JP2006001005A - Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel - Google Patents

Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel Download PDF

Info

Publication number
JP2006001005A
JP2006001005A JP2005126019A JP2005126019A JP2006001005A JP 2006001005 A JP2006001005 A JP 2006001005A JP 2005126019 A JP2005126019 A JP 2005126019A JP 2005126019 A JP2005126019 A JP 2005126019A JP 2006001005 A JP2006001005 A JP 2006001005A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
coating layer
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005126019A
Other languages
Japanese (ja)
Inventor
Tsutomu Ogami
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005126019A priority Critical patent/JP2006001005A/en
Publication of JP2006001005A publication Critical patent/JP2006001005A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide with a hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel. <P>SOLUTION: The cutting tool made of surface coated cemented carbide comprises the hard coating layer formed on the surface of a carbide substrate formed of tungsten carbide based cemented carbide or titanium carbonitride based cermet. The hard coating layer consists of: (a) a lower layer formed of a (Ti, Al, Si)N layer having an average layer thickness of 0.8-5 μm and satisfying a composition formula: (Ti<SB>1-(X+Z)</SB>Al<SB>X</SB>Si<SB>Z</SB>)N, wherein X is 0.25-0.65, and Z is 0.01-0.10 at the atomic ratio; (b) an adhesive joint layer formed of a ZrBN (zirconium boronitride) layer having an average layer thickness of 0.1-0.5 μm; and (c) an upper layer formed of a ZrB<SB>2</SB>(zirconium boride) layer having an average layer thickness of 0.8-5 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、硬質被覆層がすぐれた放熱性を示し、特に合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼などの切削加工を、高い発熱を伴なう高速切削条件で行った場合にも、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention shows excellent heat dissipation with a hard coating layer, especially when cutting hard steel such as alloy tool steel and hardened material of bearing steel under high-speed cutting conditions with high heat generation. The present invention also relates to a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.25〜0.65、Zは0.01〜0.10を示す)、
を満足するTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、前記(Ti,Al,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Siによる一段の耐熱性向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Formula: (Ti 1- (X + Z ) Al X Si Z) N ( provided that an atomic ratio, X is 0.25 to 0.65, Z represents a 0.01-0.10)
Coated carbide tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Ti, Al, and Si [hereinafter referred to as (Ti, Al, Si) N] layer satisfying the following conditions with an average layer thickness of 1 to 15 μm The (Ti, Al, Si) N layer has high-temperature hardness and heat resistance due to Al as a constituent component, high-temperature strength due to Ti, and further improved heat resistance due to Si. Together, it is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast iron.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793773号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—Si alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, Si) N layer.
Japanese Patent No. 2793773

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを鋼や鋳鉄などの切削を通常の切削加工条件で行うのに用いた場合には問題はないが、特に合金工具鋼や軸受鋼の焼入れ材などのビッカース硬さ(Cスケール)で50以上の高い硬さを有する高硬度鋼などの切削加工を、高速切削条件で行なった場合には、高い発熱によって硬質被覆層に偏摩耗の原因となる熱塑性変形が発生し易く、これが原因で摩耗進行が著しく進行するようになることから、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, there is no problem when this is used to cut steel or cast iron under normal cutting conditions, but in particular Vickers hardness such as hardened materials of alloy tool steel and bearing steel. When cutting high hardness steel (C scale) with high hardness of 50 or more under high speed cutting conditions, high heat generation causes thermoplastic deformation that causes uneven wear in the hard coating layer. This is easy, and because of this, the wear progresses remarkably, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高硬度鋼などの高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al,Si)N層を0.8〜5μmの平均層厚で下部層として形成し、これの上に上部層として硼化ジルコニウム(以下、ZrBで示す)層を同じく0.8〜5μmの平均層厚で形成すると、前記ZrB層はすぐれた熱伝導性を有し、高速切削時に発生する高熱を速やかに放熱することから、硬質被覆層が過熱されるのが著しく抑制され、前記下部層である(Ti,Al,Si)N層は高熱発生環境下で十分に保護されるようになり、この結果(Ti,Al,Si)N層はすぐれた耐摩耗性を長期に亘って発揮されるようになること。
In view of the above, the present inventors have developed the above-mentioned conventional coating in order to develop a coated carbide tool that exhibits excellent wear resistance with a hard coating layer particularly in high-speed cutting such as high-hardness steel. As a result of conducting research with a focus on carbide tools,
(A) A (Ti, Al, Si) N layer, which is a hard coating layer of the above conventional coated carbide tool, is formed as a lower layer with an average layer thickness of 0.8 to 5 μm, and boriding as an upper layer thereon When a zirconium (hereinafter referred to as ZrB 2 ) layer is similarly formed with an average layer thickness of 0.8 to 5 μm, the ZrB 2 layer has excellent thermal conductivity and quickly dissipates high heat generated during high-speed cutting. Therefore, it is remarkably suppressed that the hard coating layer is overheated, and the (Ti, Al, Si) N layer as the lower layer is sufficiently protected in a high heat generation environment, and as a result (Ti, The Al, Si) N layer should exhibit excellent wear resistance over a long period of time.

(b)しかし、上記上部層であるZrB層と下部層である(Ti,Al,Si)N層との密着性は十分でなく、特に断続切削を高速で行った場合に剥離現象が発生し易いが、前記ZrB層と(Ti,Al,Si)N層との間に硼窒化ジルコニウム(以下、ZrBNで示す)層を、特に望ましくは前記(Ti,Al,Si)N層側に向ってN成分の含有割合を高く、B成分の含有割合を低くし、一方前記ZrB層側に向っては逆にB成分の含有割合を高く、N成分の含有割合を低くした状態で介在させると、前記ZrBN層は前記ZrB層および(Ti,Al,Si)N層のいずれとも強固に密着することから、前記(Ti,Al,Si)N層が超硬基体表面に対してすぐれた密着性を有することと相俟って、前記ZrB層と(Ti,Al,Si)N層との間にZrBN層を介在させてなる硬質被覆層は、高硬度鋼の高熱発生を伴なう高速切削加工でも、層間剥離の発生なく、すぐれた耐摩耗性を発揮するようになること。 (B) However, the adhesion between the ZrB 2 layer, which is the upper layer, and the (Ti, Al, Si) N layer, which is the lower layer, is not sufficient, and peeling phenomenon occurs particularly when intermittent cutting is performed at high speed. However, a zirconium boronitride (hereinafter referred to as ZrBN) layer between the ZrB 2 layer and the (Ti, Al, Si) N layer is particularly desirable on the (Ti, Al, Si) N layer side. towards higher proportion of N components, to lower the content of the B component, whereas the ZrB is toward the second layer side high proportion of the B component Conversely, intervening while low content of N component Then, since the ZrBN layer is firmly adhered to both the ZrB 2 layer and the (Ti, Al, Si) N layer, the (Ti, Al, Si) N layer is superior to the surface of the carbide substrate. and I cooperation with and to have adhesion, the ZrB 2 layer and ( i, Al, Si) The hard coating layer with the ZrBN layer interposed between the N layer and the high wear resistance of the high hardness steel with high heat generation without any delamination. To come out.

(c)上記(b)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)としてTi−Al−Si合金、他方側に前記SP装置のカソード電極(蒸発源)としてZrB焼結体(例えば原料粉末としてZrB粉末を用いて、ホットプレスにより成形された焼結体)を対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に下部層として(Ti,Al,Si)N層を0.8〜5μmの平均層厚で蒸着し、ついで、前記Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、前記SP装置のカソード電極(蒸発源)として配置したZrB焼結体のスパッタリングを開始し、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、Arと窒素の混合ガス雰囲気とするが、経時的にArの導入割合を漸次増加させ、一方窒素の導入割合は漸次減少させた雰囲気とする条件で、密着接合層としてZrBN層を0.1〜0.5μmの平均層厚で蒸着し、引続いて前記蒸着装置内の雰囲気を最終的にAr雰囲気として、前記SP装置のカソード電極(蒸発源)として配置したZrB焼結体のスパッタリングを続行し、もって前記ZrBN層に重ねて上部層として0.8〜5μmの平均層厚でZrB層を蒸着することにより形成することができること。 (C) The hard coating layer of (b) is, for example, an arc ion plating apparatus (hereinafter, abbreviated as AIP apparatus) having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in (b). And a sputtering apparatus (hereinafter abbreviated as SP apparatus), that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and the cathode of the AIP apparatus is placed on one side of the rotary table. Ti-Al-Si alloy was used as an electrode (evaporation source), ZrB 2 sintered body (for example, ZrB 2 powder as a raw material powder) was used as a cathode electrode (evaporation source) of the SP device on the other side, and formed by hot pressing. Using a vapor deposition apparatus in which a sintered body is disposed opposite to each other, a plurality of cemented carbide substrates are formed in a ring shape along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. In this state, while rotating the rotary table with the atmosphere inside the apparatus as a nitrogen atmosphere, and rotating the carbide substrate itself for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition, basically, First, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al—Si alloy, and a (Ti, Al, Si) N layer is formed as a lower layer on the surface of the cemented carbide substrate. Evaporation was performed with an average layer thickness of 8 to 5 μm, and then arc discharge between the cathode electrode (evaporation source) of the Ti—Al—Si alloy and the anode electrode was stopped, and the cathode electrode (evaporation source) of the SP apparatus was stopped. Sputtering of the ZrB 2 sintered body arranged as) was started, and the atmosphere in the vapor deposition apparatus was changed to a mixed gas atmosphere of Ar and nitrogen instead of a nitrogen atmosphere. Increase On the other hand, the ZrBN layer was vapor-deposited with an average layer thickness of 0.1 to 0.5 μm as an adhesive bonding layer under the condition that the introduction ratio of nitrogen was gradually reduced, and then the atmosphere in the vapor deposition apparatus was finalized. In the Ar atmosphere, sputtering of the ZrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP device was continued, so that the upper layer overlapped with the ZrBN layer had an average layer thickness of 0.8 to 5 μm. It can be formed by evaporating ZrB 2 layers.

(d)上記の下部層、密着接合層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、下部層である(Ti,Al,Si)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ密着接合層としてのZrBN層によって強固に密着したZrB層がすぐれた熱伝導性を有し、特に著しい高熱発生を伴なう高硬度鋼の高速切削加工でも、前記ZrB層が硬質被覆層の放熱を著しく促進することから、硬質被覆層は正常摩耗形態をとるようになり、この結果硬質被覆層に層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The coated carbide tool formed by vapor-depositing the hard coating layer composed of the lower layer, the adhesive bonding layer, and the upper layer has an excellent (Ti, Al, Si) N layer as the lower layer. High-temperature hardness and heat resistance, excellent high-temperature strength, and the ZrB 2 layer firmly adhered by the ZrBN layer as the adhesive bonding layer has excellent thermal conductivity, particularly high with high heat generation Even in high-speed cutting of hardened steel, the ZrB 2 layer significantly accelerates heat dissipation of the hard coating layer, so that the hard coating layer takes a normal wear form, and as a result, there is no occurrence of delamination in the hard coating layer, Providing excellent wear resistance over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.25〜0.65、Zは0.01〜0.10を示す)を満足する(Ti,Al,Si)N層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有するZrBN層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有するZrB層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、特に高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1− (X + Z) Al X Si Z ) N (wherein, X is 0.25 to 0.65 by atomic ratio) , Z represents 0.01 to 0.10) (Ti, Al, Si) N layer composed of N layer,
(B) an adhesive bonding layer comprising a ZrBN layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer consisting of two ZrB layers having an average layer thickness of 0.8-5 μm,
It is characterized by a coated cemented carbide tool that forms a hard coating layer composed of (a) to (c) above, and exhibits excellent wear resistance especially in high-speed cutting of high-hardness steel. Is.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および平均層厚
硬質被覆層の下部層を構成する(Ti,Al,Si)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には高温強度を向上させ、さらに同Si成分にはAlとの共存において一段と耐熱性を向上させる作用があるが、Alの割合を示すX値がTiとBとの合量に占める割合(原子比、以下同じ)で0.25未満になると、相対的にTiの割合が多くなり過ぎて、高速切削に要求されるすぐれた高温硬さと耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピング(微少欠け)などが発生し易くなることから、X値を0.25〜0.65と定めた。
また、Siの割合を示すZ値がTiとAlの合量に占める割合で、0.01未満では、所望の耐熱性向上効果が得られず、一方同Z値が0.10を超えると、高温強度が低下するようになることから、Z値を0.01〜0.10と定めた。
さらに、その平均層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上部層であるZrB層との平均層厚が合量で10μmを越える場合が生じ、この場合は切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer composition formula and average layer thickness The Al component in the (Ti, Al, Si) N layer constituting the lower layer of the hard coating layer improves high temperature hardness and heat resistance, while the Ti component Although the high-temperature strength is improved and the Si component has the effect of further improving heat resistance in the coexistence with Al, the ratio of the X value indicating the proportion of Al to the total amount of Ti and B (atomic ratio, If the ratio is less than 0.25, the proportion of Ti will be excessively increased, and the high temperature hardness and heat resistance required for high speed cutting cannot be secured, and the progress of wear is accelerated rapidly. On the other hand, when the X value indicating the proportion of Al exceeds 0.65, the proportion of Ti becomes relatively small, and the high-temperature strength sharply decreases. As a result, chipping ( X value is easy to occur) Was determined to be 0.25 to 0.65.
Moreover, if the Z value indicating the proportion of Si is a proportion of the total amount of Ti and Al, and less than 0.01, the desired heat resistance improvement effect cannot be obtained, while if the Z value exceeds 0.10, Since the high-temperature strength is lowered, the Z value is set to 0.01 to 0.10.
Further, if the average layer thickness is less than 0.8 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, while if the average layer thickness exceeds 5 μm, it is the upper layer. In some cases, the average layer thickness with the ZrB 2 layer exceeds 10 μm in total, and in this case, chipping tends to occur at the cutting edge portion, so the average layer thickness was determined to be 0.8 to 5 μm.

(b)密着接合層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が0.5μmを越えると、硬質被覆層の強度が密着接合層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜0.5μmと定めた。
(B) Average layer thickness of the adhesive bonding layer If the average layer thickness is less than 0.1 μm, a strong bonding strength cannot be ensured between the upper layer and the lower layer, while the average layer thickness is 0.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases in the tight bonding layer portion, which causes chipping, so the average layer thickness was determined to be 0.1 to 0.5 μm.

(c)上部層の平均層厚
上部層を構成するZrB層は、上記の通り高い熱伝導性を有し、したがって特に熱発生が著しい高硬度鋼の高速切削加工で、硬質被覆層の放熱を促進して、硬質被覆層の下部層である(Ti,Al,Si)N層の過熱を著しく抑制し、もって前記(Ti,Al,Si)N層が熱塑性変形するのを防止して、正常摩耗形態をとるようにする作用を発揮するが、その平均層厚が0.8μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えると、前記下部層との平均層厚が合量で10μmを越える場合が生じ、この場合はチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(C) Average layer thickness of the upper layer The ZrB 2 layer constituting the upper layer has high thermal conductivity as described above, and therefore, heat dissipation of the hard coating layer is achieved by high-speed cutting of high-hardness steel that generates particularly high heat. To prevent the (Ti, Al, Si) N layer from being thermoplastically deformed by remarkably suppressing the overheating of the (Ti, Al, Si) N layer, which is the lower layer of the hard coating layer, The effect of taking a normal wear form is exhibited. However, if the average layer thickness is less than 0.8 μm, a desired effect cannot be obtained. On the other hand, if the average layer thickness exceeds 5 μm, the lower layer The average layer thickness exceeds 10 μm in total, and in this case, chipping is likely to occur. Therefore, the average layer thickness was set to 0.8 to 5 μm.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Ti,Al,Si)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同密着接合層としてのZrBN層によって強固に密着接合した上部層としてのZrB層が、すぐれた放熱性を発揮し、前記(Ti,Al,Si)N層の過熱を防止することから、特に高熱発生を伴なう高硬度鋼の高速切削でも、前記硬質被覆層が偏摩耗の原因となる熱塑性変形することがなくなり、かつ層間剥離の発生もないことと相俟って、すぐれた耐摩耗性を長期に亘って発揮するものである。 The coated carbide tool of the present invention has a high-temperature hardness and heat resistance in which the lower layer (Ti, Al, Si) N layer constituting the hard coating layer has excellent high-temperature strength, and the same adhesive bonding layer The ZrB 2 layer as the upper layer that is firmly and closely joined by the ZrBN layer as described above exhibits excellent heat dissipation and prevents overheating of the (Ti, Al, Si) N layer. Therefore, even in high-speed cutting of high-hardness steel, combined with the fact that the hard coating layer does not undergo thermoplastic deformation that causes uneven wear, and there is no delamination, long-term excellent wear resistance is achieved. It is demonstrated over the long term.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。
さらに、硬質被覆層の上部層形成用カソード電極(蒸発源)として、0.8μmの平均粒径を有するZrB粉末を温度:1500℃、圧力:20MPa、保持時間:3時間の条件でホットプレスして成形したZrB焼結体を用意した。
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / CNMG120408. TiCN-based cemented carbide substrates B-1 to B-6 having the following chip shape were formed.
Furthermore, as a cathode electrode (evaporation source) for forming the upper layer of the hard coating layer, ZrB 2 powder having an average particle diameter of 0.8 μm was hot pressed under the conditions of temperature: 1500 ° C., pressure: 20 MPa, holding time: 3 hours. A ZrB 2 sintered body thus formed was prepared.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al−Si合金を配置し、他方側のSP装置のカソード電極(蒸発源)として上部層および密着接合層形成用ZrB焼結体を対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Si合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、超硬基体への直流バイアス電圧(−100V)は同じくしたままで、前記SP装置のカソード電極(蒸発源)として配置したZrB焼結体に、スパッタ出力:3kWの条件でスパッタリングを開始し、同時に前記蒸着装置内の雰囲気を、窒素雰囲気に代って、Arと窒素の混合ガス雰囲気とするが、経時的にArの導入割合を漸次増加させ、一方窒素の導入割合は漸次減少させた雰囲気とし、もって同じく表3に示される目標層厚のZrBN層を硬質被覆層の密着接合層として蒸着形成し、
(e)上記SP装置のカソード電極(蒸発源)として配置したZrB焼結体のスパッタリングを続行させながら、前記蒸着装置内の雰囲気を最終的にAr雰囲気として、同じく表3に示される目標層厚のZrB層を硬質被覆層の上部層として蒸着形成しすることにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Ti-Al for forming a lower layer having a predetermined composition as a cathode electrode (evaporation source) of an AIP device on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table -Si alloy is disposed, and the upper layer and the ZrB 2 sintered body for forming the adhesive bonding layer are disposed opposite to each other as a cathode electrode (evaporation source) of the SP device on the other side,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a current of 100 A is passed between the Ti—Al—Si alloy of the cathode electrode and the anode electrode to generate an arc discharge, whereby the surface of the carbide substrate is made to the Ti—Al—Si. Bombard washed by alloy and
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode A current of 100 A was passed between the Ti-Al-Si alloy and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate had a target composition and target layer thickness (Ti) shown in Table 3. , Al, Si) N layer is deposited as a lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Si alloy for forming the lower layer is stopped, and the DC bias voltage (−100 V) to the cemented carbide substrate remains the same, Sputtering was started on the ZrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus under the condition of sputtering output: 3 kW, and at the same time, the atmosphere in the vapor deposition apparatus was changed to Ar and nitrogen instead of nitrogen atmosphere. However, the ZrBN layer having the target layer thickness shown in Table 3 is also used as the hard coating layer, while the Ar introduction rate is gradually increased over time while the nitrogen introduction rate is gradually reduced. Vapor-deposited as an adhesive bonding layer,
(E) While continuing the sputtering of the ZrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP device, the target layer shown in Table 3 is also used with the atmosphere in the vapor deposition device finally set to an Ar atmosphere. By forming a ZrB 2 layer having a thickness as the upper layer of the hard coating layer, the surface-coated carbide throwaway tip (hereinafter referred to as the present invention-coated tip) 1 to 1 of the present invention coated carbide tool. 16 were produced respectively.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される蒸着装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Si合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, in the vapor deposition apparatus shown in FIG. Insert the Ti-Al-Si alloy with various component compositions as the cathode electrode (evaporation source), and first evacuate the inside of the device and keep it at a vacuum of 0.1 Pa or less, while using a heater. After heating the interior to 500 ° C., a DC bias voltage of −1000 V is applied to the cemented carbide substrate, and a current of 100 A is passed between the Ti—Al—Si alloy of the cathode electrode and the anode electrode to cause arc discharge. Thus, the surface of the carbide substrate is bombarded with the Ti—Al—Si alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa, and is applied to the carbide substrate. Bahia The voltage is lowered to −100 V, and arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al—Si alloy, so that the carbide substrates A-1 to A-10 and B-1 to B— 6 by depositing a (Ti, Al, Si) N layer having a target composition and a target layer thickness shown in Table 4 on each surface as a hard coating layer. Hard throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SKD61の焼入れ材(硬さ:HRC55)の丸棒、
切削速度:55m/min.、
切り込み:0.15mm、
送り:0.2mm/rev.、
切削時間:2分、
の条件(切削条件A)での合金工具鋼の乾式連続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:JIS・SUJ2の焼入れ材(硬さ:HRC56)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:50m/min.、
切り込み:0.3mm、
送り:0.1mm/rev.、
切削時間:2分、
の条件(切削条件B)での軸受鋼の乾式断続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:JIS・SKD11の焼入れ材(硬さ:HRC58)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:60m/min.、
切り込み:0.2mm、
送り:0.15mm/rev.、
切削時間:3分、
の条件(切削条件C)での合金工具鋼の乾式断続高速切削加工試験(通常の切削速度は25m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS · SKD61 hardened material (hardness: HRC55) round bar,
Cutting speed: 55 m / min. ,
Cutting depth: 0.15 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 2 minutes
Dry continuous high-speed cutting test of alloy tool steel under the conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: JIS / SUJ2 quenching material (hardness: HRC56), 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 50 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.1 mm / rev. ,
Cutting time: 2 minutes
Dry intermittent high-speed cutting test of bearing steel under the conditions (cutting condition B) (normal cutting speed is 30 m / min.),
Work material: JIS · SKD11 quenching material (hardness: HRC58) lengthwise equally spaced round bars with 4 vertical grooves,
Cutting speed: 60 m / min. ,
Cutting depth: 0.2mm,
Feed: 0.15 mm / rev. ,
Cutting time: 3 minutes
A dry intermittent high-speed cutting test (normal cutting speed is 25 m / min.) Of the alloy tool steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 2006001005
Figure 2006001005

Figure 2006001005
Figure 2006001005

Figure 2006001005
Figure 2006001005

Figure 2006001005
Figure 2006001005

Figure 2006001005
Figure 2006001005

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる下部層と、同じく表7に示される目標層厚のZrBN層からなる密着接合層およびZrB層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. A lower layer composed of a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 7 and an adhesive bonding layer consisting of a ZrBN layer having the target layer thickness also shown in Table 7 And a hard coating layer composed of an upper layer composed of two layers of ZrB by vapor deposition to form a surface coated carbide end mill (hereinafter referred to as the present coated end mill) 1 to 1 as the coated carbide tool of the present invention. 8 were produced respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. By depositing a hard coating layer composed of a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 7 under the same conditions as in Example 1 above, as a conventional coated carbide tool Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD11の焼入れ材(硬さ:HRC58)の板材、
切削速度:50m/min.、
溝深さ(切り込み):1mm、
テーブル送り:260mm/分、
の条件での合金工具鋼の乾式高速溝切削加工試験(通常の切削速度は25m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUJ2の焼入れ材(硬さ:HRC56)の板材、
切削速度:55m/min.、
溝深さ(切り込み):2mm、
テーブル送り:180mm/分、
の条件での軸受鋼の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD61の焼入れ材(硬さ:HRC55)の板材、
切削速度:60m/min.、
溝深さ(切り込み):4mm、
テーブル送り:120mm/分、
の条件での合金工具鋼の乾式高速溝切削加工試験(通常の切削速度は30m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm thick JIS / SKD11 quenching material (hardness: HRC58),
Cutting speed: 50 m / min. ,
Groove depth (cut): 1mm,
Table feed: 260 mm / min,
The dry high-speed grooving test (normal cutting speed is 25 m / min.) Of the alloy tool steel under the conditions of the present invention, the coated end mills 4 to 6 and the conventional coated end mills 4 to 6 are as follows:
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm of JIS / SUJ2 quenching material (hardness: HRC56),
Cutting speed: 55 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 180mm / min,
The dry high-speed grooving test of the bearing steel under the conditions (normal cutting speed is 30 m / min.), The coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8 are as follows:
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm thick JIS / SKD61 quenching material (hardness: HRC55),
Cutting speed: 60 m / min. ,
Groove depth (cut): 4 mm
Table feed: 120 mm / min,
The dry high-speed grooving test (normal cutting speed is 30 m / min.) Of the alloy tool steel under the above conditions is performed, and the flank wear width of the outer peripheral edge of the cutting edge is the service life in any grooving test. The cutting groove length up to 0.1 mm, which is a guideline, was measured. The measurement results are shown in Table 7, respectively.

Figure 2006001005
Figure 2006001005

Figure 2006001005
Figure 2006001005

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる下部層と、同じく表8に示される目標層厚のZrBN層からなる密着接合層およびZrB層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 and the ZrBN having the target layer thickness also shown in Table 8 are used. A hard coating layer composed of an adhesive bonding layer composed of two layers and an upper layer composed of two ZrB layers is formed by vapor deposition to form the surface coated carbide drill of the present invention as the coated carbide tool of the present invention (hereinafter, coated with the present invention). (Referred to as drills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. By charging the apparatus and vapor-depositing a hard coating layer comprising a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above. Conventional surface-coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもったJIS・SKD11の焼入れ材(硬さ:HRC58)の板材、
切削速度:40m/min.、
送り:0.15mm/rev、
穴深さ:6mm、
の条件での合金工具鋼の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUJ2の焼入れ材(硬さ:HRC56)の板材、
切削速度:50m/min.、
送り:0.12mm/rev、
穴深さ:12mm、
の条件での軸受鋼の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD61の焼入れ材(硬さ:HRC55)の板材、
切削速度:55m/min.、
送り:0.2mm/rev、
穴深さ:30mm、
の条件での合金工具鋼の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane: 100 mm × 250, thickness: 50 mm thick JIS / SKD11 quenching material (hardness: HRC58),
Cutting speed: 40 m / min. ,
Feed: 0.15mm / rev,
Hole depth: 6mm,
About the wet high-speed drilling cutting test of the alloy tool steel under the conditions (normal cutting speed is 20 m / min.), The present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm of JIS / SUJ2 quenching material (hardness: HRC56),
Cutting speed: 50 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 12mm,
With respect to the bearing steel wet high speed drilling cutting test under the conditions (normal cutting speed is 25 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm thick JIS / SKD61 quenching material (hardness: HRC55),
Cutting speed: 55 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 30mm,
Wet high-speed drilling machining test (normal cutting speed is 30 m / min.) Of alloy tool steel under the above conditions, and the tip cutting edge surface in any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width was 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 2006001005
この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al,Si)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al,Si)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
Figure 2006001005
The hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tools obtained as a result (Ti, Al, Si) ) From the composition of the N layer (lower layer) and the conventional coated chips 1-16 as a conventional coated carbide tool, the conventional coated end mills 1-8, and the (Ti, Al, Si) N layer of the conventional coated drills 1-8 When the composition of the resulting hard coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the constituent layers of the hard coating layer was measured by a cross-section using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも合金工具鋼や軸受鋼の焼入れ材の高硬度鋼の高熱発生を伴なう高速切削加工でも、硬質被覆層の下部層である(Ti,Al,Si)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ密着接合層としてのZrBN層によって強固に密着したZrB層がすぐれた放熱性を発揮することから、摩耗は正常摩耗形態をとるようになり、かつ層間剥離の発生もなくなることと相俟って、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が(Ti,Al,Si)N層で構成された従来被覆超硬工具においては、いずれも高熱発生によって硬質被覆層に偏摩耗の原因となる熱塑性変形が発生し、摩耗進行が著しく促進されるようになることから、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, the coated carbide tool of the present invention is the lower part of the hard coating layer even in the high-speed cutting process accompanied by the high heat generation of the hardened steel of alloy tool steel and bearing steel. The (Ti, Al, Si) N layer, which is a layer, has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the ZrB 2 layer firmly adhered by the ZrBN layer as an adhesive bonding layer has excellent heat dissipation In combination with the fact that wear takes the form of normal wear and the occurrence of delamination does not occur, excellent wear resistance is demonstrated over a long period of time. In conventional coated carbide tools with a coating layer of (Ti, Al, Si) N layer, all of the hard coating layer undergoes thermoplastic deformation that causes uneven wear due to high heat generation, and the progress of wear is significantly accelerated. The ratio from It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高硬度鋼の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention can be used not only for cutting under normal cutting conditions such as various types of steel and cast iron, but also for high-speed cutting with high heat generation especially for high-hardness steel. Because it exhibits excellent wear resistance and excellent cutting performance over a long period of time, it is sufficient for high performance and automation of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction It can respond to satisfaction.

被覆超硬工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises a coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Z) AlX Si)N(ただし、原子比で、Xは0.25〜0.65、Zは0.01〜0.10を示す)を満足するTiとAlとSiの複合窒化物層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有する硼窒化ジルコニウム層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有する硼化ジルコニウム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1− (X + Z) Al X Si Z ) N (wherein, X is 0.25 to 0.65 by atomic ratio) , Z represents 0.01 to 0.10), and a lower layer made of a composite nitride layer of Ti, Al, and Si,
(B) an adhesive bonding layer comprising a zirconium boronitride layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer comprising a zirconium boride layer having an average layer thickness of 0.8 to 5 μm;
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of high-hardness steel, formed by forming a hard coating layer composed of (a) to (c) above.
JP2005126019A 2004-05-17 2005-04-25 Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel Withdrawn JP2006001005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126019A JP2006001005A (en) 2004-05-17 2005-04-25 Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004146509 2004-05-17
JP2005126019A JP2006001005A (en) 2004-05-17 2005-04-25 Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel

Publications (1)

Publication Number Publication Date
JP2006001005A true JP2006001005A (en) 2006-01-05

Family

ID=35769815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126019A Withdrawn JP2006001005A (en) 2004-05-17 2005-04-25 Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel

Country Status (1)

Country Link
JP (1) JP2006001005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040615A (en) * 2010-08-12 2012-03-01 Mitsubishi Materials Corp Surface coating cutting tool with hard coating layer exhibiting excellent peel resistance and wear resistance in high-speed cutting of difficult-to-cut material
US20140082418A1 (en) * 2012-09-14 2014-03-20 Samsung Electronics Co., Ltd. Electronic apparatus and method of controlling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040615A (en) * 2010-08-12 2012-03-01 Mitsubishi Materials Corp Surface coating cutting tool with hard coating layer exhibiting excellent peel resistance and wear resistance in high-speed cutting of difficult-to-cut material
CN102371385A (en) * 2010-08-12 2012-03-14 三菱综合材料株式会社 Surface cladding cutting tool
CN102371385B (en) * 2010-08-12 2015-07-08 三菱综合材料株式会社 Surface cladding cutting tool
US20140082418A1 (en) * 2012-09-14 2014-03-20 Samsung Electronics Co., Ltd. Electronic apparatus and method of controlling the same

Similar Documents

Publication Publication Date Title
JP2006218592A (en) Surface coated cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance in high speed cutting of high hardness steel
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2006281409A (en) Surface coated cemented carbide cutting tool with hard coating layer exerting excellent wear resistance in high-speed cutting of high hardness steel
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008260097A (en) Surface-coated cutting tool
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4725771B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2006015451A (en) Method of manufacturing surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high speed cutting
JP2006021276A (en) Method of manufacturing of surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting work of high hardness steel
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2006001001A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of highly reactive material to be cut
JP2006088317A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006088318A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel
JP5692635B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701