JP2011173174A - Surface coated cutting tool superior in heat resistance and deposition resistance - Google Patents

Surface coated cutting tool superior in heat resistance and deposition resistance Download PDF

Info

Publication number
JP2011173174A
JP2011173174A JP2010036818A JP2010036818A JP2011173174A JP 2011173174 A JP2011173174 A JP 2011173174A JP 2010036818 A JP2010036818 A JP 2010036818A JP 2010036818 A JP2010036818 A JP 2010036818A JP 2011173174 A JP2011173174 A JP 2011173174A
Authority
JP
Japan
Prior art keywords
layer
hard coating
cutting
coating layer
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010036818A
Other languages
Japanese (ja)
Inventor
Shinichi Shikada
信一 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010036818A priority Critical patent/JP2011173174A/en
Publication of JP2011173174A publication Critical patent/JP2011173174A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool whose hard coating layer exerts excellent heat resistance and deposition resistance in high speed cutting of a hard-to-cut material such as a Ti-alloy, stainless steel and the like. <P>SOLUTION: In the surface coated cutting tool in which the hard coating layer is formed on the surface of a tool base body, the hard coating layer is constructed either of a single layer of a composite nitride layer of V and Y satisfying a composition formula: (V<SB>1-γ</SB>Y<SB>γ</SB>)N (where 0.01≤γ≤0.1 in terms of an atomic ratio) or of a double layer structure formed of a lower layer of a composite nitride layer of Ti and Al expressed by a composition formula: (Ti<SB>1-α</SB>Al<SB>α</SB>)N or a lower layer of a composite nitride layer of Ti, Al and M expressed by a composition formula: (Ti<SB>1-α-β</SB>Al<SB>α</SB>M<SB>β</SB>)N (where M is one or more additive components selected from periodic table group 4a, 5a, 6a elements, Si, B, Y excluding Ti, and 0.45≤α≤0.75 and 0.01≤β≤0.25 in terms of the atomic ratio) and an upper layer formed of the (V<SB>1-γ</SB>Y<SB>γ</SB>)N layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、Ti合金、ステンレス鋼などの難削材を、高熱発生を伴うとともに切刃部に対して大きな機械的負荷がかかる高速条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性と耐溶着性を発揮する被覆工具に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, a difficult-to-cut material such as a Ti alloy or stainless steel is accompanied by high heat generation and a large mechanical load on the cutting edge portion. The present invention relates to a coated tool that exhibits excellent heat resistance and welding resistance when a hard coating layer is cut under such high-speed conditions.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, coated tools are used for throwaway inserts that are detachably attached to the tip of cutting tools for drilling and cutting of various materials such as steel and cast iron. There are drills and miniature drills used, as well as solid type end mills used for chamfering, grooving and shoulder machining of work materials, etc. A slow-away end mill tool that performs cutting is known.

また、被覆工具としては、例えば、工具基体表面に、TiとAlの複合窒化物((Ti,Al)N)層、あるいは、これにさらに、Si、B、Y、Zr、V等を微量添加含有させたTiとAlを主成分とする複合窒化物(以下、これらを総称して、(Ti,Al,M)Nという)層を設けた被覆工具も知られており、特に、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備することから、上記(Ti,Al,M)N層がすぐれた高温強度、耐欠損性、耐摩耗性を示すことも知られている。   As a coated tool, for example, a Ti and Al composite nitride ((Ti, Al) N) layer or a small amount of Si, B, Y, Zr, V, etc. is added to the tool base surface. A coated tool provided with a composite nitride mainly containing Ti and Al (hereinafter collectively referred to as (Ti, Al, M) N) is also known. It is also known that the above (Ti, Al, M) N layer exhibits excellent high temperature strength, fracture resistance, and wear resistance because it has high temperature hardness and heat resistance with certain Al and high temperature strength with the same Ti. Yes.

さらに、上記の従来被覆工具が、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、Ti−Al−M合金と、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、上記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に、(Ti,Al,M)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。   Furthermore, the above-mentioned conventional coated tool is loaded with a tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. 2, for example, at 500 ° C. inside the apparatus. Arc discharge between a cathode electrode, for example, a Ti-Al-M alloy, in which an alloy corresponding to the composition of the hard coating layer is set, and the anode electrode while being heated to a temperature, for example, at a current of 90 A At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the tool substrate surface is subjected to, for example, a bias voltage of −100 V, for example. In addition, it is also known to be produced by vapor-depositing a hard coating layer made of a (Ti, Al, M) N layer.

特許第2644710号明細書Japanese Patent No. 2644710 特許第2793773号明細書Japanese Patent No. 2793773 特許第2793696号明細書Japanese Patent No. 2793696 特開平8−199338号公報JP-A-8-199338

ところが、近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆工具においては、これを、Ti合金、ステンレス鋼などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの被削材を、高い発熱をともなうとともに、切刃部に局部的に高負荷がかかる高速条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, in recent years, the FA of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. However, in the conventional coated tools described above, this is applied to a work material such as a Ti alloy or stainless steel. There is no problem when it is used for cutting at the normal cutting speed, but when these materials are cut under high-speed conditions that cause high heat generation and locally apply a high load to the cutting edge. Due to the heat generated during cutting, the work material and the chips are heated to a high temperature and the viscosity increases. As a result, the weldability to the surface of the hard coating layer further increases. Grayed generation of (small chipping) increases rapidly, which is at present, leading to a relatively short time service life due.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高熱発生を伴う高速条件で切削した場合においてもすぐれた耐熱性及び耐溶着性を発揮する被覆工具を提供することである。   Therefore, a technical problem to be solved by the present invention, that is, an object of the present invention is to provide a coated tool that exhibits excellent heat resistance and welding resistance even when cutting under high-speed conditions with high heat generation. It is.

そこで、本発明者等は、上述のような観点から、特にTi合金、ステンレス鋼などの軟削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性とすぐれた耐溶着性を併せ持つ被覆工具を開発すべく、鋭意研究を行った結果、工具基体の表面に、Vとの合量に占めるYの含有割合が1〜10原子%となるようにY成分を含有させたVとYの複合窒化物層(以下、(V,Y)N層で示す)を硬質被覆層として形成した場合には、軟削材の高速切削加工において、この被覆工具はすぐれた耐溶着性を発揮することを見出したのである。
さらに、本発明者等は、工具基体の表面に、上記従来被覆工具の硬質被覆層である(Ti,Al)N層あるいは(Ti,Al,M)N層を下部層として0.5〜5μmの平均層厚で形成し、これの上に、Vとの合量に占めるYの含有割合が1〜10原子%となるようにY成分を含有させた上記(V,Y)N層を上部層として形成すると、下部層である(Ti,Al)N層あるいは(Ti,Al,M)N層は、すぐれた高温硬さ、高温強度、耐熱性を示し、また、上部層である(V,Y)N層はすぐれた耐溶着性を示すが、特に、上部層の(V,Y)N層中に含有されるY成分によって、(V,Y)N層の耐熱性が向上することから、高熱発生を伴う切削加工においても、(V,Y)N層のすぐれた耐溶着性は維持され、したがって、難削材の高速切削加工において、切刃部が高温になったとしても被削材との耐溶着性にすぐれ、その結果、切刃部におけるチッピング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、かかる知見に基づき、本発明を完成するに至ったものである。
In view of the above, the present inventors, in particular, have excellent heat resistance when the hard coating layer is excellent when cutting soft cutting materials such as Ti alloys and stainless steel under high-speed cutting conditions. As a result of diligent research to develop a coated tool that also has excellent welding resistance, the Y component accounts for 1 to 10 atomic percent of the total amount of Y on the surface of the tool base. When a composite nitride layer containing V and Y (hereinafter referred to as a (V, Y) N layer) containing N is formed as a hard coating layer, this coated tool is excellent in high-speed cutting of soft materials. It has been found that it exhibits high welding resistance.
Furthermore, the present inventors have made 0.5 to 5 μm on the surface of the tool base with the (Ti, Al) N layer or (Ti, Al, M) N layer, which is a hard coating layer of the above-mentioned conventional coated tool, as the lower layer. The above (V, Y) N layer containing the Y component so that the Y content in the total amount with V is 1 to 10 atomic% is formed on the upper layer. When formed as a layer, the lower layer (Ti, Al) N layer or (Ti, Al, M) N layer exhibits excellent high-temperature hardness, high-temperature strength and heat resistance, and is an upper layer (V , Y) N layer exhibits excellent welding resistance, but in particular, the heat resistance of the (V, Y) N layer is improved by the Y component contained in the (V, Y) N layer of the upper layer. Therefore, the excellent welding resistance of the (V, Y) N layer is maintained even in cutting with high heat generation. In high-speed cutting, even if the cutting edge becomes hot, it has excellent resistance to welding with the work material. As a result, the occurrence of chipping (small chipping) in the cutting edge is suppressed, and it has been excellent for a long time. The inventors have obtained new knowledge that wear resistance is exhibited, and have completed the present invention based on such knowledge.

本発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、0.5〜5μmの平均層厚を有し、かつ、
組成式:(V1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するVとYの複合窒化物層からなることを特徴とする表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Ti1−αAlα)N(ここで、αはAlの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(V1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するVとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
(3) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Ti1−α−βAlαβ)N(ここで、Mは、Tiを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはAlの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(V1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するVとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the above research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer has an average layer thickness of 0.5 to 5 μm, and
Compound nitride of V and Y satisfying the composition formula: (V 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.1) A surface-coated cutting tool comprising a layer.
(2) In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composite nitriding of Ti and Al satisfying the composition formula: (Ti 1-α Al α ) N (where α represents the Al content ratio and the atomic ratio is 0.45 ≦ α ≦ 0.75) A lower layer composed of physical layers,
(B) having an average layer thickness of 0.5-5 μm, and
Compound nitride of V and Y satisfying the composition formula: (V 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.1) A surface-coated cutting tool comprising an upper layer composed of layers.
(3) In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composition formula: (Ti 1-α-β Al α M β ) N (where M is a member selected from the group 4a, 5a, 6a elements except Si, Si, B, Y) Seeds or two or more kinds of additive components, α is a content ratio of Al, β is a content ratio of M, and atomic ratio is 0.45 ≦ α ≦ 0.75, 0.01 ≦ β ≦ A lower layer composed of a composite nitride layer of Ti and Al satisfying
(B) having an average layer thickness of 0.5-5 μm, and
Compound nitride of V and Y satisfying the composition formula: (V 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.1) A surface-coated cutting tool comprising an upper layer composed of layers. "
It is characterized by.

つぎに、この発明の被覆工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)下部層を構成する(Ti,Al)N層あるいは(Ti,Al,M)N層の組成および平均層厚:
下部層を構成する(Ti,Al)N層あるいは(Ti,Al,M)N層の構成成分であるAl成分には硬質被覆層における高温硬さを向上させ、同Ti成分には高温強度を向上させる作用があり、さらに、M成分のうちの、Tiを除く周期律表4a,5a,6a族の元素、Si、B、には硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Alの割合を示すα値がTiとの合量あるいはTiとMの合量に占める割合(原子比、以下同じ)で0.45未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方Alの割合を示すα値が同0.75を越えると、相対的にTiの含有割合が減少し、高速切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になり、さらに、M成分の含有割合を示すβ値がTiとの合量に占める割合(原子比、以下同じ)で0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方同β値が0.25を超えると、高温強度に低下傾向が現れるようになることから、α値を0.45〜0.75、β値を0.01〜0.25と定めた。
(A) Composition and average layer thickness of (Ti, Al) N layer or (Ti, Al, M) N layer constituting the lower layer:
The Al component, which is a component of the (Ti, Al) N layer or (Ti, Al, M) N layer constituting the lower layer, improves the high temperature hardness of the hard coating layer, and the Ti component has a high temperature strength. In addition, among the M components, the elements of the periodic table 4a, 5a, and 6a, except for Ti, Si and B, have the effect of improving the wear resistance of the hard coating layer. , Y has the effect of improving the high temperature oxidation resistance of the hard coating layer, but the α value indicating the proportion of Al accounts for the total amount of Ti or the total amount of Ti and M (atomic ratio, the same applies hereinafter). If it is less than 0.45, the predetermined high-temperature hardness cannot be secured, which causes a decrease in wear resistance. On the other hand, if the α value indicating the proportion of Al exceeds 0.75, relatively Ti content decreases, ensuring high temperature strength required for high speed cutting It is difficult to prevent the occurrence of chipping, and the β value indicating the content ratio of the M component is less than 0.01 in the proportion of the total amount with Ti (atomic ratio, the same applies hereinafter) However, improvement in properties such as wear resistance and high-temperature oxidation resistance due to the inclusion of the M component cannot be expected. On the other hand, if the β value exceeds 0.25, a tendency to decrease in high-temperature strength will appear. Therefore, the α value was set to 0.45 to 0.75, and the β value was set to 0.01 to 0.25.

また、その平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、上記の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。   Further, if the average layer thickness is less than 0.5 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time. On the other hand, if the average layer thickness exceeds 5 μm, the above high speed Since cutting tends to cause chipping at the cutting edge, the average layer thickness is determined to be 0.5 to 5 μm.

(b)単層あるいは上部層を構成する(V,Y)N層の組成
単層あるいは(Ti,Al)N層,(Ti,Al,M)N層の上部層を構成するVとYの複合窒化物((V,Y)N)層は、所定の高温硬さ、高温強度、耐溶着性を有するとともに、その構成成分であるY成分によって、すぐれた耐熱性を備えるようになり、そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐溶着性を発揮するようになるが、Yの含有割合を示すγ値がVとの合量に占める割合(原子比、以下同じ)で0.01未満になると、耐熱性を確保することができないために耐溶着効果を期待することはできず、一方、Yの割合を示すγ値が同0.10を越えると、相対的にVの含有割合が減少し、難削材の高速切削加工で必要とされる高温強度を確保することができないばかりか、耐溶着性も低下し、チッピング発生を防止することが困難になることから、γ値を0.01〜0.10(原子比、以下同じ)と定めた。
(B) Composition of (V, Y) N layer constituting single layer or upper layer V and Y constituting single layer or upper layer of (Ti, Al) N layer and (Ti, Al, M) N layer The composite nitride ((V, Y) N) layer has predetermined high-temperature hardness, high-temperature strength, and welding resistance, and also has excellent heat resistance due to its component Y component. The low friction coefficient is maintained even under high temperature cutting conditions, and excellent welding resistance is exhibited. However, the ratio of the γ value indicating the Y content to the total amount with V (atomic ratio, the same applies hereinafter) If it is less than 0.01, heat resistance cannot be ensured, so that it is not possible to expect a welding resistance effect. On the other hand, if the γ value indicating the proportion of Y exceeds 0.10, relatively V content is reduced, ensuring high-temperature strength required for high-speed cutting of difficult-to-cut materials DOO not only can not, welding resistance is also reduced, since it is difficult to prevent chipping, was defined as the γ value 0.01 to 0.10 (atomic ratio, hereinafter the same).

そして、(V,Y)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐熱性、耐溶着性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、難削材の高速切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。   And, if the average layer thickness of the (V, Y) N layer is less than 0.5 μm, it is insufficient to exhibit its excellent heat resistance and welding resistance over a long period of time, while its average layer thickness If the thickness exceeds 5 μm, chipping tends to occur at the cutting edge portion in high-speed cutting of difficult-to-cut materials, so the average layer thickness was determined to be 0.5 to 5 μm.

そして、上記(Ti,Al)N層、(Ti,Al,M)N層、(V,Y)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のV−Y合金からなるカソード電極(蒸発源)を配置し、また、必要に応じて、所定組成のTi−Al合金からなるカソード電極(蒸発源)あるいは所定組成のTi−Al−M合金からなるカソード電極(蒸発源)を配置し、アノード電極と上記のカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、上記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することにより、(V,Y)N層からなる単層、上記(Ti,Al)層からなる下部層と(V,Y)N層からなる上部層の2層、あるいは、上記(Ti,Al,M)層からなる下部層と(V,Y)N層からなる上部層の2層を蒸着することにより本発明の硬質被覆層を蒸着形成することができる。 The (Ti, Al) N layer, (Ti, Al, M) N layer, and (V, Y) N layer are arcs that are one type of physical vapor deposition apparatus schematically shown in FIG. A substrate is inserted into an ion plating apparatus, and a cathode electrode (evaporation source) made of a VY alloy having a predetermined composition is arranged in the apparatus while the apparatus is heated to a temperature of, for example, 500 ° C. with a heater. If necessary, a cathode electrode (evaporation source) made of a Ti-Al alloy having a predetermined composition or a cathode electrode (evaporation source) made of a Ti-Al-M alloy having a predetermined composition is arranged, and the anode electrode and the above-mentioned For example, arc discharge is generated between the cathode electrode (evaporation source), for example, under the condition of current: 90 A, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. For the substrate, for example, By vapor deposition under the condition that a bias voltage of 100 V is applied, a single layer composed of a (V, Y) N layer, a lower layer composed of the (Ti, Al) layer, and an upper layer composed of a (V, Y) N layer. The hard coating layer of the present invention can be formed by vapor deposition of two layers, ie, a lower layer composed of the (Ti, Al, M) layer and an upper layer composed of the (V, Y) N layer. it can.

本発明の被覆工具によれば、単層の(V,Y)N層からなる硬質被覆層は優れた耐熱性と耐溶着性を備え、(Ti,Al)N層からなる下部層と(V,Y)N層からなる上部層の2層構造の硬質被覆層は、これに加えてさらにすぐれた高温硬さ、耐熱性、高温強度を有し、また、(Ti,Al,M)N層からなる下部層と(V,Y)N層からなる上部層の2層構造の硬質被覆層は、これらに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有することから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐溶着性を備えたものとなり、その結果、特にTi合金、ステンレス鋼等の難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐溶着性を示し、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものである。   According to the coated tool of the present invention, the hard coating layer composed of a single (V, Y) N layer has excellent heat resistance and welding resistance, and includes a lower layer composed of a (Ti, Al) N layer and (V , Y) The hard coating layer having a two-layer structure of the upper layer composed of the N layer has excellent high-temperature hardness, heat resistance, and high-temperature strength in addition to this, and (Ti, Al, M) N layer. In addition to these, the hard coating layer of the two-layer structure of the lower layer made of (V, Y) N layer has further excellent wear resistance and high temperature oxidation resistance. Overall, in addition to excellent high-temperature hardness, heat resistance, high-temperature strength, etc., it has excellent welding resistance, and as a result, it is accompanied by large heat generation, especially for difficult-to-cut materials such as Ti alloys and stainless steel, In addition, even during high-speed cutting with high load, it exhibits excellent welding resistance and can be used for a long time. Chipping resistance was, in which exhibits abrasion resistance.

本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 比較被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus used in forming the hard coating layer which comprises a comparative coating tool.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-based cemented carbide with ISO standard / CNMG120408 chip shape were formed. .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, the green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base B made of TiCN-based cermet having an ISO standard / CNMG120408 chip shape was obtained. -1 to B-6 were formed.

(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方には、カソード電極(蒸発源)として所定組成の上部層形成用のV−Y合金を配置し、その他方には、カソード電極(蒸発源)として所定組成の下部層形成用のTi−Al合金あるいはTi−Al−M合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記V−Y合金、Ti−Al合金あるいはTi−Al−M合金のいずれかとアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、目標層厚の単層としての(V,Y)N層、または、下部層としての(Ti,Al)N層あるいは(Ti,Al,M)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるV−Y合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3、表4に示される目標層厚の(V,Y)N層からなる上部層を蒸着形成し、
上記(a)〜(d)により硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜39をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, cathode electrodes (evaporation sources) are arranged on opposite sides across the rotary table, one of which VY alloy for forming an upper layer having a predetermined composition is disposed as a cathode electrode (evaporation source), and Ti—Al alloy for forming a lower layer having a predetermined composition is disposed as a cathode electrode (evaporation source). Alternatively, a Ti-Al-M alloy is disposed,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied and a current of 100 A is passed between the cathode electrode and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by flowing a current of 120 A between any of the VY alloy, Ti-Al alloy or Ti-Al-M alloy of the cathode electrode and the anode electrode. The (V, Y) N layer as a single layer with the target composition and target layer thickness shown in Table 4, or the (Ti, Al) N layer or (Ti, Al, M) N layer as the lower layer is 0 After vapor deposition with an average layer thickness of 5 to 5 μm, the arc discharge between the cathode electrode (evaporation source) and the anode electrode is stopped,
(D) Subsequently, an arc discharge is generated by flowing a current of 120 A between the anode electrode and the VY alloy electrode, which is the cathode electrode (evaporation source), while maintaining the atmosphere in the apparatus in a nitrogen atmosphere of 2 Pa. Then, an upper layer composed of (V, Y) N layers having the target layer thicknesses shown in Tables 3 and 4 is formed by vapor deposition.
Hard coating layers were formed by vapor deposition according to the above (a) to (d), and surface-coated throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 39 as the present invention-coated tools were produced, respectively.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のTi−Al合金あるいはTi−Al−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のTi−Al合金あるいはTi−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Ti−Al合金あるいはTi−Al−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚の(Ti,Al)N層あるいは(Ti,Al,M)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The device was charged and a Ti-Al alloy or Ti-Al-M alloy having a predetermined composition was mounted as a cathode electrode (evaporation source). First, while evacuating the device and maintaining a vacuum of 0.1 Pa or less, After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and 100 A was applied between the cathode electrode of Ti—Al alloy or Ti—Al—M alloy and the anode electrode. An electric current is applied to generate an arc discharge, so that the tool base surface is bombarded with the Ti-Al alloy or Ti-Al-M alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas. And a bias voltage applied to the tool base is lowered to -100 V to generate an arc discharge between the cathode electrode and the anode electrode of the predetermined composition, whereby the tool base A (Ti, Al) N layer or (Ti, Al, M) having the target composition and target layer thickness shown in Tables 5 and 6 on the surfaces of -1 to A-10 and B-1 to B-6 Surface-coated throwaway tips (hereinafter referred to as comparative coated tips) 1 to 16 as comparative coated tools were produced by vapor-depositing a hard coating layer composed of N layers.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜39および比較被覆チップ1〜16について、
被削材:JIS・SUS304(HB180)の丸棒、
切削速度: 140m/min.、
切り込み: 2.0mm、
送り: 0.3mm/rev.、
切削時間: 10分、
の条件(切削条件A)でのステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.3mm/rev.)、
被削材:Ti−6Al−4V合金(HB250)の丸棒、
切削速度: 60m/min.、
切り込み: 2.0mm、
送り: 0.2mm/rev.、
切削時間: 10分、
の条件(切削条件B)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、40m/min.、0.2mm/rev.)、
被削材:JIS・S45C(HB200)の丸棒、
切削速度: 180m/min.、
切り込み: 2.0mm、
送り: 0.3mm/rev.、
切削時間: 10分、
の条件(切削条件C)での炭素鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、150m/min.、0.3mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、表8に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 39 and the comparative coated chips 1 to 16 are as follows.
Work material: JIS / SUS304 (HB180) round bar,
Cutting speed: 140 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Wet continuous high-speed cutting test of stainless steel under the following conditions (cutting condition A) (normal cutting speed and feed are 120 m / min. And 0.3 mm / rev., Respectively),
Work material: Ti-6Al-4V alloy (HB250) round bar,
Cutting speed: 60 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Wet continuous high-speed cutting test of Ti alloy under the following conditions (cutting condition B) (normal cutting speed and feed are 40 m / min. And 0.2 mm / rev., Respectively),
Work material: JIS S45C (HB200) round bar,
Cutting speed: 180 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
(Continuous cutting speed and feed are 150 m / min. And 0.3 mm / rev., Respectively)
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Tables 7 and 8.

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder is blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured, respectively. .

ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(V,Y)N層、(Ti,Al)N層、(Ti,Al,M)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜27をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then inserted into the arc ion plating apparatus shown in FIG. Hard coating layer comprising (V, Y) N layer, (Ti, Al) N layer, (Ti, Al, M) N layer having the target composition and target layer thickness shown in Table 10 under the same conditions as in Example 1. The surface-coated carbide end mills (hereinafter, referred to as the present invention-coated end mills) 1 to 27 as the present invention-coated tools were produced, respectively.

また、比較の目的で、上記の工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(Ti,Al)N層あるいは(Ti,Al,M)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜10をそれぞれ製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) A-1 to A-10 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, a hard coating layer composed of a (Ti, Al) N layer or (Ti, Al, M) N layer having the target composition and target layer thickness shown in Table 10 is deposited. Thus, surface coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 10 as comparative coated tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜27および比較被覆エンドミル1〜10について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB180)の板材、
切削速度: 140m/min.、
溝深さ(切り込み): 5mm、
テーブル送り: 300mm/分、
の条件(切削条件D)でのステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、120m/min.、300mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、
切削速度: 75m/min.、
溝深さ(切り込み): 5mm、
テーブル送り: 80mm/分、
の条件(切削条件E)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、50m/min.、80mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45C(HB200)の板材、
切削速度: 250m/min.、
溝深さ(切り込み): 5mm、
テーブル送り: 700mm/分、
の条件(切削条件F)での炭素鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、200m/min.、700mm/分)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、表10にそれぞれ示した。
Next, with respect to the present invention coated end mills 1 to 27 and comparative coated end mills 1 to 10,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 (HB180) plate material,
Cutting speed: 140 m / min. ,
Groove depth (cut): 5mm,
Table feed: 300mm / min,
Wet high-speed grooving test of stainless steel under the following conditions (cutting condition D) (normal cutting speed and table feed are 120 m / min. And 300 mm / min, respectively),
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB250) plate material,
Cutting speed: 75 m / min. ,
Groove depth (cut): 5mm,
Table feed: 80mm / min,
Wet high-speed grooving test of Ti alloy under the following conditions (cutting condition E) (normal cutting speed and table feed are 50 m / min. And 80 mm / min, respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS S45C (HB200) plate,
Cutting speed: 250 m / min. ,
Groove depth (cut): 5mm,
Table feed: 700mm / min,
Wet high-speed grooving test of carbon steel under the following conditions (cutting condition F) (normal cutting speed and table feed are 200 m / min. And 700 mm / min, respectively),
In each high-speed groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 9 and Table 10, respectively.

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

上記の実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。   Using the round bar sintered body with a diameter of 13 mm manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming portion is 8 mm x 22 mm, respectively, by grinding, and WC-base cemented carbide tool bases (drills) A-1 to A-10 having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚の(V,Y)N層、(Ti,Al)N層あるいは(Ti,Al,M)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜27をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The (V, Y) N layer, (Ti, Al) N layer or (Ti, Al, M) N having the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1 above. The surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 27 as the present invention-coated tools were produced by vapor-depositing a hard coating layer composed of layers.

また、比較の目的で、上記の工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される目標組成および目標層厚を有する(Ti,Al)N層あるいは(Ti,Al,M)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜10をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. It is inserted into a plating apparatus, and comprises a (Ti, Al) N layer or a (Ti, Al, M) N layer having the target composition and target layer thickness shown in Table 12 under the same conditions as in the first embodiment. Surface-coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 10 as comparative coated tools were produced by vapor-depositing a hard coating layer, respectively.

つぎに、上記本発明被覆ドリル1〜27および比較被覆ドリル1〜10について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304(HB180)の板材、
切削速度: 100m/min.、
送り: 0.2mm/rev、
穴深さ: 8mm、
の条件(切削条件G)でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、80m/min.、0.2mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB250)の板材、
切削速度: 60m/min.、
送り: 0.15mm/rev、
穴深さ: 8mm、
の条件(切削条件H)でのTi合金の湿式高速穴あけ切削加工試験((通常の切削速度および送りは、それぞれ、40/min.、0.15mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45C(HB200)の板材、
切削速度: 130m/min.、
送り: 0.25mm/rev、
穴深さ: 8mm、
の条件(切削条件I)での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、110m/min.、0.25mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11、表12にそれぞれ示した。
Next, about the said invention coated drill 1-27 and the comparative coated drill 1-10,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 (HB180) plate material,
Cutting speed: 100 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm,
Wet high-speed drilling test of stainless steel under the following conditions (cutting condition G) (normal cutting speed and feed are 80 m / min. And 0.2 mm / rev., Respectively),
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB250) plate material,
Cutting speed: 60 m / min. ,
Feed: 0.15mm / rev,
Hole depth: 8mm,
Wet high-speed drilling test of Ti alloy under the following conditions (cutting condition H) ((normal cutting speed and feed are 40 / min. And 0.15 mm / rev., Respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS S45C (HB200) plate,
Cutting speed: 130 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 8mm,
Wet high-speed drilling test of carbon steel under the following conditions (cutting condition I) (normal cutting speed and feed are 110 m / min. And 0.25 mm / rev., Respectively),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2011173174
Figure 2011173174

Figure 2011173174
Figure 2011173174

この結果得られた本発明被覆工具としての本発明被覆チップ1〜39、本発明被覆エンドミル1〜27、および本発明被覆ドリル1〜27の硬質被覆層を構成する単層の(V,Y)N層、あるいは、下部層である(Ti,Al)N層あるいは(Ti,Al,M)と上部層である(V,Y)N層の組成、並びに、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜10、および比較被覆ドリル1〜10の(Ti,Al,M)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result of this, the present coated chips 1 to 39 as the present coated tools, the present coated end mills 1 to 27, and the single coated (V, Y) constituting the hard coated layers of the present coated drills 1 to 27. Composition of N layer or (Ti, Al) N layer or (Ti, Al, M) as lower layer and (V, Y) N layer as upper layer, and comparative coated tip 1 as a comparative coating tool -16, Comparative Coated End Mills 1-10, and Comparative Coated Drills 1-10 of Hard Coated Layer Composition Consisting of (Ti, Al, M) N Layers, Energy Dispersive X-ray Analysis Using Transmission Electron Microscope As a result of measurement, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the substantially same average value (average value of five places) as target layer thickness. .

表7〜12に示される結果から、本発明被覆工具は、(V,Y)N層単層からなる硬質被覆層であっても(V,Y)N層が耐熱性、耐溶着性に優れていること、また、2層構造の硬質被覆層を形成する場合、下部層である(Ti,Al)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度を備え、あるいは、下部層である(Ti,Al,M)N層は、これらに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有することによって、Ti合金、ステンレス鋼等の難削材の高速切削加工でも、切粉との間のすぐれた耐溶着性が確保されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層として、(V,Y)N層を備えず、硬質被覆層が(Ti,Al)N層あるいは(Ti,Al,M)N層で構成されている比較被覆工具においては、いずれも前記難削材の高速切削加工では、被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 to 12, even though the coated tool of the present invention is a hard coating layer composed of a single (V, Y) N layer, the (V, Y) N layer is excellent in heat resistance and welding resistance. In addition, when a hard coating layer having a two-layer structure is formed, the (Ti, Al) N layer, which is the lower layer, is firmly adhered and bonded to the surface of the tool substrate, with excellent high-temperature hardness and heat resistance. In addition to these, the (Ti, Al, M) N layer, which has high-temperature strength, has excellent wear resistance and high-temperature oxidation resistance in addition to these, so that Ti alloy, stainless steel, etc. Even in high-speed cutting of difficult-to-cut materials, excellent welding resistance with chips is ensured, so that it exhibits excellent wear resistance over a long period without chipping, As the hard coating layer, the (V, Y) N layer is not provided, and the hard coating layer is (Ti, A ) In the comparative coated tool composed of the N layer or the (Ti, Al, M) N layer, all of the difficult-to-cut materials are cut at high speed by the work material (difficult-to-cut material), the chips and the hard It is clear that since the adhesiveness and reactivity with the coating layer are further increased, chipping occurs at the cutting edge and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特にTi合金、ステンレス鋼等の難削材の高速切削加工でもすぐれた耐摩耗性と耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has excellent wear resistance and welding resistance not only for cutting of general work materials but also for high-speed cutting of difficult-to-cut materials such as Ti alloy and stainless steel. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can fully satisfactorily respond to FA conversion of cutting processing equipment, labor saving and energy saving of cutting processing, and cost reduction. .

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、0.5〜5μmの平均層厚を有し、かつ、
組成式:(V1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するVとYの複合窒化物層からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer has an average layer thickness of 0.5 to 5 μm, and
Compound nitride of V and Y satisfying the composition formula: (V 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.1) A surface-coated cutting tool comprising a layer.
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Ti1−αAlα)N(ここで、αはAlの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(V1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するVとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composite nitriding of Ti and Al satisfying the composition formula: (Ti 1-α Al α ) N (where α represents the Al content ratio and the atomic ratio is 0.45 ≦ α ≦ 0.75) A lower layer composed of physical layers,
(B) having an average layer thickness of 0.5-5 μm, and
Compound nitride of V and Y satisfying the composition formula: (V 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.1) A surface-coated cutting tool comprising an upper layer composed of layers.
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Ti1−α−βAlαβ)N(ここで、Mは、Tiを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはAlの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(V1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.1である)を満足するVとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composition formula: (Ti 1-α-β Al α M β ) N (where M is a member selected from the group 4a, 5a, 6a elements except Si, Si, B, Y) Seeds or two or more kinds of additive components, α is a content ratio of Al, β is a content ratio of M, and atomic ratio is 0.45 ≦ α ≦ 0.75, 0.01 ≦ β ≦ A lower layer composed of a composite nitride layer of Ti and Al satisfying
(B) having an average layer thickness of 0.5-5 μm, and
Compound nitride of V and Y satisfying the composition formula: (V 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.1) A surface-coated cutting tool comprising an upper layer composed of layers.
JP2010036818A 2010-02-23 2010-02-23 Surface coated cutting tool superior in heat resistance and deposition resistance Withdrawn JP2011173174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036818A JP2011173174A (en) 2010-02-23 2010-02-23 Surface coated cutting tool superior in heat resistance and deposition resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036818A JP2011173174A (en) 2010-02-23 2010-02-23 Surface coated cutting tool superior in heat resistance and deposition resistance

Publications (1)

Publication Number Publication Date
JP2011173174A true JP2011173174A (en) 2011-09-08

Family

ID=44686546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036818A Withdrawn JP2011173174A (en) 2010-02-23 2010-02-23 Surface coated cutting tool superior in heat resistance and deposition resistance

Country Status (1)

Country Link
JP (1) JP2011173174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119156A (en) * 2011-12-09 2013-06-17 Mitsubishi Materials Corp Surface coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119156A (en) * 2011-12-09 2013-06-17 Mitsubishi Materials Corp Surface coated cutting tool

Similar Documents

Publication Publication Date Title
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP2009119551A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work
JP5196122B2 (en) Surface coated cutting tool
JP2009125832A (en) Surface-coated cutting tool
JP2009028800A (en) Surface coated cutting tool
JP5088480B2 (en) Surface coated cutting tool
JP5234499B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP4900874B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2011240436A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2011173174A (en) Surface coated cutting tool superior in heat resistance and deposition resistance
JP5692636B2 (en) Surface coated cutting tool
JP2012143851A (en) Surface-coated cutting tool
JP2009285764A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed high-feed cutting work
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP2006015451A (en) Method of manufacturing surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high speed cutting
JP2011240435A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5287383B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed cutting
JP5692635B2 (en) Surface coated cutting tool
JP2011173176A (en) Surface coated cutting tool superior in heat resistance and deposition resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507