JP4771200B2 - Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys - Google Patents

Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys Download PDF

Info

Publication number
JP4771200B2
JP4771200B2 JP2005039104A JP2005039104A JP4771200B2 JP 4771200 B2 JP4771200 B2 JP 4771200B2 JP 2005039104 A JP2005039104 A JP 2005039104A JP 2005039104 A JP2005039104 A JP 2005039104A JP 4771200 B2 JP4771200 B2 JP 4771200B2
Authority
JP
Japan
Prior art keywords
layer
cutting
alloy
coated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005039104A
Other languages
Japanese (ja)
Other versions
JP2006224222A (en
Inventor
強 大上
裕介 田中
浩一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005039104A priority Critical patent/JP4771200B2/en
Publication of JP2006224222A publication Critical patent/JP2006224222A/en
Application granted granted Critical
Publication of JP4771200B2 publication Critical patent/JP4771200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた熱伝導性を有し、さらに高温硬さおよび高温強度も具備し、したがって特に高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, the hard coating layer has excellent thermal conductivity, and also has high-temperature hardness and high-temperature strength. Therefore, Ni alloys, Co alloys, and Ti alloys such as Ti alloys that are particularly accompanied by high heat generation are used. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent wear resistance when used in high-speed cutting.

一般に、被覆サーメット工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated cermet tools, throwaway inserts that are detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron work materials, and drilling of the work material. Drills and miniature drills used in, etc., as well as solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, and the solid type by attaching the throwaway tip detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.

また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体(以下、単に基体という)の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(X+Y) AlX ]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)、
を満足するTiとAlとB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる被覆サーメット工具が知られており、かかる従来被覆サーメット工具においては、硬質被覆層を構成する前記(Ti,Al,B)N層が、構成成分であるAlによって高温硬さ、同Tiによって高温強度、さらに同B成分によって熱伝導性を具備し、特に前記B成分により抜熱効果が発揮されることから、切削時に発熱を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の切削加工に用いた場合にも、すぐれた耐摩耗性を示すことも知られている。
Further, as a coated cermet tool, on the surface of a cermet base (hereinafter simply referred to as a base) composed of a tungsten carbide (hereinafter referred to as WC) base cemented carbide or a titanium carbonitride (hereinafter referred to as TiCN) base cermet, Having a single phase structure, and
Formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is 0.50 to .65, Y represents a 0.01-0.10)
A hard coating layer composed of a composite nitride of Ti, Al, and B (boron) [hereinafter referred to as (Ti, Al, B) N] satisfying the above conditions is deposited by an average layer thickness of 2 to 8 μm. A cermet tool is known, and in such a conventional coated cermet tool, the (Ti, Al, B) N layer constituting the hard coating layer has a high-temperature hardness by the component Al, and a high-temperature strength by the Ti, Furthermore, the B component provides thermal conductivity, and the heat removal effect is exhibited especially by the B component. Therefore, it is used for cutting heat-resistant alloys such as Ni alloys, Co alloys, and Ti alloys that generate heat during cutting. It is also known to exhibit excellent wear resistance.

さらに、上記の被覆サーメット工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の基体を装入し、ヒーターで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層である(Ti,Al,B)N層の組成に対応した組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−100Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793696号明細書
Furthermore, the above coated cermet tool, is charged with an arc ion plating apparatus of the above base is one of physical vapor deposition apparatus shown in example schematic diagram in FIG. 2, in the apparatus with a heater, for example, 500 ° C. A cathode electrode (evaporation source) and an anode electrode in which a Ti—Al—B alloy having a composition corresponding to the composition of the (Ti, Al, B) N layer which is a hard coating layer is set in a state heated to For example, arc discharge is generated under the condition of current: 90 A, for example, and nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa, while the substrate has a bias voltage of, for example, −100 V It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, B) N layer on the surface of the substrate under the condition of applying the above.
Japanese Patent No. 2793696

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを上記の通り熱発生を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の切削加工を通常の切削加工条件で行うのに用いる場合には、硬質被覆層である(Ti,Al,B)N層におけるB成分による抜熱効果(熱伝導性)が十分に働き、所定の耐摩耗性を発揮するが、特に前記耐熱合金の切削加工を、きわめて高い熱発生を伴なう高速切削加工条件で行うのに用いた場合には、前記(Ti,Al,B)N層の具備する熱伝導性(抜熱効果)ではきわめて不十分となり、この結果切刃部に偏摩耗の原因となる熱塑性変形が発生し、摩耗進行が著しく促進するようになることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In a coated cermet tool, if it is used to cut heat-resistant alloys such as Ni alloys, Co alloys, and Ti alloys with heat generation as described above under normal cutting conditions, a hard coating layer is used. The heat removal effect (thermal conductivity) due to the B component in a certain (Ti, Al, B) N layer works satisfactorily and exhibits a predetermined wear resistance. When used in high-speed cutting conditions involving the above, the thermal conductivity (heat removal effect) of the (Ti, Al, B) N layer is extremely insufficient. Cause uneven wear Plastic deformation occurs, since the so wear progresses to promote considerably, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、特に耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具の硬質被覆層を構成する(Ti,Al,B)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,B)N層において、B成分の含有割合を多くすれば熱伝導性が向上するが、上記の通り従来(Ti,Al,B)N層における1〜10原子%程度のB含有割合では、耐熱合金の高速切削加工に要求される高い熱伝導性を確保することができず、これらの要求に満足に対応させるためには前記1〜10原子%をはるかに越えた15〜35原子%のB含有が必要であり、一方15〜35原子%のB成分を含有した(Ti,Al,B)N層を硬質被覆層として実用に供するためには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さのきわめて低いものとなること。
In view of the above, the present inventors have developed the above-mentioned conventional coated cermet tool in order to develop a coated cermet tool that exhibits excellent wear resistance with a hard coating layer particularly in high-speed cutting of a heat-resistant alloy. As a result of conducting research by focusing on the (Ti, Al, B) N layer that constitutes the hard coating layer,
(A) In the (Ti, Al, B) N layer constituting the hard coating layer, the thermal conductivity improves if the content ratio of the B component is increased. As described above, the conventional (Ti, Al, B) N layer When the B content is about 1 to 10 atomic%, the high thermal conductivity required for high-speed cutting of the heat-resistant alloy cannot be ensured. To satisfy these requirements satisfactorily, To contain 15 to 35 atomic% of B, far exceeding atomic%, while (Ti, Al, B) N layer containing 15 to 35 atomic% of B component is put to practical use as a hard coating layer. It is necessary to contain a predetermined amount of Ti to ensure a predetermined high temperature strength. In this case, however, it is inevitable that the content ratio of the Al component is extremely low, and as a result, the high temperature hardness is extremely low. To be a thing.

(b)組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.01〜0.10、Fは0.15〜0.35を示す)を満足する、B含有割合が15〜35原子%の(Ti,Al,B)N層と、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.01〜0.10を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,B)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,B)N層は、上記薄層の交互積層構造によって、上記の高B含有の(Ti,Al,B)N層(以下、薄層Aという)のもつすぐれた熱伝導性と、前記薄層Aに比してB含有割合が低く、かつ相対的にAl含有割合が高い(Ti,Al,B)N層(以下、薄層Bという)のもつ所定の相対的に高い高温硬さを具備するようになること。
(B) the composition formula: [Ti 1- (E + F ) Al E B F] N ( provided that an atomic ratio, E is 0.01 to 0.10, F denotes the 0.15-0.35) satisfies A (Ti, Al, B) N layer having a B content of 15 to 35 atomic%;
Formula: [Ti 1- (M + N ) Al M B N] N ( provided that an atomic ratio, M is 0.25 to 0.40, N denotes the 0.01-0.10) satisfies, relative (Ti, Al, B) N layer with an increased content of Al component,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), and the resulting (Ti, Al, B) N layer is formed by the laminated structure of the thin layers. The excellent thermal conductivity of the (Ti, Al, B) N layer (hereinafter referred to as the thin layer A) having a high B content, the B content ratio being lower than that of the thin layer A, and relative And (Ti, Al, B) N layer (hereinafter referred to as thin layer B) having a high Al content ratio has a predetermined relatively high high temperature hardness.

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,B)N層は、耐熱合金の高速切削加工で要求される、すぐれた熱伝導性と所定の高温硬さを具備するものの、未だ十分満足な高温硬さを有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、熱伝導性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さを具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,B)N層、すなわち、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)を満足する、単一相構造の(Ti,Al,B)N層、
を設けた構造にすると、この結果の硬質被覆層は、すぐれた熱伝導性に加えて、高温硬さと高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆サーメット工具は、上記の高熱発生を伴う耐熱合金の高速切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, B) N layer having the alternate layered structure of the thin layer A and the thin layer B in (b) above has excellent thermal conductivity and a predetermined value required for high-speed cutting of a heat-resistant alloy. However, since it does not have a sufficiently satisfactory high temperature hardness, it is provided as the upper layer of the hard coating layer, while the lower layer has insufficient thermal conductivity, (Ti, Al, B) N layer having a composition corresponding to the above-mentioned conventional hard coating layer having a high Al component content and excellent high-temperature hardness,
Formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is 0.50 to .65, Y represents a 0.01-0.10) satisfies the single (Ti, Al, B) N layer of single phase structure,
The resulting hard coating layer has high temperature hardness and high strength in addition to excellent thermal conductivity, so a coated cermet tool formed by vapor deposition of this hard coating layer In the high-speed cutting of the heat-resistant alloy with high heat generation described above, excellent wear resistance is exhibited over a long period of time without occurrence of chipping.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、基体の表面に、
(a)いずれも(Ti,Al,B)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚が5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Aは0.01〜0.10、Fは0.15〜0.35を示す)を満足する(Ti,Al,B)N層、
上記薄層Bは、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.01〜0.10を示す)を満足する(Ti,Al,B)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)を満足する(Ti,Al,B)N層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
This invention has been made based on the above research results, and on the surface of the substrate ,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, B) N, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternate layered structure of thin layers A and thin layers B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: [Ti 1− (E + F) Al E B F ] N (wherein A represents 0.01 to 0.10 and F represents 0.15 to 0.35 in terms of atomic ratio) (Ti , Al, B) N layer,
The thin layer B is
Composition formula: [Ti 1− (M + N) Al M B N ] N (wherein M is 0.25 to 0.40 and N is 0.01 to 0.10 in atomic ratio) (Ti , Al, B) N layer,
(C) the lower layer has a single phase structure;
Formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is 0.50 to .65, Y represents a 0.01-0.10) satisfying (Ti , Al, B) N layer,
It is characterized by a coated cermet tool that exhibits excellent wear resistance in high-speed cutting of a heat-resistant alloy, formed by vapor-depositing a hard coating layer comprising:

つぎに、この発明の被覆サーメット工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および平均層厚
上記の通り、硬質被覆層を構成する(Ti,Al,B)N層におけるAl成分には高温硬さを向上させ、一方同Ti成分には高温強度、さらに同B成分には熱伝導性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さを具備せしめるが、Alの含有割合を示すX値がTiとBとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、耐熱合金の高速切削加工に要求されるすぐれた高温硬さを確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示す同X値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、X値を0.50〜0.65と定めた。
また、Bの割合を示すY値がTiとAlの合量に占める割合で、0.01未満では、所定の熱伝導性を確保することができず、一方同Y値が0.10を超えると、高温強度に明確な低下傾向が現れるようになることから、Y値を0.01〜0.10と定めた。
さらに、その平均層厚が2μm未満では、自身のもつすぐれた高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described.
(A) Composition formula and average layer thickness of the lower layer As described above, the Al component in the (Ti, Al, B) N layer constituting the hard coating layer improves the high temperature hardness, while the Ti component has a high temperature. The strength and further the B component have the effect of improving the thermal conductivity. In the lower layer, the Al component content is relatively increased to provide high high-temperature hardness. If the value is less than 0.50 in terms of the total amount of Ti and B (atomic ratio, the same shall apply hereinafter), the proportion of Ti is relatively high, and the excellent high temperature required for high-speed cutting of heat-resistant alloys Hardness cannot be secured, and the progress of wear is accelerated rapidly. On the other hand, when the X value indicating the Al ratio exceeds 0.65, the Ti ratio is relatively decreased. , The high temperature strength drops sharply, resulting in chipping (slight chipping), etc. Therefore, the X value was determined to be 0.50 to 0.65.
Further, the Y value indicating the ratio of B is the ratio of the total amount of Ti and Al, and if it is less than 0.01, the predetermined thermal conductivity cannot be ensured, while the Y value exceeds 0.10. Then, since a clear decreasing tendency appears in the high temperature strength, the Y value was set to 0.01 to 0.10.
Furthermore, if the average layer thickness is less than 2 μm, it is impossible to impart its own high-temperature hardness to the hard coating layer over a long period of time, resulting in a short tool life, while if the average layer thickness exceeds 6 μm, Since chipping is likely to occur, the average layer thickness was determined to be 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,B)NにおけるB成分には、上記の通り相対的にその含有割合を高くして、熱伝導性を向上させ、もって高熱発生を伴う耐熱合金の高速切削加工ですぐれた抜熱効果を発揮させ、熱塑性変形の発生を防止する作用があるが、その含有割合を示すF値がTiとAlの合量に占める割合で、0.15未満では前記作用に所望のすぐれた効果を確保することができず、一方同F値が0.35を越えると、高温強度が急激に低下し、これが上部層全体の高温強度低下の原因となり、チッピングが発生し易くなることから、F値を0.15〜0.35と定めた。
また、Alの割合を示すE値がTiとBの合量に占める割合で、0.01未満では、最低限の高温硬さを確保することができず、摩耗促進の原因となり、一方同E値が0.10を超えると、高温強度が低下し、チッピング発生の原因となることから、E値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A For the B component in (Ti, Al, B) N of the upper layer thin layer A, the content ratio is relatively increased as described above, and the thermal conductivity. It has the effect of improving the heat removal effect of high-temperature cutting of heat-resistant alloys with high heat generation and preventing the occurrence of thermoplastic deformation, but the F value indicating the content ratio is a combination of Ti and Al. If the ratio is less than 0.15, the desired excellent effect cannot be ensured for the above action. On the other hand, if the F value exceeds 0.35, the high-temperature strength decreases rapidly, and this is the upper layer. The F value was determined to be 0.15 to 0.35 because it causes a decrease in the overall high-temperature strength and chipping is likely to occur.
Further, the E value indicating the proportion of Al is the proportion of the total amount of Ti and B, and if it is less than 0.01, the minimum high-temperature hardness cannot be ensured, causing wear promotion, while the E If the value exceeds 0.10, the high-temperature strength decreases and causes chipping, so the E value was determined to be 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、B成分の含有割合を相対的に低くし、一方Al成分の含有割合を相対的に高く維持することで、相対的に高い高温硬さを具備せしめ、隣接する薄層Aの高温硬さ不足を補強し、もって、前記薄層Aのもつすぐれた熱伝導性と、前記薄層Bのもつ所定の高温硬さを具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すM値が0.25未満になると、Alの含有割合が少なくなり過ぎて、所定の高温硬さを確保することができず、この結果摩耗進行が促進するようになり、一方同M値が0.40を越えると、相対的にTi成分の含有割合が低下して、上部層の高温強度低下は避けられず、チッピング発生の原因となることから、M値を0.25〜0.40と定めた。
また、Bの割合を示すN値がTiとAlの合量に占める割合で、0.01未満では、上部層全体の熱伝導性低下が避けられず、一方同N値が0.10を超えると、高温強度が低下し、チッピングが発生し易くなることから、N値を0.01〜0.10と定めた。
(C) Composition formula of upper layer thin layer B In the upper layer thin layer B, the content ratio of the B component is relatively low, while the content ratio of the Al component is maintained relatively high, The high-temperature hardness of the thin layer A is strengthened, and the lack of high-temperature hardness of the adjacent thin layer A is reinforced, so that the excellent thermal conductivity of the thin layer A and the predetermined high-temperature hardness of the thin layer B are obtained. However, when the M value indicating the Al content in the composition formula is less than 0.25, the Al content is too small to ensure a predetermined high-temperature hardness. As a result, the progress of wear is promoted. On the other hand, when the M value exceeds 0.40, the content ratio of the Ti component is relatively lowered, and the high temperature strength of the upper layer is prevented from being lowered. Therefore, the M value is fixed to 0.25 to 0.40. I tried.
Further, the N value indicating the ratio of B is the ratio of the total amount of Ti and Al. If the N value is less than 0.01, a decrease in the thermal conductivity of the entire upper layer is unavoidable, while the N value exceeds 0.10. Then, the N value was determined to be 0.01 to 0.10 because the high temperature strength decreased and chipping was likely to occur.

(d)上部層の薄層Aと薄層Bの一層平均層厚
それぞれの一層平均層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた熱伝導性、さらに所定の高温硬さを確保することができなくなり、またそれぞれの一層平均層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さ不足、薄層Bであれば熱伝導性不足が層内に局部的に現れ、これが原因で摩耗が急速に進行するようになることから、それぞれの一層平均層厚を5〜20nmと定めた。
(D) Single layer average layer thickness of thin layer A and thin layer B of the upper layer If each layer average layer thickness is less than 5 nm, it is difficult to clearly form each thin layer with the above composition. It is impossible to ensure the desired excellent thermal conductivity and a predetermined high-temperature hardness in the layer, and if the average layer thickness of each layer exceeds 20 nm, each thin layer has a defect, that is, the thin layer A. Insufficient high-temperature hardness and thin layer B cause insufficient heat conductivity to appear locally in the layer, which causes wear to proceed rapidly. It was determined.

(e)上部層の平均層厚
その平均層厚が0.5μm未満では、自身のもつすぐれた熱伝導性、さらに所定の高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が1.5μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜1.5μmと定めた。
(E) Average layer thickness of the upper layer If the average layer thickness is less than 0.5 μm, the excellent thermal conductivity of the layer itself and a predetermined high temperature hardness cannot be imparted to the hard coating layer over a long period of time, resulting in a tool life. On the other hand, if the average layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the average layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆サーメット工具は、硬質被覆層が(Ti,Al,B)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた熱伝導性と所定の高温硬さを具備せしめ、同単一相構造の下部層がすぐれた高温硬さを有することから、特に高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工でも、硬質被覆層がすぐれた抜熱効果を発揮し、この結果切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated cermet tool of the present invention, the hard coating layer is composed of a (Ti, Al, B) N layer, but the upper layer of the hard coating layer has excellent heat by forming the alternate layer structure of the thin layer A and the thin layer B. Heat resistance such as Ni alloy, Co alloy, and Ti alloy with high heat generation, especially because it has conductivity and predetermined high temperature hardness, and the lower layer of the single phase structure has excellent high temperature hardness. Even in high-speed cutting of alloys, the hard coating layer exhibits an excellent heat removal effect, and as a result, it exhibits excellent wear resistance over a long period of time without the occurrence of thermoplastic deformation that causes uneven wear on the cutting edge. Is.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの範囲内の所定の平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder each having a predetermined average particle diameter in the range of 1 to 3 μm, And Co powder are prepared, these raw material powders are blended in the blending composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The body was sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to have a chip shape of ISO standard / CNMG120408. It was to form a WC-based cemented carbide substrate a-1 to a-10 of.

また、原料粉末として、いずれも0.5〜2μmの範囲内の所定の平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, all having a predetermined average particle diameter in the range of 0.5 to 2 μm, TaC powder, WC powder, Co powder, and Ni powder are prepared. These raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then compacted at a pressure of 100 MPa. The green compact was pressed into a body and sintered in a 2 kPa nitrogen atmosphere at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge was subjected to a honing process of R: 0.03. to form a TiCN based cermet substrate B-1 to B-6 having a tip shape of ISO standard · CNMG120408 Te.

(a)ついで、上記の基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−B合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−B合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった下部層形成用Ti−Al−B合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって基体表面を前記Ti−Al−B合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−B合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−B合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the substrates A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the inner rotary table, and corresponded to the target compositions shown in Tables 3 and 4 as cathode electrodes (evaporation sources) on one side, respectively. As the Ti-Al-B alloy for forming the thin layer A of the upper layer having the component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 were also provided. A Ti-Al-B alloy for forming a thin layer B as an upper layer is disposed opposite to the rotary table, and a cathode electrode (along the rotary table at a position shifted by 90 degrees from both the Ti-Al-B alloys). As the evaporation source) The Ku lower layer forming Ti-Al-B alloy having a component composition corresponding to the target composition shown in Tables 3 and 4 is mounted,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the direct current of −1000 V is applied to the base that rotates while rotating on the rotary table. A bias voltage is applied and a current of 100 A is passed between the Ti-Al-B alloy for forming the lower layer and the anode electrode to generate an arc discharge, whereby the substrate surface is bombarded by the Ti-Al-B alloy. Wash and
(C) Introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the substrate rotating while rotating on the rotary table, and forming the lower layer A current of 100 A is passed between the Ti-Al-B alloy for use and the anode electrode to generate an arc discharge, so that a single phase having the target composition and target layer thickness shown in Tables 3 and 4 is formed on the surface of the substrate. (Ti, Al, B) N layer having a structure is formed by vapor deposition as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus was adjusted to obtain a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the substrate rotating while rotating on the rotary table. In this state, a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-B alloy for forming the thin layer A to generate arc discharge, and the surface of the substrate is A thin layer A having a predetermined layer thickness is formed, and after the thin layer A is formed, the arc discharge is stopped. Instead, the thin layer A is formed between the cathode electrode and the anode electrode of the Ti-Al-B alloy for forming the thin layer B. A predetermined current within a range of 200 A is applied to generate arc discharge to form a thin layer B having a predetermined layer thickness, and then the arc discharge is stopped (in this case, the formation of the thin layer B may be started). T for forming the thin layer A again -Formation of thin layer A by arc discharge between cathode electrode and anode electrode of Al-B alloy, and formation of thin layer B by arc discharge between cathode electrode and anode electrode of Ti-Al-B alloy for forming thin layer B An upper layer comprising alternating layers of thin layer A and thin layer B having a target composition and a single target layer thickness along the layer thickness direction is formed on the surface of the substrate by alternately repeating the formation. Similarly, the surface-covered cermet throwaway tips (hereinafter referred to as the present invention-coated tips ) 1 to 16 as the present invention-coated cermet tools are formed by vapor deposition with the overall target layer thicknesses shown in Tables 3 and 4, respectively. Manufactured.

また、比較の目的で、これら基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって基体表面を前記Ti−Al−B合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着形成することにより、従来被覆サーメット工具としての従来表面被覆サーメット製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating apparatus shown in FIG. A Ti—Al—B alloy having a component composition corresponding to the target composition shown in Table 5 was attached as a cathode electrode (evaporation source), and the apparatus was first evacuated to 0.1 Pa. While maintaining the following vacuum, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the substrate , and the Ti—Al—B alloy of the cathode electrode and the anode electrode by flowing a 100A current to generate an arc discharge, has bombarded washed substrate surface in the Ti-Al-B alloy, and then the reaction atmosphere of 3Pa by introducing nitrogen gas as a reaction gas into the apparatus Rutotomoni, lowering the bias voltage applied to the substrate to -100 V, the Ti-Al-B to generate arc discharge between the cathode electrode and the anode electrode of the alloy, with the substrate A-1 to A-10 and And a hard coating layer composed of a (Ti, Al, B) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 5 is deposited on each surface of B-1 to B-6. Thus, conventional surface-covered cermet throwaway tips (hereinafter referred to as conventional coated tips ) 1 to 16 as conventional coated cermet tools were manufactured, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:質量%で、Ni−19.3%Cr−18.1%Fe−5.4%Cd−4.9%Ta−3.2%Mo−0.9%Ti−0.48%Alの組成を有するNi合金の丸棒、
切削速度:65m/min.、
切り込み:1.0mm、
送り:0.2mm/rev.、
切削時間:3分、
の条件(切削条件Aという)でのNi合金の乾式連続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:質量%で、Co−23.5%Cr−5.9%Mo−2.2%Ni−0.96%Fe−0.57%Si−0.42%Cの組成を有するCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:60m/min.、
切り込み:0.5mm、
送り:0.15mm/rev.、
切削時間:4分、
の条件(切削条件Bという)でのCo合金の乾式断続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:質量%で、Ti−6.14%Al−3.96%Vの組成を有するTi合金の丸棒、
切削速度:80m/min.、
切り込み:1.0mm、
送り:0.3mm/rev.、
切削時間:7分、
の条件(切削条件Cという)でのTi合金の乾式連続高速切削加工試験(通常の切削速度は40m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work Material: Ni-19.3% Cr-18. 1% Fe-5.4% Cd-4.9% Ta-3.2% Mo-0.9% Ti-0.48% by mass% A round bar of Ni alloy having a composition of Al,
Cutting speed: 65 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 3 minutes
Dry continuous high-speed cutting test of Ni alloy under the conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: Co having a composition of Co-23.5% Cr-5.9% Mo-2.2% Ni-0.96% Fe-0.57% Si-0.42% C in mass%. 4 vertical grooves with equal intervals in the length direction of the alloy,
Cutting speed: 60 m / min. ,
Cutting depth: 0.5mm,
Feed: 0.15 mm / rev. ,
Cutting time: 4 minutes
Dry interrupted high-speed cutting test of Co alloy under the conditions (cutting condition B) (normal cutting speed is 30 m / min.),
Work material: Round bar of Ti alloy having a composition of Ti-6.14% Al-3.96% V in mass%,
Cutting speed: 80 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 7 minutes
A dry continuous high-speed cutting test (normal cutting speed is 40 m / min.) Of Ti alloy under the above conditions (referred to as cutting condition C) was carried out, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of round bar sintered bodies for forming a substrate having a diameter of 8 mm, 13 mm, and 26 mm were formed, and further, from the above three types of round bar sintered bodies, the combinations shown in Table 7 were obtained by grinding. A base made of a WC-base cemented carbide having a four-blade square shape with a diameter × length of the cutting edge of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. (End mill) C-1 to C-8 were produced.

ついで、これらの基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1. Under the same conditions as in No. 1, a lower layer composed of a (Ti, Al, B) N layer having a single phase structure with the target composition and target layer thickness shown in Table 8, and Table 8 along the layer thickness direction. A book as a coated cermet tool of the present invention is formed by vapor-depositing an upper layer composed of alternating layers of thin layer A and thin layer B having a target composition and a single target layer thickness with the overall target layer thickness shown in Table 8 as well. Invention surface coated cermet end mills (hereinafter referred to as the present invention coated end mills ) 1 to 8 were produced.

また、比較の目的で、上記の基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. By depositing a hard coating layer composed of a (Ti, Al, B) N layer having a single phase structure with the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1 above. The conventional surface-coated cermet end mills (hereinafter referred to as conventional coated end mills ) 1 to 8 as conventional coated cermet tools were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−20.3%Cr−14.8%W−10.1%Ni−1.45%Mn−0.95%Si−1.04%Fe−0.12%Cの組成を有するCo合金の板材、
切削速度:40m/min.、
溝深さ(切り込み):3mm、
テーブル送り:280mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は25m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−3.02%Al−2.53%Vの組成を有するTi合金の板材、
切削速度:75m/min.、
溝深さ(切り込み):4mm、
テーブル送り:300mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は35m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−18.7%Cr−14.3%Co−4.51%Mo−2.53%Ti−1.98%Fe−1.18%Al−0.74%Mn−0.41%Siの組成を有するNi合金の板材、
切削速度:40m/min.、
溝深さ(切り込み):5mm、
テーブル送り:150mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は20m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Co-20.3% Cr-14.8% W-10. 1% Ni-1.45% Mn-0. A plate material of Co alloy having a composition of 95% Si-1.04% Fe-0.12% C;
Cutting speed: 40 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 280 mm / min,
The dry high-speed grooving test of the Co alloy under the conditions (normal cutting speed is 25 m / min.), The present invention coated end mills 4-6 and the conventional coated end mills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm, as well as mass%, Ti-3.02% Al-2.53% V Ti alloy plate,
Cutting speed: 75 m / min. ,
Groove depth (cut): 4 mm
Table feed: 300mm / min,
With respect to the dry high-speed grooving test of Ti alloy under the conditions (normal cutting speed is 35 m / min.), The present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm, and Mass%, Ni-18.7% Cr-14.3% Co-4.51% Mo-2.53% Ti-1. A plate of Ni alloy having a composition of 98% Fe-1.18% Al-0.74% Mn-0.41% Si,
Cutting speed: 40 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 150 mm / min,
The Ni alloy dry high-speed grooving test (normal cutting speed is 20 m / min.) Was performed under the conditions of the above, and the flank wear width of the outer peripheral edge of the cutting edge was the service life of each grooving test. The cutting groove length up to 0.1 mm as a standard was measured. The measurement results are shown in Tables 8 and 9, respectively.

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

上記の実施例2で製造した直径が8mm(基体C−1〜C−3形成用)、13mm(基体C−4〜C−6形成用)、および26mm(基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(基体D−1〜D−3)、8mm×22mm(基体D−4〜D−6)、および16mm×45mm(基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameter prepared in Example 2 of 8 mm (for substrates C-1 through C-3 form), 13 mm (for substrates C-4~C-6 form), and 26 mm (base C-7, C-8 form with three round bar sintered body use), from the three round bar sintered at grinding, diameter × length of the groove forming portions respectively 4 mm × 13 mm (base D-1 to D -3), 8mm × 22mm (base D-4~D-6), and dimensions of 16 mm × 45 mm (base D-7, D-8) , and both with a two-blade shape of the twist angle of 30 degrees Substrates (drills) D-1 to D-8 made of WC-base cemented carbide were produced.

ついで、これらの基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of a (Ti, Al, B) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 10, and the same layer thickness direction In accordance with the present invention, the upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition shown in Table 10 and a single target layer thickness is formed by vapor deposition with the overall target layer thickness shown in Table 10 as well. The surface-coated cermet drills according to the present invention (hereinafter referred to as the present invention-coated drills ) 1 to 8 as coated cermet tools were produced, respectively.

また、比較の目的で、上記の基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plate shown in FIG. A hard coating layer comprising a (Ti, Al, B) N layer having a single phase structure with the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1 above. The conventional surface-covered cermet drills (hereinafter referred to as conventional coated drills ) 1 to 8 as conventional coated cermet tools were produced respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法、並びに質量%で、Ti−3.02%Al−2.53%Vの組成を有するTi合金の板材、
切削速度:40m/min.、
送り:0.3mm/rev、
穴深さ:6mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−18.7%Cr−14.3%Co−4.51%Mo−2.53%Ti−1.98%Fe−1.18%Al−0.74%Mn−0.41%Siの組成を有するNi合金の板材、
切削速度:45m/min.、
送り:0.2mm/rev、
穴深さ:15mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−20.3%Cr−14.8%W−10.1%Ni−1.45%Mn−0.95%Si−1.04%Fe−0.12%Cの組成を有するCo合金の板材、
切削速度:50m/min.、
送り:0.25mm/rev、
穴深さ:30mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10,11にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-plane: 100 mm × 250, thickness: 50 mm, and a Ti alloy plate material having a composition of Ti-3.02% Al-2.53% V, and mass%,
Cutting speed: 40 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 6mm,
With regard to the Ti alloy wet high speed drilling cutting test under the conditions (normal cutting speed is 20 m / min.), The present invention coated drills 4-6 and the conventional coated drills 4-6,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm, and Mass%, Ni-18.7% Cr-14.3% Co-4.51% Mo-2.53% Ti-1. A plate of Ni alloy having a composition of 98% Fe-1.18% Al-0.74% Mn-0.41% Si,
Cutting speed: 45 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 15mm,
With regard to the Ni alloy wet high speed drilling cutting test under the conditions (normal cutting speed is 25 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work Material-Plane: 100 mm × 250 mm, Thickness: 50 mm in Dimensions and Mass%, Co-20.3% Cr-14.8% W-10. 1% Ni-1.45% Mn-0. A plate material of Co alloy having a composition of 95% Si-1.04% Fe-0.12% C;
Cutting speed: 50 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 30mm,
Wet high-speed drilling test (normal cutting speed is 30 m / min.) Of Co alloy under the conditions of each of the above, and any wet high-speed drilling test (using water-soluble cutting oil) The number of drilling processes until the flank wear width reached 0.3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.

Figure 0004771200
Figure 0004771200

Figure 0004771200
Figure 0004771200

この結果得られた本発明被覆サーメット工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の(Ti,Al,B)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆サーメット工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al,B)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 Hard coating layer made of (Ti, Al, B) N of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated cermet tool obtained as a result. thin layer a and the thin layer B of upper layer constituting the further composition of the lower layer, as well as traditional coatings chip 1 to 16 as a conventional coated cermet tool, the conventional coating end mills 1-8, and conventional coated drill 1-8 When the composition of the hard coating layer made of (Ti, Al, B) N was measured by energy dispersive X-ray analysis using a transmission electron microscope, each showed substantially the same composition as the target composition. .

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜11に示される結果から、本発明被覆サーメット工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層と、単一相構造の下部層からなり、かつ前記薄層Aと薄層B、さらに下部層はそれぞれ組成の異なる(Ti,Al,B)Nで構成され、前記下部層がすぐれた高温硬さ、さらに前記上部層がすぐれた熱伝導性を有し、この結果硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工でも、前記硬質被覆層が前記上部層によってすぐれた抜熱効果を発揮し、切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,B)N層からなる従来被覆サーメット工具は、特に硬質被覆層の熱伝導性不足が原因で切刃部に熱塑性変形が発生し、これによって摩耗形態が偏摩耗形態をとるようになることから、摩耗の進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 11, each of the coated cermet tools of the present invention has an upper layer in which the hard coating layer has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm. The thin layer A and the thin layer B are composed of (Ti, Al, B) N each having a different composition, and the lower layer is excellent in high temperature hardness. In addition, the upper layer has excellent thermal conductivity, and as a result, the hard coating layer has these excellent characteristics, such as Ni alloy or Co alloy with high heat generation, Ti alloy, etc. Even in high-speed cutting of heat-resistant alloys, the hard coating layer exhibits excellent heat removal effect due to the upper layer, and exhibits excellent wear resistance without the occurrence of thermoplastic deformation that causes uneven wear on the cutting edge. In contrast, a single hard coating layer Structure (Ti, Al, B) conventional coated cermet tool composed of N layers, in particular thermal plastic deformation is generated in the cutting edge due to thermal conductivity insufficient hard layer, this by wear form uneven wear form It is clear that the wear progresses faster and reaches the service life in a relatively short time.

上述のように、この発明の被覆サーメット工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特にNi合金やCo合金、さらにTi合金などの耐熱合金の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel and cast iron, but particularly for high heat of heat-resistant alloys such as Ni alloys, Co alloys, and Ti alloys. Because it exhibits excellent wear resistance even during high-speed cutting that involves generation and exhibits excellent cutting performance over a long period of time, it has improved the performance of cutting equipment, and reduced labor and energy in cutting. In addition, it is possible to sufficiently satisfy the cost reduction.

本発明被覆サーメット工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated cermet tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の表面に、
(a)いずれもTiとAlとB(ボロン)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.01〜0.10、Fは0.15〜0.35を示す)を満足するTiとAlとBの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具。
On the surface of the cermet substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and B (boron), the upper layer being an average layer of 0.5 to 1.5 μm, and the lower layer being an average layer of 2 to 6 μm Each has a thickness,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (E + F) Al E B F ] N (wherein E is 0.01 to 0.10 and F is 0.15 to 0.35 in atomic ratio) A composite nitride layer of Al and B;
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (M + N) Al M B N ] N (wherein M is 0.25 to 0.40 and N is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and B,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (X + Y) Al X B Y ] N (wherein X is 0.50 to 0.60 and Y is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and B;
A surface-coated cermet cutting tool that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys, formed by vapor-depositing a hard coating layer made of
JP2005039104A 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys Expired - Fee Related JP4771200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039104A JP4771200B2 (en) 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039104A JP4771200B2 (en) 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Publications (2)

Publication Number Publication Date
JP2006224222A JP2006224222A (en) 2006-08-31
JP4771200B2 true JP4771200B2 (en) 2011-09-14

Family

ID=36986023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039104A Expired - Fee Related JP4771200B2 (en) 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Country Status (1)

Country Link
JP (1) JP4771200B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP3416937B2 (en) * 1994-10-28 2003-06-16 住友電気工業株式会社 Laminate
JP3719731B2 (en) * 1995-01-31 2005-11-24 日立ツール株式会社 Coated cutting tool / Coated wear-resistant tool
JP3392115B2 (en) * 2000-09-19 2003-03-31 日立ツール株式会社 Hard coating tool
JP4029328B2 (en) * 2002-10-15 2008-01-09 三菱マテリアル神戸ツールズ株式会社 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions

Also Published As

Publication number Publication date
JP2006224222A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP4697661B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4706915B2 (en) Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4697660B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4766443B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP2008260097A (en) Surface-coated cutting tool
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees