JP2011240436A - Surface coated cutting tool excellent in heat resistance and fusion resistance - Google Patents
Surface coated cutting tool excellent in heat resistance and fusion resistance Download PDFInfo
- Publication number
- JP2011240436A JP2011240436A JP2010115033A JP2010115033A JP2011240436A JP 2011240436 A JP2011240436 A JP 2011240436A JP 2010115033 A JP2010115033 A JP 2010115033A JP 2010115033 A JP2010115033 A JP 2010115033A JP 2011240436 A JP2011240436 A JP 2011240436A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- hard coating
- tool
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、Ti合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材を、高熱発生を伴うとともに切刃部に対して大きな機械的負荷がかかる高速条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性と耐溶着性を発揮する被覆工具に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, a high-hardness hard-to-cut material such as a Ti alloy, high-hardness stainless steel, or Ni-base heat-resistant alloy is cut with high heat generation. The present invention relates to a coated tool that exhibits excellent heat resistance and welding resistance with a hard coating layer when cutting is performed under high-speed conditions in which a large mechanical load is applied to the blade portion.
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 Generally, coated tools are used for throwaway inserts that are detachably attached to the tip of cutting tools for drilling and cutting of various materials such as steel and cast iron. There are drills and miniature drills used, as well as solid type end mills used for chamfering, grooving and shoulder machining of work materials, etc. A slow-away end mill tool that performs cutting is known.
また、被覆工具としては、例えば、工具基体表面に、AlとCrの複合窒化物((Al,Cr)N)層、あるいは、これにさらに、Si、B、Y、Zr、V等(M成分で示す)を微量添加含有させたAlとCrを主成分とする複合窒化物(以下、これらを総称して、(Al,Cr,M)Nで示す)層を設けた被覆工具も知られており、特に、構成成分であるTiによって高温硬さと耐熱性、同Alによって高温強度を具備することから、前記(Al,Cr)N層あるいは(Al,Cr,M)N層がすぐれた高温強度、耐欠損性、耐摩耗性を示すことも知られている。 As the coated tool, for example, a composite nitride ((Al, Cr) N) layer of Al and Cr on the surface of the tool base, or further, Si, B, Y, Zr, V, etc. (M component) Also known is a coated tool provided with a composite nitride (hereinafter collectively referred to as (Al, Cr, M) N) containing Al and Cr as a main component containing a trace amount of In particular, Ti, which is a constituent component, provides high-temperature hardness and heat resistance, and Al provides high-temperature strength, so that the (Al, Cr) N layer or (Al, Cr, M) N layer has excellent high-temperature strength. It is also known to show fracture resistance and wear resistance.
さらに、前記従来被覆工具が、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、Al−Cr−M合金と、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に、(Al,Cr,M)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。 Furthermore, the conventional coated tool is loaded with a tool base in an arc ion plating apparatus which is one of physical vapor deposition apparatuses shown schematically in FIG. 2, for example, at a temperature of 500 ° C., for example. Arc discharge is performed between the cathode electrode in which an alloy corresponding to the composition of the hard coating layer is set, for example, an Al-Cr-M alloy, and the anode electrode under the condition of current: 90A. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to create a reaction atmosphere of, for example, 2 Pa. On the other hand, the tool substrate is applied with a bias voltage of, for example, −100 V on the surface of the tool substrate. It is also known that it is produced by vapor-depositing a hard coating layer comprising an (Al, Cr, M) N layer.
ところが、近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、前記従来被覆工具においては、これを、Ti合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの被削材を、高い発熱をともなうとともに、切刃部に局部的に高負荷がかかる高速条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 However, in recent years, the FA of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting tools have as much influence on the type of work material as possible. However, in the above-mentioned conventional coated tools, this is a Ti alloy, high-hardness stainless steel, Ni-base heat-resistant. There is no problem when it is used for cutting hard hard-to-cut materials such as alloys at normal cutting speeds. However, these materials have high heat generation and a high load is locally applied to the cutting edge. When cutting under high-speed conditions, the work material and chips are heated to a high temperature due to the heat generated during cutting, and the viscosity increases. As a result, the weldability to the hard coating layer surface further increases. Chipping (minute chipping) in the results the cutting edge increases rapidly, which is at present, leading to a relatively short time service life due.
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高熱発生を伴う高速条件で切削した場合においてもすぐれた耐熱性および耐溶着性を発揮する被覆工具を提供することである。 Therefore, a technical problem to be solved by the present invention, that is, an object of the present invention is to provide a coated tool that exhibits excellent heat resistance and welding resistance even when cutting under high-speed conditions with high heat generation. It is.
そこで、本発明者らは、前述のような観点から、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性とすぐれた耐溶着性を併せ持つ被覆工具を開発すべく、前記従来被覆工具に着目し、鋭意研究を行った結果、従来被覆超硬工具の硬質被覆層である(Al,Cr)N層あるいは(Al,Cr,M)N層を下部層として0.5〜5μmの平均層厚で形成し、これの上に上部層として、Nbとの合量に占めるYの含有割合が1〜15原子%となるようにY成分を含有させたNbとYの複合窒化物層(以下、(Nb,Y)N層で示す)を形成すると、下部層である(Al,Cr)N層あるいは(Al,Cr,M)N層は、すぐれた高温硬さ、高温強度、耐熱性を示し、また、上部層である(Nb,Y)N層はすぐれた耐溶着性を示が、特に、上部層の(Nb,Y)N層中に含有されるY成分によって、(Nb,Y)N層の高温硬さが向上することから、高熱発生を伴う切削加工においても、(Nb,Y)N層のすぐれた耐溶着性は維持され、したがって、高硬度難削材の高速切削加工において、切刃部が高温になったとしても被削材との耐溶着性にすぐれ、その結果、切刃部におけるチッピング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、係る知見に基づき、本発明を完成するに至ったものである。 Therefore, the present inventors, from the viewpoint as described above, especially when cutting hard hard-to-cut materials such as Ti alloy, high-hardness stainless steel, Ni-base heat-resistant alloy, under high-speed cutting conditions, In order to develop a coated tool that has both excellent heat resistance and excellent welding resistance, the hard coating layer is a hard coating layer of a conventional coated carbide tool as a result of intensive research focusing on the conventional coated tool ( An Al, Cr) N layer or an (Al, Cr, M) N layer is formed as a lower layer with an average layer thickness of 0.5 to 5 μm, and an upper layer on top of this is formed by the amount of Y occupying the total amount with Nb. When a composite nitride layer of Nb and Y containing the Y component so that the content ratio is 1 to 15 atomic% (hereinafter referred to as (Nb, Y) N layer) is formed, the lower layer (Al, Cr) N layer or (Al, Cr, M) N layer has excellent high temperature hardness and high It shows strength and heat resistance, and the (Nb, Y) N layer, which is the upper layer, shows excellent welding resistance, but in particular, it depends on the Y component contained in the (Nb, Y) N layer of the upper layer. Since the high-temperature hardness of the (Nb, Y) N layer is improved, the excellent welding resistance of the (Nb, Y) N layer is maintained even in cutting with high heat generation. In high-speed cutting of materials, even if the cutting edge becomes hot, it has excellent resistance to welding with the work material, and as a result, the occurrence of chipping (small chipping) in the cutting edge is suppressed, and for a long time The inventors have obtained new knowledge that excellent wear resistance is exhibited, and have completed the present invention based on such knowledge.
本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−αCrα)N(但し、αはCrの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するAlとCrの複合窒化物層からなる下部層と、
(b)1〜5μmの平均層厚を有し、かつ、
組成式:(Nb1−γYγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するNbとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−α−βCrαMβ)N(ここで、Mは、Alを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するAlとCrとMの複合窒化物層からなる下部層と、
(b)1〜5μmの平均層厚を有し、かつ、
組成式:(Nb1−γYγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するNbとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
A composite nitride of Al and Cr that satisfies the composition formula: (Al 1-α Cr α ) N (where α is the Cr content ratio, and the atomic ratio is 0.45 ≦ α ≦ 0.75). A lower layer consisting of layers,
(B) having an average layer thickness of 1-5 μm, and
Nb and Y composite nitride satisfying the composition formula: (Nb 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.15) A surface-coated cutting tool comprising an upper layer composed of layers.
(2) In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composition formula: (Al 1-α-β Cr α M β ) N (where M is selected from the elements of groups 4a, 5a and 6a of the periodic table excluding Al, Si, B and Y) Species or two or more additional components, α represents the Cr content, β represents the M content, and atomic ratios of 0.45 ≦ α ≦ 0.75 and 0.01 ≦ β ≦ A lower layer composed of a composite nitride layer of Al, Cr, and M satisfying 0.25),
(B) having an average layer thickness of 1-5 μm, and
Nb and Y composite nitride satisfying the composition formula: (Nb 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.15) A surface-coated cutting tool comprising an upper layer composed of layers. "
It is characterized by.
つぎに、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。 Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.
(a)下部層の組成および平均層厚
下部層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層の構成成分であるCr成分には硬質被覆層における高温硬さを向上させ、同Al成分には高温強度を向上させる作用があり、さらに、M成分のうちの、Alを除く周期律表4a,5a,6a族の元素、Si、B、には硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Crの割合を示すα値がAlとの合量あるいはAlとMの合量に占める割合(原子比、以下同じ)で0.45未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Crの割合を示すα値が同0.75を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になり、さらに、M成分の含有割合を示すβ値がAlとCrの合量に占める割合(原子比、以下同じ)で0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方同β値が0.25を超えると、高温強度に低下傾向が現れるようになることから、α値を0.45〜0.75、β値を0.01〜0.25と定めた。
(A) Lower layer composition and average layer thickness The (Al, Cr) N layer or (Al, Cr, M) N layer constituting the lower layer has a high hardness in the hard coating layer for the Cr component. The Al component has the effect of improving the high-temperature strength. Further, among the M components, elements of the periodic tables 4a, 5a and 6a excluding Al, Si and B, have a hard coating layer. Y has the effect of improving wear resistance, and Y has the effect of improving the high temperature oxidation resistance of the hard coating layer, but the α value indicating the ratio of Cr is the total amount of Al or the total amount of Al and M. If the ratio to the amount (atomic ratio, the same applies hereinafter) is less than 0.45, the predetermined high-temperature hardness cannot be secured, which causes a decrease in wear resistance, while the α value indicating the ratio of Cr If the value exceeds 0.75, the Al content will be relatively reduced and high speed cutting will occur. The high temperature strength required for processing cannot be ensured, it becomes difficult to prevent the occurrence of chipping, and the β value indicating the content ratio of the M component accounts for the total amount of Al and Cr ( If the atomic ratio is less than 0.01, the improvement in properties such as wear resistance and high-temperature oxidation resistance due to the inclusion of the M component cannot be expected, while if the β value exceeds 0.25, Since a decreasing tendency appears in the high-temperature strength, the α value was set to 0.45 to 0.75, and the β value was set to 0.01 to 0.25.
また、その平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、前記高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。 On the other hand, if the average layer thickness is less than 0.5 μm, it is insufficient to exhibit its excellent wear resistance over a long period. On the other hand, if the average layer thickness exceeds 5 μm, the high-speed cutting is performed. Then, since chipping is likely to occur in the cutting edge portion, the average layer thickness is set to 0.5 to 5 μm.
(b)上部層の組成
上部層を構成するNbとYの複合窒化物(以下、(Nb,Y)Nと略記する)層は、所定の耐熱性、高温強度、耐溶着性を有するとともに、その構成成分であるY成分によって、すぐれた高温硬さを備えるようになり、そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐溶着性を発揮するようになるが、Yの含有割合を示すγ値がNbとの合量に占める割合(原子比、以下同じ)で0.01未満になると、耐熱性を確保することができないために耐溶着効果を期待することはできず、一方、Yの割合を示すγ値が同0.15を越えると、相対的にNbの含有割合が減少し、高硬度難削材の高速切削加工で必要とされる高温強度を確保することができないばかりか、耐溶着性も低下し、チッピング発生を防止することが困難になることから、γ値を0.01〜0.15(原子比、以下同じ)と定めた。
(B) Composition of the upper layer The Nb and Y composite nitride (hereinafter abbreviated as (Nb, Y) N) layer constituting the upper layer has predetermined heat resistance, high temperature strength, and welding resistance, The component Y component provides excellent high-temperature hardness. Therefore, a low friction coefficient is maintained even under high-temperature cutting conditions, and excellent welding resistance is exhibited. When the γ value indicating the ratio is less than 0.01 in the ratio to the total amount with Nb (atomic ratio, the same shall apply hereinafter), the heat resistance cannot be ensured, so the anti-welding effect cannot be expected, On the other hand, if the γ value indicating the ratio of Y exceeds 0.15, the content ratio of Nb is relatively decreased, and it is possible to ensure the high temperature strength required for high-speed cutting of a hard hard material. Not only is it impossible, but also the welding resistance is reduced, preventing chipping. Since Rukoto becomes difficult, it was defined as the γ value from 0.01 to 0.15 (atomic ratio, hereinafter the same).
(c)上部層の平均層厚
硬質被覆層を構成する(Nb,Y)N層の平均層厚が1μm未満では、自身のもつすぐれた耐熱性、耐溶着性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、Ti合金、Ni基耐熱合金、高硬度ステンレス鋼などの高硬度難削材の高速切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(C) Average layer thickness of the upper layer If the average layer thickness of the (Nb, Y) N layer constituting the hard coating layer is less than 1 μm, it will exhibit its excellent heat resistance and welding resistance over a long period of time. On the other hand, if the average layer thickness exceeds 5 μm, chipping is likely to occur at the cutting edge in high-speed cutting of hard hard-to-cut materials such as Ti alloy, Ni-base heat-resistant alloy, and high-hardness stainless steel. Therefore, the average layer thickness was determined to be 1 to 5 μm.
そして、前記(Al,Cr)N層あるいは(Al,Cr,M)N層、(Nb,Y)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のAl−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)と、所定組成のNb−Y合金からなるカソード電極(蒸発源)とを配置し、アノード電極とAl−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することにより、(Al,Cr)N層あるいは(Al,Cr,M)層をまず下部層として蒸着形成し、その後、Nb−Y合金カソード電極とアノード電極の間に、前記同様アーク放電を発生させることにより、(Nb,Y)N層からなる上部層を蒸着形成することができる。 The (Al, Cr) N layer, (Al, Cr, M) N layer, or (Nb, Y) N layer is, for example, an arc that is a kind of physical vapor deposition apparatus schematically shown in FIG. A cathode electrode made of an Al—Cr alloy or Al—Cr—M alloy having a predetermined composition in the apparatus while the substrate is loaded into the ion plating apparatus and the apparatus is heated to a temperature of, for example, 500 ° C. with a heater. (Evaporation source) and a cathode electrode (evaporation source) made of an Nb-Y alloy having a predetermined composition are arranged, and an anode electrode and a cathode electrode (evaporation source) made of an Al-Cr alloy or an Al-Cr-M alloy In the meantime, for example, arc discharge is generated under the condition of current: 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. of By vapor deposition under the condition of applying a bias voltage, an (Al, Cr) N layer or (Al, Cr, M) layer is first deposited as a lower layer, and then between the Nb-Y alloy cathode electrode and the anode electrode. In addition, by generating arc discharge as described above, an upper layer composed of (Nb, Y) N layers can be formed by vapor deposition.
本発明の被覆工具によれば、硬質被覆層を構成する下部層の(Al,Cr)N層あるいは(Al,Cr,M)N層が、すぐれた高温硬さ、耐熱性、高温強度を有し、あるいは、さらにすぐれた耐摩耗性、高温耐酸化性を有し、また、上部層の(Nb,Y)N層が、すぐれた耐熱性と耐溶着性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐溶着性を備えたものとなり、その結果、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐溶着性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 According to the coated tool of the present invention, the lower (Al, Cr) N layer or (Al, Cr, M) N layer constituting the hard coating layer has excellent high temperature hardness, heat resistance, and high temperature strength. In addition, it has excellent wear resistance and high-temperature oxidation resistance, and the (Nb, Y) N layer of the upper layer has excellent heat resistance and welding resistance, so that it has a hard coating. The layer as a whole has excellent high-temperature hardness, heat resistance, high-temperature strength, etc., as well as excellent welding resistance. As a result, the layer is particularly high in Ti alloys, high-hardness stainless steel, Ni-base heat-resistant alloys, etc. Even a hard-to-cut material with high heat generation and high-speed cutting with high load exhibits excellent welding resistance and exhibits excellent wear resistance over a long period of time.
つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-10 made of WC-based cemented carbide with ISO standard / CNMG120408 chip shape were formed. .
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, the green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base B made of TiCN-based cermet having an ISO standard / CNMG120408 chip shape was obtained. -1 to B-6 were formed.
(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方にはカソード電極(蒸発源)として所定組成の下部層形成用のAl−Cr合金あるいはAl−Cr−M合金を配置し、また、その他方にはカソード電極(蒸発源)として所定組成の上部層形成用のNb−Y合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、カソード電極の前記下部層形成用Al−Cr−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることにより、工具基体表面を前記Al−Cr合金あるいはAl−Cr−M合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Cr合金あるいはAl−Cr−M合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、目標層厚の下部層としての(Al,Cr)N層あるいは(Al,Cr,M)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記Al−Cr合金あるいはAl−Cr−M合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるNb−Y合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3、表4に示される目標層厚の(Nb,Y)N層を蒸着形成し、
前記(a)〜(d)により硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜39をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. It is mounted along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the inner rotary table, and cathode electrodes (evaporation sources) are arranged on both sides facing each other across the rotary table. Has an Al-Cr alloy or Al-Cr-M alloy for forming a lower layer having a predetermined composition as a cathode electrode (evaporation source), and an upper layer having a predetermined composition is formed as a cathode electrode (evaporation source) on the other side. Nb-Y alloy for
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the Al—Cr—M alloy for forming the lower layer of the cathode electrode and the anode electrode, thereby causing the surface of the tool base to be in contact with the Al surface. -Bombard cleaning with Cr alloy or Al-Cr-M alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the Al—Cr alloy or Al—Cr—M alloy of the cathode electrode and the anode electrode to generate an arc discharge. Table 3 and Table 4 show the surface of the tool base. After the (Al, Cr) N layer or (Al, Cr, M) N layer as the lower layer having the target composition and target layer thickness is formed by vapor deposition with an average layer thickness of 0.5 to 5 μm, the Al—Cr alloy or The arc discharge between the cathode electrode (evaporation source) of the Al—Cr—M alloy and the anode electrode is stopped,
(D) Subsequently, an arc discharge is generated by flowing a current of 120 A between the Nb—Y alloy electrode, which is the cathode electrode (evaporation source), and the anode electrode while maintaining the atmosphere in the apparatus in a nitrogen atmosphere of 2 Pa. Then, the (Nb, Y) N layer having the target layer thickness shown in Tables 3 and 4 is formed by vapor deposition.
Hard coating layers were formed by vapor deposition according to the above (a) to (d), and surface-coated throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 39 as the present coated tools were produced, respectively.
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のAl−Cr合金あるいはAl−Cr−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつ、カソード電極のAl−Cr合金あるいはAl−Cr−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、工具基体表面を前記Al−Cr合金あるいはAl−Cr−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させることによって、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The apparatus was charged and an Al—Cr alloy or Al—Cr—M alloy having a predetermined composition was mounted as a cathode electrode (evaporation source). First, while evacuating the apparatus and maintaining a vacuum of 0.1 Pa or less, After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and 100 A was applied between the Al—Cr alloy or Al—Cr—M alloy of the cathode electrode and the anode electrode. The surface of the tool base is bombarded with the Al—Cr alloy or Al—Cr—M alloy, and then a nitrogen gas is added as a reaction gas in the apparatus. Introducing a gas to a reaction atmosphere of 3 Pa, lowering a bias voltage applied to the tool base to −100 V, and generating an arc discharge between each cathode electrode and anode electrode of the predetermined composition, On the surface of each of the tool bases A-1 to A-10 and B-1 to B-6, the (Al, Cr) N layer having the target composition and the target layer thickness shown in Tables 5 and 6 or (Al, Surface-coated throwaway tips (hereinafter referred to as comparative coated tips) 1 to 16 as comparative coated tools were produced by vapor-depositing a hard coating layer composed of a Cr, M) N layer.
つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜39および比較被覆チップ1〜16について、
被削材:Ti−6Al−4V合金(HB400)の丸棒、
切削速度: 45 m/min.、
切り込み: 2 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、30 m/min.、0.15 mm/rev.)、
被削材:JIS・SUS630(HB370)の丸棒、
切削速度: 100 m/min.、
切り込み: 3 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)での高硬度ステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、90 m/min.、0.2 mm/rev.)、
被削材:Ni−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB450)の丸棒、
切削速度: 40 m/min.、
切り込み: 3 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)でのNi基耐熱合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、30 m/min.、0.15 mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、表8に示した。
Next, in the state where each of the various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 39 and the comparative coated chips 1 to 16 are as follows:
Work material: Ti-6Al-4V alloy (HB400) round bar,
Cutting speed: 45 m / min. ,
Incision: 2 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
Wet continuous high-speed cutting test of Ti alloy under the following conditions (cutting condition A) (normal cutting speed and feed are 30 m / min. And 0.15 mm / rev., Respectively),
Work material: JIS / SUS630 (HB370) round bar,
Cutting speed: 100 m / min. ,
Cutting depth: 3 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Wet continuous high-speed cutting test of high hardness stainless steel under the following conditions (cutting condition B) (normal cutting speed and feed are 90 m / min. And 0.2 mm / rev., Respectively),
Work material: A round bar of Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB450),
Cutting speed: 40 m / min. ,
Cutting depth: 3 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
Wet continuous high-speed cutting test of Ni-base heat-resistant alloy under the following conditions (cutting condition C) (normal cutting speed and feed are 30 m / min. And 0.15 mm / rev., Respectively),
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Tables 7 and 8.
実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder is blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-10 having a diameter of 10 mm × 22 mm and a four-blade square shape with a twist angle of 30 degrees were manufactured.
ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層、および、同じく表10に示される目標層厚の(Nb,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜27をそれぞれ製造した。 Then, the surfaces of these tool bases (end mills) A-1 to A-10 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the (Al, Cr) N layer or (Al, Cr, M) N layer having the target composition and target layer thickness shown in Table 10 and the target layer thickness also shown in Table 10 are used. By subjecting a hard coating layer composed of (Nb, Y) N layer to vapor deposition, surface coated carbide end mills (hereinafter referred to as the present coated end mills) 1 to 27 as the present coated tools were produced, respectively. .
また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜10をそれぞれ製造した。 For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-10 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, a hard coating layer made of an (Al, Cr) N layer or (Al, Cr, M) N layer having the target composition and target layer thickness shown in Table 10 is deposited under the same conditions as in the first embodiment. Thus, surface coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 10 as comparative coated tools were produced, respectively.
つぎに、本発明被覆エンドミル1〜27および比較被覆エンドミル1〜10について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB400)の板材、
切削速度: 40 m/min.、
溝深さ(切り込み):15 mm、
テーブル送り: 100 mm/分、
の条件(切削条件D)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30 m/min.、80 mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630(HB370)の板材、
切削速度: 110 m/min.、
溝深さ(切り込み):15 mm、
テーブル送り: 220 mm/分、
の条件(切削条件D)での高硬度ステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、90 m/min.、200 mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB450)の板材、
切削速度: 40 m/min.、
溝深さ(切り込み):15 mm、
テーブル送り: 100 mm/分、
の条件(切削条件D)でのNi基耐熱合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30 m/min.、80 mm/分)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、表10にそれぞれ示した。
Next, for the present invention coated end mills 1-27 and comparative coated end mills 1-10,
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB400) plate material,
Cutting speed: 40 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 100 mm / min,
Wet high-speed grooving test of Ti alloy under the following conditions (cutting condition D) (normal cutting speed and table feed are 30 m / min. And 80 mm / min, respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS630 (HB370) plate material,
Cutting speed: 110 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 220 mm / min,
Wet high-speed grooving test of high hardness stainless steel under the conditions (cutting condition D) (normal cutting speed and table feed are 90 m / min. And 200 mm / min, respectively),
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB450) plate material,
Cutting speed: 40 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 100 mm / min,
Wet high-speed grooving test of Ni-base heat-resistant alloy under the following conditions (cutting condition D) (normal cutting speed and table feed are 30 m / min. And 80 mm / min, respectively)
In each high-speed groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 9 and Table 10, respectively.
実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。 The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC-base cemented carbide tool bases (drills) A-1 to A-10 having a 30-degree two-blade shape were produced, respectively.
ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表11に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層、および同じく表11に示される目標組成および目標層厚の(Nb,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜27をそれぞれ製造した。 Next, the cutting edges of these tool bases (drills) A-1 to A-10 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The (Al, Cr) N layer or the (Al, Cr, M) N layer having the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1, and also shown in Table 11 The hard coating layer composed of the (Nb, Y) N layer having the target composition and the target layer thickness is formed by vapor deposition, so that the surface-coated carbide drill of the present invention as the coated tool of the present invention (hereinafter referred to as the present coated drill). ) 1-27 were produced respectively.
また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表12に示される目標組成および目標層厚を有する(Al,Cr)N層あるいは(Al,Cr,M)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜10をそれぞれ製造した。 For the purpose of comparison, honing is performed on the surfaces of the tool bases (drills) A-1 to A-10, ultrasonic cleaning is performed in acetone, and the arc ion plate shown in FIG. A hard coating comprising an (Al, Cr) N layer or (Al, Cr, M) N layer having the target composition and target layer thickness shown in Table 12 under the same conditions as in Example 1 Surface-coated cemented carbide drills (hereinafter referred to as comparative coated drills) 1 to 10 as comparative coated tools were produced by forming layers by vapor deposition.
つぎに、本発明被覆ドリル1〜27および比較被覆ドリル1〜10について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB400)の板材、
切削速度: 40 m/min.、
送り: 0.2 mm/rev、
穴深さ: 5 mm、
の条件(切削条件G)でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30 m/min.、0.1 mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630(HB370)の板材、
切削速度: 80 m/min.、
送り: 0.25 mm/rev、
穴深さ: 5 mm、
の条件(切削条件H)での高硬度ステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、60 m/min.、0.15 mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB450)の板材、
切削速度: 40 m/min.、
送り: 0.2 mm/rev、
穴深さ: 5 mm、
の条件(切削条件I)でのNi基耐熱合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30 m/min.、0.1 mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11、表12にそれぞれ示した。
Next, for the present invention coated drills 1-27 and comparative coated drills 1-10,
Work material—planar dimensions: 100 mm × 250 mm, thickness: 50 mm Ti-6Al-4V alloy (HB400) plate material,
Cutting speed: 40 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 5 mm,
Wet high-speed drilling test of Ti alloy under the following conditions (cutting condition G) (normal cutting speed and feed are 30 m / min. And 0.1 mm / rev., Respectively),
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS630 (HB370) plate material,
Cutting speed: 80 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 5 mm,
Wet high-speed drilling test of high hardness stainless steel under the conditions (cutting condition H) (normal cutting speed and feed are 60 m / min. And 0.15 mm / rev., Respectively),
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al (HB450) plate material,
Cutting speed: 40 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 5 mm,
Wet high-speed drilling test of Ni-base heat-resistant alloy under the following conditions (cutting condition I) (normal cutting speed and feed are 30 m / min. And 0.1 mm / rev., Respectively),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.
この結果得られた本発明被覆工具としての本発明被覆チップ1〜39、本発明被覆エンドミル1〜27、および本発明被覆ドリル1〜27の硬質被覆層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層(下部層)および(Nb,Y)N層(上部層)の組成、並びに、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜10、および比較被覆ドリル1〜10の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 (Al, Cr) N layer constituting the hard coating layer of the present coated chips 1 to 39, the present coated end mills 1 to 27, and the present coated drills 1 to 27 as the present coated tool obtained as a result Composition of (Al, Cr, M) N layer (lower layer) and (Nb, Y) N layer (upper layer), comparative coated tips 1-16 as comparative coated tools, comparative coated end mills 1-10, and The composition of the hard coating layer comprising the (Al, Cr) N layer or (Al, Cr, M) N layer of the comparative coated drills 1 to 10 was measured by energy dispersive X-ray analysis using a transmission electron microscope. However, each showed substantially the same composition as the target composition.
また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.
表7〜12に示される結果から、本発明被覆工具は、いずれも特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の高速切削加工でも、硬質被覆層の下部層である(Al,Cr)N層あるいは(Al,Cr,M)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度、あるいは、これに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有し、かつ、耐熱性にすぐれた(Nb,Y)N層からなる上部層によって、前記被削材および切粉との間のすぐれた耐溶着性が確保されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Cr)N層あるいは(Al,Cr,M)N層で構成され、(Nb,Y)N層を備えない比較被覆工具においては、いずれも前記被削材の高速切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 12, the coated tool of the present invention is the lower layer of the hard coating layer, especially in high-speed cutting of hard hard-to-cut materials such as Ti alloy, high-hardness stainless steel, and Ni-base heat-resistant alloy. (Al, Cr) N layer or (Al, Cr, M) N layer, which is firmly bonded to the surface of the tool substrate, has excellent high temperature hardness, heat resistance, high temperature strength, or in addition to this Further, the upper layer composed of the (Nb, Y) N layer having excellent wear resistance, high-temperature oxidation resistance and excellent heat resistance provides excellent welding resistance between the work material and the chips. As a result, the hard coating layer (Al, Cr) N layer or (Al, Cr, M) has excellent wear resistance over a long period of time without occurrence of chipping. A ratio composed of N layers and not including (Nb, Y) N layers In the coated tool, since the adhesiveness and reactivity between the work material (difficult-to-cut material) and the chips and the hard coating layer are further increased in the high-speed cutting of the work material, It is clear that chipping occurs and the service life is reached in a relatively short time.
前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の高速切削加工でもすぐれた耐摩耗性と耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention is capable of cutting not only general work materials, but also high-speed cutting of hard materials difficult to cut such as Ti alloy, high hardness stainless steel, Ni-base heat-resistant alloy. However, it exhibits excellent wear resistance and welding resistance, and exhibits excellent cutting performance over a long period of time. Therefore, FA of cutting equipment, labor saving and energy saving of cutting, and cost reduction It is possible to cope with the above sufficiently.
Claims (2)
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−αCrα)N(但し、αはCrの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するAlとCrの複合窒化物層からなる下部層と、
(b)1〜5μmの平均層厚を有し、かつ、
組成式:(Nb1−γYγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するNbとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。 In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
A composite nitride of Al and Cr that satisfies the composition formula: (Al 1-α Cr α ) N (where α is the Cr content ratio, and the atomic ratio is 0.45 ≦ α ≦ 0.75). A lower layer consisting of layers,
(B) having an average layer thickness of 1-5 μm, and
Nb and Y composite nitride satisfying the composition formula: (Nb 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.15) A surface-coated cutting tool comprising an upper layer composed of layers.
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−α−βCrαMβ)N(ここで、Mは、Alを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するAlとCrとMの複合窒化物層からなる下部層と、
(b)1〜5μmの平均層厚を有し、かつ、
組成式:(Nb1−γYγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するNbとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。 In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.5-5 μm, and
Composition formula: (Al 1-α-β Cr α M β ) N (where M is selected from the elements of groups 4a, 5a and 6a of the periodic table excluding Al, Si, B and Y) Species or two or more additional components, α represents the Cr content, β represents the M content, and atomic ratios of 0.45 ≦ α ≦ 0.75 and 0.01 ≦ β ≦ A lower layer composed of a composite nitride layer of Al, Cr, and M satisfying 0.25),
(B) having an average layer thickness of 1-5 μm, and
Nb and Y composite nitride satisfying the composition formula: (Nb 1-γ Y γ ) N (where γ represents the content ratio of Y and the atomic ratio is 0.01 ≦ γ ≦ 0.15) A surface-coated cutting tool comprising an upper layer composed of layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010115033A JP2011240436A (en) | 2010-05-19 | 2010-05-19 | Surface coated cutting tool excellent in heat resistance and fusion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010115033A JP2011240436A (en) | 2010-05-19 | 2010-05-19 | Surface coated cutting tool excellent in heat resistance and fusion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011240436A true JP2011240436A (en) | 2011-12-01 |
Family
ID=45407631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010115033A Withdrawn JP2011240436A (en) | 2010-05-19 | 2010-05-19 | Surface coated cutting tool excellent in heat resistance and fusion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011240436A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016047546A (en) * | 2014-08-28 | 2016-04-07 | Jfeスチール株式会社 | Method for manufacturing seamless steel pipe |
JP2016047545A (en) * | 2014-08-28 | 2016-04-07 | Jfeスチール株式会社 | Plug for piercing-rolling on seamless steel pipe |
-
2010
- 2010-05-19 JP JP2010115033A patent/JP2011240436A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016047546A (en) * | 2014-08-28 | 2016-04-07 | Jfeスチール株式会社 | Method for manufacturing seamless steel pipe |
JP2016047545A (en) * | 2014-08-28 | 2016-04-07 | Jfeスチール株式会社 | Plug for piercing-rolling on seamless steel pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP2009061520A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting | |
JP2009119551A (en) | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed feed cutting work | |
JP5196122B2 (en) | Surface coated cutting tool | |
JP2009125832A (en) | Surface-coated cutting tool | |
JP5783462B2 (en) | Surface coated cutting tool | |
JP5234499B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. | |
JP2011240438A (en) | Surface coated cutting tool excellent in heat resistance and fusion resistance | |
JP4706915B2 (en) | Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys | |
JP2011240436A (en) | Surface coated cutting tool excellent in heat resistance and fusion resistance | |
JP5234332B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. | |
JP5975214B2 (en) | Surface coated cutting tool | |
JP5692636B2 (en) | Surface coated cutting tool | |
JP2012143851A (en) | Surface-coated cutting tool | |
JP4697662B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP2009285764A (en) | Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed high-feed cutting work | |
JP5975338B2 (en) | Surface coated cutting tool | |
JP6102653B2 (en) | Surface coated cutting tool | |
JP5287383B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed cutting | |
JP2011240435A (en) | Surface coated cutting tool excellent in heat resistance and fusion resistance | |
JP2011173174A (en) | Surface coated cutting tool superior in heat resistance and deposition resistance | |
JP5692635B2 (en) | Surface coated cutting tool | |
JP5796354B2 (en) | Surface coated cutting tool with excellent heat resistance and welding resistance | |
JP2011240437A (en) | Surface coated cutting tool excellent in heat resistance and fusion resistance | |
JP2011177800A (en) | Surface coated cutting tool having excellent heat resistance and welding resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130806 |