparatus, for example, a temperature of 500 ° C. while heating the cathode electrode alloy corresponding to the composition is set in the hard coating layer, for example, a metal Zr, between the anode electrode, for example, current: generate an arc discharge at 90A conditions, at the same time by introduction of nitrogen gas as a reaction gas into the apparatus, for example, a reaction atmosphere of 2 Pa, whereas, in the tool base body, for example, under conditions of applying a bias voltage of -100 V, a tool substrate surface, the ZrN layer it is also known to be produced by depositing becomes hard layer.

特表昭63−502123号公報 Kohyo Sho 63-502123 JP

ところが、近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、前記従来被覆工具においては、これを、ステンレス鋼、耐熱鋼などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの被削材を、高い発熱をともなうとともに、切刃部に対して断続的、衝撃的負荷がかかる高速条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果切刃部における However, FA of recent cutting device is remarkable, while the labor saving and energy saving for cutting, further cost reduction strongly required, along with this, as far as possible affect the grade of the workpiece in the cutting tool receiving no versatility, i.e., tend to have a cutting tool capable of as many grades of cutting sought, in the conventional coated tool, which, stainless steel, of the workpiece, such as heat-resistant steel If there is no problem when the normal used for the cutting of the cutting speed, these workpiece, with accompanying high heat generation, which is cut at a high speed conditions intermittently against the cutting edge, the impact load is applied , the workpiece and chips by the heat generated during cutting is viscosity increases are heated to a high temperature, weldability become increasingly more for the hard coating layer surface with this, in the result cutting edge ッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 Mappings generation of (small chipping) increases rapidly, which is at present, leading to a relatively short time service life due.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高熱発生を伴う高速条件で切削した場合においてもすぐれた耐熱性および耐摩耗性を発揮する被覆工具を提供することである。 Therefore, the technical problem the present invention is to solve, namely, an object of the present invention is to provide a coated tool exhibits excellent heat resistance and wear resistance even when the cutting at high speed conditions associated with high heat generation it is.

そこで、本発明者らは、前述のような観点から、特に、ステンレス鋼、耐熱鋼などの難削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性とすぐれた耐摩耗性を併せ持つ被覆工具を開発すべく、鋭意研究を行った結果、工具基体の表面に、Zrとの合量に占めるYの含有割合が1〜15原子%となるようにY成分を含有させたZrとYの複合窒化物層(以下、(Zr,Y)N層で示す)を硬質被覆層として0.5〜5μmの平均層厚で形成した場合には、難削材の高速切削加工において、この被覆工具はすぐれた耐熱性とすぐれた耐摩耗性を発揮することを見出したのである。 Accordingly, the present inventors have, from the viewpoint as described above, in particular, stainless steel, the cutting of difficult-to-cut materials such as heat-resistant steel, when cutting at high speed cutting conditions, heat resistance hard coating layer has excellent to develop a coated tool having both excellent wear resistance and, as a result of intense study, the surface of the tool substrate, as the content ratio of Y to total total amount of Zr is 15 atomic% Y composite nitride layer of Zr and Y which contains a component (hereinafter, (Zr, Y) indicated by N layer) when the formed with an average layer thickness of 0.5~5μm as hard coating layer is difficult to cut materials in high-speed cutting, this coated tool is was found to exhibit wear resistance excellent and excellent heat resistance.

本発明は、前記研究結果に基づいてなされたものであって、 The present invention was made based on the research results,
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、 In "(1) surface-coated cutting tool obtained by forming a hard coating layer on a tungsten carbide based cemented carbide or surface of the constructed tool substrate with titanium carbonitride based cermet,
前記硬質被覆層が、0.5〜5μmの平均層厚を有し、かつ、 The hard coating layer has an average layer thickness of 0.5 to 5 [mu] m, and,
組成式:(Zr 1−γγ )N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層の単層からなることを特徴とする表面被覆切削工具。 Composition formula: (Zr 1-γ Y γ ) N ( where, gamma indicates the content ratio of Y, in atomic ratio, a is 0.01 ≦ γ ≦ 0.15) composite nitride of Zr and Y that satisfy the surface-coated cutting tool, characterized in that a single layer of the layer. "
を特徴とするものである。 The one in which the features.

つぎに、本発明の被覆工具の硬質被覆層に関し、前記の通りに数値限定した理由を説明する。 Next, it relates hard layer of the coated tool of the present invention, illustrating the reasons for the numerical limitation as described above.

(a)硬質被覆層を構成する(Zr,Y)N層の組成 硬質被覆層を構成するZrとYの複合窒化物(Zr,Y)N層は、所定の耐熱性、耐摩耗性を有するとともに、その構成成分であるY成分によって、すぐれた高温熱伝導性、高温硬さを備えるようになり、そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐溶着性を発揮するようになるが、Yの含有割合を示すγ値がZrとの合量に占める割合(原子比、以下同じ)で0.01未満になると、高温硬さを確保することができないために耐溶着効果を期待することはできず、一方、Yの割合を示すγ値が同0.15を越えると、相対的にZrの含有割合が減少し、難削材の高速切削加工で必要とされる潤滑性を確保することができないばかりか、耐溶着性も低下し、チッピン (A) constituting the hard layer (Zr, Y) N layer Zr composite nitride Y constituting the composition hard coating layer of (Zr, Y) N layer has predetermined heat resistance, wear resistance together, the Y component is its constituents, excellent high temperature thermal conductivity, become comprises a high-temperature hardness, therefore, a low friction coefficient is maintained even at a high temperature cutting conditions, so as to exhibit excellent deposition resistance becomes, the ratio γ value indicating the content of Y occupies the total amount of the Zr (atomic ratio, hereinafter the same) becomes less than 0.01, the anti-welding effect due to the inability to secure a high-temperature hardness can not be expected, while when γ value indicating a ratio of Y exceeds the 0.15, lubrication proportion of relatively Zr is reduced, is needed in high-speed cutting of difficult-to-cut materials not only can not be ensured gender, drops welding resistance, Chippin 発生を防止することが困難になることから、γ値を0.01〜0.15(原子比、以下同じ)と定めた。 Since it is difficult to prevent the occurrence, it was defined as the γ value from 0.01 to 0.15 (atomic ratio, hereinafter the same).

(b)硬質被覆層を構成する(Zr,Y)N層の平均層厚 そして、(Zr,Y)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐熱性、耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、難削材の高速切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。 (B) constituting the hard layer (Zr, Y) average layer of the N layer thickness and, (Zr, Y) in the average layer thickness is less than 0.5μm of N layers, has excellent heat resistance itself, abrasion be insufficient to exert over the sex-term, whereas when the average layer thickness exceeds 5 [mu] m, since the easily chipping occurs in the cutting edge in a high-speed cutting of difficult-to-cut materials, the average layer the thickness was defined as 0.5~5μm.

そして、(Zr,Y)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のZr−Y合金からなるカソード電極(蒸発源)を配置し、アノード電極と前記カソード電極(蒸発源)との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、3Paの反応雰囲気とし、一方、前記基体には、例えば、−150Vのバイアス電圧を印加した条件で蒸着することにより、(Zr,Y)N層からなる単層を蒸着することにより本発明の硬質被覆層を蒸着形成することができる。 Then, (Zr, Y) N layer, for example, charged with base to arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown in schematic illustration in FIG. 1, in the apparatus with a heater, for example, while heating to a temperature of 500 ° C., to place the cathode electrode (vapor source) made of Zr-Y alloy having a predetermined composition within the device, between the anode electrode cathode (evaporation source), for example, current : 110A conditions to generate arc discharge of by introducing nitrogen gas as a reaction gas at the same time in the apparatus, for example, a reaction atmosphere of 3 Pa, whereas, on the substrate, for example, to apply a bias voltage of -150V by depositing the condition, it can be a hard coating layer of the present invention to deposit formed by depositing a single layer made of (Zr, Y) N layer.

本発明の被覆工具によれば、単層の(Zr,Y)N層からなる硬質被覆層は優れた耐熱性と耐摩耗性を備えることから、特に、ステンレス鋼や耐熱鋼等の難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐熱性を示し、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものである。 According to coated tool of the present invention, a single layer (Zr, Y) hard coating layer consisting of N layers is because with excellent heat resistance and wear resistance, in particular, difficult to cut materials such as stainless steel or heat resistant steel of, accompanied by large heat generation, and even high-speed cutting consuming high load, superior exhibited heat resistance, chipping resistance was good for a long time, it is to exhibit wear resistance.

本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。 It shows an arc ion plating apparatus used to form the hard coating layer that constitutes the present invention coated tool, (a) represents a schematic plan view, (b) is a schematic front view. 比較被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。 Comparison is a schematic illustration of a conventional arc ion plating apparatus used to form the hard coating layer forming the coating tool.

つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, specifically described by the coated tool of the present invention embodiment.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder both having an average particle size of 1 to 3 [mu] m, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, prepared TaN powder and Co powder, and, these raw material powders were blended in blending composition shown in Table 1, 72 hour wet mixing in a ball mill, dried, and pressed into a green compact under a pressure of 100 MPa, vacuum 6Pa this green compact in a temperature 1400 sintered under the conditions of 1 hour hold time at ° C., after sintering, to form a tool substrate a-1 to a-10 manufactured by WC-based cemented carbide having a tip shape of ISO standard · CNMG120408 .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, prepared Co powder and Ni powder, and these raw material powders were blended in the formulation composition shown in Table 2, 24 hours wet mixed in a ball mill, dried, pressed into a green compact at a pressure of 100MPa and, in a nitrogen atmosphere at 2kPa the green compact, temperature: 1500 to sintering under the conditions of 1 hour hold time at ° C., after sintering, ISO standard · CNMG120408 TiCN based cermet tool substrates B having a chip shape to form a -1~B-6.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、カソード電極(蒸発源)として所定組成の硬質被膜層形成用のZr−Y合金を配置し、 (A) Then, each of the tool substrate A-1 to A-10 and B-1 to B-6, was subjected to ultrasonic cleaning in acetone, in a dry state, arc ion plating apparatus shown in FIG. 1 from the central axis of the rotary table of the inner along the outer peripheral portion at a predetermined distance in the radial direction and attached, placing the cathode (evaporation source) on both sides opposed across the rotary table, a cathode electrode ( evaporation source) as disposed Zr-Y alloy for hard coating layer formed of a predetermined composition,
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、 (B) First, while holding by evacuating the apparatus to a vacuum below 0.1 Pa, after heating the inside of the apparatus to 500 ° C. by the heater, the -1000V the tool substrate that rotates while rotating on the turntable DC bias voltage is applied to, and by flowing 100A of current between the cathode and anode electrodes to generate arc discharge, and bombardment cleaning the tool substrate surface with,
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Zr−Y合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、目標層厚の単層としての(Zr,Y)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、 (C) Next, while the reaction atmosphere of 4Pa by introducing nitrogen gas as a reaction gas into the apparatus, by applying a DC bias voltage of -100V to the tool substrate that rotates while rotating on the turntable, and by flowing a 120A current between said Zr-Y alloy and the anode electrode of the cathode electrode to generate arc discharge on the surface of the tool substrate, Table 3, target composition, target layer thickness single as indicated in Table 4 as a layer (Zr, Y) after the N layer was vapor deposited with an average layer thickness of 0.5 to 5 [mu] m, to stop the arc discharge between the cathode electrode (vapor source) and the anode electrode,
前記(a)〜(c)により硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。 The hard coating layer is vapor deposited by (a) ~ (c), the present invention surface-coated throw-away tip as coated tool (hereinafter, the present invention coated chip say) 1 to 16 were prepared, respectively.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成の金属Zrを装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の金属Zrとアノード電極との間に150Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記金属Zrでボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−90Vに下げて、前記 For the purpose of comparison, these tool substrate A-1 to A-10 and B-1 to B-6, was subjected to ultrasonic cleaning in acetone, in a dry state, arc ion plating, respectively shown in Figure 2 It was charged to the apparatus, as a cathode electrode (vapor source) fitted with a metal Zr having a predetermined composition, first, while holding by evacuating the apparatus to a vacuum below 0.1 Pa, heating the inside of the apparatus to 500 ° C. by the heater after, applying a DC bias voltage of -1000V to said tool substrate, and by flowing a 150A current between the metal Zr and the anode electrode of the cathode electrode to generate arc discharge, with a tool substrate surface the metal Zr in bombarded washed, with a reaction atmosphere of 2Pa then introducing nitrogen gas as a reaction gas into the apparatus, by lowering the bias voltage applied to the tool substrate to -90 V, the 定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚のZrN層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。 To generate arc discharge between the cathode electrodes and the anode electrode isocratic, the tool substrate A-1 to A-10 and the surface of each of the B-1 to B-6 with Table 5, Table 6 by depositing form a hard coating layer composed of a target composition and target layer thickness ZrN layer shown, manufacturing surface-coated throw-away tip as a comparative coated tool (hereinafter, referred to as comparative coated chip) 1 to 16 respectively did.

つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、 Next, the various coating chips, in a state where both the set screw in the tool steel byte tip fixture, the present invention cover the chip 1 to 16 and Comparative coating chips 1-16,
被削材:JIS・SUS304(HB180)の丸棒、 Workpiece: JIS · SUS304 round bar (HB180),
切削速度: 140m/min. Cutting speed: 140m / min. ,
切り込み: 2mm、 Cut: 2mm,
送り: 0.3mm/rev. Feed: 0.3mm / rev. ,
切削時間: 5分、 Cutting time: 5 minutes,
の条件(切削条件A)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、130m/min.、0.2mm/rev.)、 Wet Continuous high-speed cutting machining test at the conditions (cutting conditions A) stainless steel (normal cutting speed and feed, respectively, 130m / min., 0.2mm / rev.),
被削材:Ti−6Al−4V合金(HB250)の丸棒、 Workpiece: round bar of Ti-6Al-4V Alloy (HB250),
切削速度: 60m/min. Cutting speed: 60m / min. ,
切り込み: 2mm、 Cut: 2mm,
送り: 0.2mm/rev. Feed: 0.2mm / rev. ,
切削時間: 5分、 Cutting time: 5 minutes,
の条件(切削条件B)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.、0.15mm/rev.)、 Wet Continuous high-speed cutting machining test Ti alloy at conditions (cutting conditions B) (normal cutting speed and feed, respectively, 50m / min., 0.15mm / rev.),
被削材:Ni−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB430)の丸棒、 Work material: Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) round bar of -0.5Al (HB430),
切削速度: 40m/min. Cutting speed: 40m / min. ,
切り込み: 3mm、 Cut: 3mm,
送り: 0.15mm/rev. Feed: 0.15mm / rev. ,
切削時間: 5分、 Cutting time: 5 minutes,
の条件(切削条件C)でのNi基耐熱合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.15mm/rev.)、 Wet Continuous high-speed cutting machining test of the Ni-base heat-resistant alloy at conditions (cutting conditions C) (normal cutting speed and feed, respectively, 30m / min., 0.15mm / rev.),
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。 It was carried out to measure the flank wear width of the cutting edge in any of the high-speed cutting test. この測定結果を表7、表8に示した。 Table 7 The results of the measurements are shown in Table 8.

実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr 粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, WC powder having an average particle size of either 1 to 3 [mu] m, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder the raw material powder consisting of, by blending the formulation compositions shown in Table 1, 72 hour wet mixing in a ball mill, dried, and pressed into a green compact under a pressure of 100 MPa, in a vacuum of 6Pa this green compact , temperature: 1400 to sintering under the conditions of 1 hour hold time at ° C., the diameter to form a tool substrate forming round rod sintered body 13 mm, from further said round bar sintered at grinding, cutting edge dimensions of 10 mm × 22 mm diameter × length parts, and twist angle of 30 degrees the WC-based cemented carbide having 4-flute square shape tool substrate (end mill) a-1~A-10 were prepared respectively .

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Zr,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜10をそれぞれ製造した。 Then, these tool substrate (end mill) surface of the A-1 to A-10 was subjected to ultrasonic cleaning in acetone, in a dry state, also charged into the arc ion plating apparatus shown in FIG. 1, Example 1 under the same conditions as, the target composition and target layer thicknesses shown in Table 9 (Zr, Y) by depositing form a hard coating layer consisting of N layers, the present invention surface coating cemented carbide as the present invention coated tool Ltd. end mill (hereinafter, the present invention refers to the coating end mill) 10 was prepared, respectively.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表10に示される目標組成および目標層厚のZrN層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜10をそれぞれ製造した。 For the purpose of comparison, the surface of the tool substrate (end mill) A-1~A-10 to ultrasonic cleaning in acetone, in a dry state, also charged into the arc ion plating apparatus shown in FIG. 2 and, under the same conditions as in example 1, by depositing a hard coating layer consisting of the target composition and target layer thickness ZrN layer shown in Table 10, the surface-coated cemented carbide end mills of the comparison coated tool (hereinafter, a comparison coating end mill refers) 1-10 were prepared, respectively.

つぎに、本発明被覆エンドミル1〜10および比較被覆エンドミル1〜10について、 Next, the present invention coated end mill 10 and Comparative coating end mill 10,
被削材−平面寸法:100 mm×250 mm、厚さ:50 mmのJIS・SUS304(HB170)の板材、 Workpiece - planar dimensions: 100 mm × 250 mm, thickness: sheet The 50 mm of JIS · SUS304 (HB170),
切削速度: 140m/min. Cutting speed: 140m / min. ,
溝深さ(切り込み):15mm、 Groove depth (cut): 15mm,
テーブル送り: 290mm/分、 Table feed: 290mm / minute,
の条件(切削条件D)でのステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、110m/min.、280mm/分)、 Wet high-rate groove cutting test under the conditions (cutting conditions D) of stainless steel (normal cutting speed and table feed, respectively, 110m / min., 280mm / min),
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、 Workpiece - planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm Ti-6Al-4V alloy (HB250),
切削速度: 50m/min. Cutting speed: 50m / min. ,
溝深さ(切り込み):15mm、 Groove depth (cut): 15mm,
テーブル送り: 120 mm/分、 Table feed: 120 mm / min,
の条件(切削条件E)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、100mm/分)、 Wet high-rate groove cutting test Ti alloy at conditions (cutting conditions E) (normal cutting speed and table feed, respectively, 35m / min., 100mm / min),
被削材:平面寸法:100 mm×250 mm、厚さ:50 mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB430)の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet The 50 mm of Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB430),
切削速度: 50m/min. Cutting speed: 50m / min. ,
溝深さ(切り込み): 15mm、 Groove depth (cut): 15mm,
テーブル送り: 80mm/分、 Table feed: 80mm / minute,
の条件(切削条件F)でのNi基耐熱合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、40m/min.、70mm/分)、 Wet high-rate groove cutting test of Ni-base heat-resistant alloy at conditions (cutting conditions F) (normal cutting speed and table feed, respectively, 40m / min., 70mm / min),
寿命の目安とされる0.1 mmに至るまでの切削溝長を測定した。 Cutting groove length of up to 0.1 mm which is a measure of life was measured. この測定結果を表9、表10にそれぞれ示した。 Table 9 The measurement results are shown in Tables 10.

実施例2で製造した直径が13 mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8 mm×22 mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。 Dimensions of Examples diameter prepared in 2 using round rod sintered body of 13 mm, from the round rod sintered body at grinding, 8 diameter × length of the groove forming portions respectively mm × 22 mm, and WC-based cemented carbide tool substrate having two edge geometry of the twist angle of 30 degrees (drill) a-1~A-10 were prepared respectively.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表11に示される目標組成および目標層厚の(Zr,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜10をそれぞれ製造した。 Then, the cutting edge of these tool substrate (drill) A-1~A-10, subjected to honing, ultrasonic cleaning in acetone, in a dry state, also in the arc ion plating apparatus shown in FIG. 1 was charged, under the same conditions as in example 1, the target composition and target layer thicknesses shown in Table 11 (Zr, Y) by depositing form a hard coating layer consisting of N layers, as the present invention coated tool the present invention surface coating cemented carbide drills (hereinafter, the present invention refers to the coating drill) 1 to 10 were prepared, respectively.

また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表12に示される目標組成および目標層厚を有するZrN層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜10をそれぞれ製造した。 For the purpose of comparison, the tool substrate (drill) A-1~A-10 surface is subjected to honing, ultrasonic cleaning in acetone, in a dry state, arc ion plating similarly shown in FIG. 2 was charged to the computing device, under the same conditions as in example 1, by a hard coating layer made of ZrN layer having a target composition and target layer thicknesses shown in Table 12 formed by evaporation, the surface of the comparison coated tool coated cemented carbide drills (hereinafter, compared referred to as coated drill) to produce respectively 1-10.

つぎに、本発明被覆ドリル1〜10および比較被覆ドリル1〜10について、 Next, the present invention cover the drill 10 and Comparative coating Drill 1-10,
被削材−平面寸法:100 mm×250 mm、厚さ:50 mmのJIS・SUS304(HB180)の板材、 Workpiece - planar dimensions: 100 mm × 250 mm, thickness: sheet The 50 mm of JIS · SUS304 (HB180),
切削速度: 85m/min. Cutting speed: 85m / min. ,
送り: 0.35mm/rev、 Feed: 0.35mm / rev,
穴深さ: 5mm、 Hole depth: 5mm,
の条件(切削条件G)でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.2mm/rev.)、 Wet fast drilling cutting test under the conditions (cutting conditions G) of stainless steel (normal cutting speed and feed, respectively, 80m / min., 0.2mm / rev.),
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、 Workpiece - planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm Ti-6Al-4V alloy (HB250),
切削速度: 45m/min. Cutting speed: 45m / min. ,
送り: 0.25mm/rev. Feed: 0.25mm / rev. ,
穴深さ: 5mm、 Hole depth: 5mm,
の条件(切削条件H)でのTi合金の湿式高速穴あけ切削加工試験((通常の切削速度および送りは、それぞれ、40m/min.、0.15mm/rev.)、 Wet fast drilling cutting test Ti alloy at conditions (cutting conditions H) ((normal cutting speed and feed, respectively, 40m / min., 0.15mm / rev.),
被削材:平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB430)の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm of Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB430),
切削速度: 45m/min. Cutting speed: 45m / min. ,
送り: 0.2mm/rev. Feed: 0.2mm / rev. ,
穴深さ: 5mm、 Hole depth: 5mm,
の条件(切削条件I)での焼入れ合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.1mm/rev.)、 Wet fast drilling cutting test of hardened alloy steel in conditions (cutting conditions I) (normal cutting speed and feed, respectively, 30m / min., 0.1mm / rev.),
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。 It was carried out, respectively, flank wear width of any wet fast drilling cutting test (water-soluble cutting oil used) even tip cutting surfaces were measured drilling number of up to 0.3 mm. この測定結果を表11、表12にそれぞれ示した。 Table 11 The results of the measurements are shown in Tables 12.

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜10、および本発明被覆ドリル1〜10の硬質被覆層を構成する単層の(Zr,Y)N層、並びに、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜10、および比較被覆ドリル1〜10のZrN層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 The resulting invention coated chip 1 to 16 as the present invention coated tool, the present invention coated end mill 10, and the present invention cover the drill 10 of the single layers constituting the hard layer (Zr, Y) N layer, as well as comparative coating chips to 16 as comparative coated tool, the composition of the comparison coated end mill 10, and Comparative coated hard coating layer made of ZrN layer of the drill 1 to 10, using a transmission electron microscope It was measured by energy dispersive X-ray analysis of showed each target composition substantially the same composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Moreover, when the cross section measured average layer thickness of each layer constituting the hard coating layer with a scanning electron microscope, both showing the target layer thickness substantially the same average value (average value of five points).

表7〜12に示される結果から、本発明被覆工具は、(Zr,Y)N層のもつ優れた高温熱伝導性、高温硬さによって、高い発熱を伴う鋼の高速切削に用いても切刃の摩耗進行が抑制され、長期にわたって優れた耐摩耗性を発揮するようになる。 From the results shown in Table 7-12, the present invention coated tool, (Zr, Y) having excellent high-temperature thermal conductivity of the N layer, the high-temperature hardness, switching be used in high-speed cutting of steel with high fever wear progress of the blade is suppressed, so that excellent wear resistance for a long time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特にTi合金、ステンレス鋼等の難削材の高速切削加工でもすぐれた耐摩耗性と耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, coated tool of the present invention, the general cutting of the workpiece is of course, particularly Ti alloy, wear resistance and welding resistance which is superior in high-speed cutting of difficult-to-cut materials such as stainless steel exert sex, but to indicate the superior cutting performance over a long period of time, FA of the cutting device, as well as labor saving of cutting and energy saving, but can respond to satisfactory further cost reduction .

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、 In the surface-coated cutting tool obtained by forming a hard coating layer on a tungsten carbide based cemented carbide or surface of the constructed tool substrate with titanium carbonitride based cermet,
    前記硬質被覆層が、0.5〜5μmの平均層厚を有し、かつ、 The hard coating layer has an average layer thickness of 0.5 to 5 [mu] m, and,
    組成式:(Zr 1−γγ )N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層の単層からなることを特徴とする表面被覆切削工具。 Composition formula: (Zr 1-γ Y γ ) N ( where, gamma indicates the content ratio of Y, in atomic ratio, a is 0.01 ≦ γ ≦ 0.15) composite nitride of Zr and Y that satisfy the surface-coated cutting tool, characterized in that a single layer of the layer.
JP2010255656A 2010-11-16 2010-11-16 Surface-coated cutting tool Active JP5692635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255656A JP5692635B2 (en) 2010-11-16 2010-11-16 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255656A JP5692635B2 (en) 2010-11-16 2010-11-16 Surface-coated cutting tool

Publications (2)

Publication Number Publication Date
JP2012106297A true JP2012106297A (en) 2012-06-07
JP5692635B2 true JP5692635B2 (en) 2015-04-01

Family

ID=46492505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255656A Active JP5692635B2 (en) 2010-11-16 2010-11-16 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP5692635B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895765A (en) * 1985-09-30 1990-01-23 Union Carbide Corporation Titanium nitride and zirconium nitride coating compositions, coated articles and methods of manufacture
JP3712241B2 (en) * 1995-01-20 2005-11-02 日立ツール株式会社 Coated cutting tools and coated abrasion tool
US6645639B1 (en) * 2000-10-13 2003-11-11 Applied Thin Films, Inc. Epitaxial oxide films via nitride conversion
JP4375527B2 (en) * 2003-05-19 2009-12-02 三菱マテリアル株式会社 Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent high-speed heavy cutting conditions
US20060188345A1 (en) * 2005-02-18 2006-08-24 Greenwood Mark L Rotary cutting tool with pairs of helical cutting edges having different helix angles
JP2009119550A (en) * 2007-11-14 2009-06-04 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP2009255233A (en) * 2008-04-17 2009-11-05 Mitsubishi Materials Corp Surface coated cutting tool

Also Published As

Publication number Publication date Type
JP2012106297A (en) 2012-06-07 application

Similar Documents

Publication Publication Date Title
JP2011224715A (en) Surface-coated cutting tool with hard coating layer for exhibiting excellent abrasion resistance
JP2003260603A (en) Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP2003340608A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent abrasion resistance in high speed heavy cutting condition
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2008100320A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2003340606A (en) Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work
JP2012024854A (en) Surface-coated cutting tool
JP2006346777A (en) Surface coated cemented carbide cutting tool having lubricative coating layer exhibiting excellent wear resistance
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP2003127003A (en) Cemented carbide-made cutting tool with surface clad whose rigid clad layer exerts excellent wear resistance in high velocity cutting machining
JP2008188734A (en) Surface coated cutting tool with hard coating layer exercising superior chipping resistance
JP2007167988A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting chipping resistance in high-speed cutting material hard to cut
JP2003311507A (en) Cutting tool made of surface coated sintered having hard coating layer with excellent chipping resistance under high speed heavy cutting conditions
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2007160467A (en) Surface coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed cutting of material hard to cut
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP2006289538A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP2009056540A (en) Surface-coated cutting tool, of which hard coating layer achieves excellent chipping resistance
JP2009125834A (en) Surface-coated cutting tool
JP2011104737A (en) Surface coated cutting tool
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5692635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150