JP4771199B2 - Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys - Google Patents

Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys Download PDF

Info

Publication number
JP4771199B2
JP4771199B2 JP2005038610A JP2005038610A JP4771199B2 JP 4771199 B2 JP4771199 B2 JP 4771199B2 JP 2005038610 A JP2005038610 A JP 2005038610A JP 2005038610 A JP2005038610 A JP 2005038610A JP 4771199 B2 JP4771199 B2 JP 4771199B2
Authority
JP
Japan
Prior art keywords
layer
cutting
alloy
heat
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005038610A
Other languages
Japanese (ja)
Other versions
JP2006224216A (en
Inventor
宏一 松村
夏樹 一宮
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005038610A priority Critical patent/JP4771199B2/en
Publication of JP2006224216A publication Critical patent/JP2006224216A/en
Application granted granted Critical
Publication of JP4771199B2 publication Critical patent/JP4771199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、硬質被覆層がすぐれた耐熱性を有し、したがって特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の切削加工を、高い発熱を伴う高速切削加工条件で行った場合にも、硬質被覆層に摩耗進行を加速する偏摩耗の原因となる熱塑性変形の発生がなく、この結果すぐれた耐摩耗性を長期に亘って発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 This invention has excellent heat resistance in the hard coating layer, and therefore, especially when heat-resistant steel, Co alloy, and heat-resistant alloys such as Ni alloy are cut under high-speed cutting conditions with high heat generation. The surface coating cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent wear resistance over a long period of time without the occurrence of thermoplastic deformation that causes uneven wear that accelerates the progress of wear in the hard coating layer. ).

一般に、被覆サーメット工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated cermet tools, throwaway inserts that are detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron work materials, and drilling of the work material. Drills and miniature drills used in, etc., as well as solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, and the solid type by attaching the throwaway tip detachably A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.

また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体(以下、単に基体という)の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(X+Y) AlX Cr]N(ただし、原子比で、Xは0.45〜0.65、Yは0.01〜0.15を示す)、
を満足するTiとAlとCrの複合窒化物[以下、(Ti,Al,Cr)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる被覆サーメット工具が知られており、前記(Ti,Al,Cr)N層は、構成成分であるAlによって高温硬さおよび高温耐酸化性、同Tiによって高温強度、さらに同Crによって耐熱性の向上した特性を具備することも知られている。
Further, as a coated cermet tool, on the surface of a cermet base (hereinafter simply referred to as a base) composed of a tungsten carbide (hereinafter referred to as WC) base cemented carbide or a titanium carbonitride (hereinafter referred to as TiCN) base cermet, Having a single phase structure, and
Formula: [Ti 1- (X + Y ) Al X Cr Y] N ( provided that an atomic ratio, X is 0.45 to 0.65, Y represents a 0.01 to 0.15),
A coated cermet tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and Cr [hereinafter referred to as (Ti, Al, Cr) N] layer satisfying the following conditions with an average layer thickness of 2 to 8 μm: The (Ti, Al, Cr) N layer is known to have high temperature hardness and high temperature oxidation resistance due to Al as a component, high temperature strength due to the Ti, and heat resistance improved due to the Cr. It is also known to do.

さらに、上記の被覆サーメット工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の基体を装入し、ヒーターで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Cr合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−100Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Ti,Al,Cr)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平7−237010号公報
Furthermore, the above coated cermet tool, is charged with an arc ion plating apparatus of the above base is one of physical vapor deposition apparatus shown in example schematic diagram in FIG. 2, in the apparatus with a heater, for example, 500 ° C. An arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) on which a Ti—Al—Cr alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of by introduction of nitrogen gas as a reaction gas into the apparatus, for example, a reaction atmosphere of 2 Pa, whereas the said substrate, for example under the conditions of applying a bias voltage of -100 V, the surface of the substrate, the (Ti, Al, It is also known to be produced by vapor-depositing a hard coating layer consisting of a Cr) N layer.
JP-A-7-237010

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の切削加工を、高速切削加工条件で行うのに用いた場合には、切削時の熱発生が著しく、硬質被覆層である(Ti,Al,Cr)N層には、耐熱性不足が原因で熱塑性変形が発生し、これが原因で偏摩耗形態をとるようになることから、摩耗が急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In coated cermet tools, when used for cutting high-speed cutting conditions such as carbon steel, low-alloy steel, and ordinary cast iron, normal cutting performance is not a problem. When heat-resistant alloys such as Ni alloy, Co alloy, and Ni alloy are used for cutting under high-speed cutting conditions, heat generation during cutting is significant, and a hard coating layer (Ti, Al, Cr) In the N layer, thermoplastic deformation occurs due to insufficient heat resistance, and this causes uneven wear. As a result, wear progresses rapidly, and as a result, wear life is relatively short. Is the current situation That.

そこで、本発明者等は、上述のような観点から、特に上記耐熱合金の高速切削加工で硬質被覆層が正常摩耗形態をとり、すぐれた耐摩耗性を長期に亘って発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具の硬質被覆層を構成する(Ti,Al,Cr)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,Cr)N層において、Cr成分の含有割合を多くすればするほど耐熱性は向上するようになるが、上記の従来(Ti,Al,Cr)N層における1〜15原子%程度のCr含有割合では、前記耐熱合金の高熱発生を伴う高速切削加工で熱塑性変形の発生を防止するに足る耐熱性を具備せしめることはできず、前記耐熱合金の高速切削加工で熱塑性変形を起さない、すぐれた耐熱性を確保するためには前記1〜15原子%をはるかに越えた40〜60原子%のCr含有が必要であり、一方40〜60原子%のCr成分を含有した(Ti,Al,Cr)N層を硬質被覆層として実用に供するためには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さおよび高温耐酸化性のきわめて低いものとなること。
In view of the above, the present inventors have developed a coated cermet tool in which the hard coating layer takes a normal wear form especially in high-speed cutting of the above heat-resistant alloy and exhibits excellent wear resistance over a long period of time. As a result of conducting research by focusing on the (Ti, Al, Cr) N layer that constitutes the hard coating layer of the conventional coated cermet tool,
(A) In the (Ti, Al, Cr) N layer constituting the hard coating layer, the heat resistance improves as the Cr component content increases, but the conventional (Ti, Al, Cr) ) When the Cr content is about 1 to 15 atomic% in the N layer, the heat resistant alloy cannot be provided with heat resistance sufficient to prevent the occurrence of thermoplastic deformation in high-speed cutting with high heat generation. In order to ensure excellent heat resistance that does not cause thermoplastic deformation in the high-speed cutting process, it is necessary to contain 40-60 atomic% of Cr far exceeding 1-15 atomic%, while 40-60 In order to practically use a (Ti, Al, Cr) N layer containing an atomic% Cr component as a hard coating layer, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high-temperature strength. In this case, the Al component content is Wamete inevitably become low state, as a result high-temperature hardness and shall become possible high temperature oxidation resistance of very low.

(b)組成式:(Ti1-(A+B)AlCr)N(ただし、原子比で、Aは0.01〜0.10、Bは0.40〜0.60を示す)を満足する、Cr含有割合が40〜60原子%の(Ti,Al,Cr)N層と、
組成式:(Ti1-(C+D)AlCr)N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,Cr)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,Cr)N層は、薄層の交互積層構造によって、上記の高Cr含有の(Ti,Al,Cr)N層(以下、薄層Aという)のもつすぐれた耐熱性と、前記薄層Aに比して相対的にCr含有割合を低くし、その分Al含有割合を高くした(Ti,Al,Cr)N層(以下、薄層Bという)のもつ相対的に高い高温硬さおよび高温耐酸化性とを具備するようになること。
(B) Composition formula: (Ti 1- (A + B) Al A Cr B ) N (provided that A is 0.01 to 0.10 and B is 0.40 to 0.60 in atomic ratio) A (Ti, Al, Cr) N layer having a Cr content of 40 to 60 atomic%;
A compositional formula: (Ti 1− (C + D) Al C Cr D ) N (wherein, C is 0.20 to 0.35 and D is 0.15 to 0.30 in an atomic ratio), relative (Ti, Al, Cr) N layer with a large content ratio of Al component,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), and the resulting (Ti, Al, Cr) N layer has a thin laminated structure, The excellent heat resistance of the (Ti, Al, Cr) N layer (hereinafter referred to as the thin layer A) having a high Cr content, and a relatively low Cr content ratio compared to the thin layer A, (Ti, Al, Cr) N layer (hereinafter referred to as thin layer B) having a high Al content ratio has relatively high high temperature hardness and high temperature oxidation resistance.

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Cr)N層は、耐熱合金の高速切削加工で要求される、すぐれた耐熱性を有するものの、十分満足な高温硬さおよび高温耐酸化性を有するものではないので、これを硬質被覆層の上部層として設け、一方同下部層として、十分な耐熱性は具備しないものの、相対的にAl成分の含有割合が高く、すぐれた高温硬さと高温耐酸化性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Cr)N層、すなわち、
組成式:[Ti1-(E+F)AlCr]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.15を示す)を満足する、単一相構造の(Ti,Al,Cr)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた耐熱性に加えて、高温硬さと高温耐酸化性、さらに高温強度を複合的に具備したものとなるので、この硬質被覆層を蒸着形成してなる被覆サーメット工具は、上記の耐熱合金の高熱発生を伴う高速切削加工でも、前記硬質被覆層に偏摩耗の原因となる熱塑性変形の発生がなくなり、正常摩耗形態をとるようになることから、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Cr) N layer having the alternate layered structure of the thin layer A and the thin layer B of (b) above has excellent heat resistance required for high-speed cutting of heat-resistant alloys. Since it does not have a sufficiently satisfactory high-temperature hardness and high-temperature oxidation resistance, it is provided as an upper layer of the hard coating layer, while the lower layer does not have sufficient heat resistance, but relatively Al components (Ti, Al, Cr) N layer having a composition corresponding to the above-described conventional hard coating layer having a high content ratio, excellent high temperature hardness and high temperature oxidation resistance,
Formula: [Ti 1- (E + F ) Al E Cr F] N ( provided that an atomic ratio, E is 0.45 to 0.65, F represents a 0.01 to 0.15) satisfies the single (Ti, Al, Cr) N layer of single phase structure,
The resulting hard coating layer has a combination of high-temperature hardness, high-temperature oxidation resistance, and high-temperature strength in addition to excellent heat resistance. The coated cermet tool formed by vapor deposition of the above heat-resistant alloy is free from the occurrence of thermoplastic deformation causing uneven wear in the hard coating layer even in high-speed cutting with high heat generation, so that it takes a normal wear form. As a result, excellent wear resistance will be demonstrated over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、基体の表面に、
(a)いずれも(Ti,Al,Cr)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlCr]N(ただし、原子比で、Aは0.01〜0.10、Bは0.40〜0.60を示す)を満足する(Ti,Al,Cr)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCr]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足する(Ti,Al,Cr)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlCr]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.15を示す)を満足する(Ti,Al,Cr)N層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆サーメット工具に特徴を有するものである。
This invention has been made based on the above research results, and on the surface of the substrate ,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, Cr) N, the upper layer has a layer thickness of 0.5 to 1.5 μm, and the lower layer has a layer thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Formula: [Ti 1- (A + B ) Al A Cr B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.40 to 0.60) satisfies (Ti , Al, Cr) N layer,
The thin layer B is
Composition formula: [Ti 1− (C + D) Al C Cr D ] N (wherein C is 0.20 to 0.35 and D is 0.15 to 0.30 in atomic ratio) (Ti , Al, Cr) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Ti 1− (E + F) Al E Cr F ] N (wherein E is 0.45 to 0.65 and F is 0.01 to 0.15 in atomic ratio) (Ti , Al, Cr) N layer,
It is characterized by a coated cermet tool that exhibits excellent wear resistance in high-speed cutting of a heat-resistant alloy, formed by vapor-depositing a hard coating layer comprising:

つぎに、この発明の被覆サーメット工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Cr)N層におけるAl成分には高温硬さおよび高温耐酸化性を向上させ、一方同Ti成分には高温強度、さらに同Cr成分には耐熱性を向上させる作用があり、下部層ではAl成分の含有割合を全体的に多くして、高い高温硬さと高温耐酸化性を具備せしめるが、Alの含有割合を示すE値がTiとCrとの合量に占める割合(原子比、以下同じ)で0.45未満では、きわめて発熱の高い耐熱合金の高速切削加工に要求されるすぐれた高温硬さおよび高温耐酸化性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すE値が同0.65を越えると、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.45〜0.65と定めた。
また、Crの割合を示すF値がTiとAlの合量に占める割合で、0.01未満では、所定の最小限の耐熱性を確保することができず、一方同F値が0.15を超えると、下部層の具備する上記のすぐれた特性、すなわち高温硬さと高温耐酸化性、および高温強度が急激に低下するようになることから、F値を0.01〜0.15と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび高温耐酸化性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described.
(A) Composition formula and layer thickness of lower layer As described above, the Al component in the (Ti, Al, Cr) N layer constituting the hard coating layer improves the high temperature hardness and high temperature oxidation resistance, while the same Ti The component has the effect of improving the high-temperature strength and the Cr component, and the heat resistance of the Cr component.In the lower layer, the overall content of the Al component is increased to provide high high-temperature hardness and high-temperature oxidation resistance. When the E value indicating the Al content is less than 0.45 in the total amount of Ti and Cr (atomic ratio, the same applies hereinafter), excellent high temperature required for high-speed cutting of heat-resistant alloys with extremely high heat generation Hardness and high-temperature oxidation resistance cannot be ensured, and wear progresses rapidly. On the other hand, when the E value indicating the Al ratio exceeds 0.65, the high-temperature strength decreases rapidly. As a result, chipping (slight chipping) occurs. Since it becomes easy to produce, E value was determined as 0.45-0.65.
Further, if the F value indicating the ratio of Cr is the ratio of the total amount of Ti and Al, and less than 0.01, the predetermined minimum heat resistance cannot be ensured, while the F value is 0.15. Exceeds the above-mentioned excellent characteristics of the lower layer, that is, high-temperature hardness, high-temperature oxidation resistance, and high-temperature strength suddenly decrease, so the F value is set to 0.01 to 0.15. It was.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and high-temperature oxidation resistance cannot be imparted to the hard coating layer over a long period of time, resulting in short tool life, while the layer thickness is 6 μm. If it exceeds, chipping is likely to occur, so the layer thickness was determined to be 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Cr)NにおけるCr成分は、上記の通りその含有割合をできるだけ高くして、耐熱性を一段と向上させ、もって高熱発生を伴う耐熱合金の高速切削加工での耐熱塑性変形性の向上を図る目的で含有するものであり、したがってB値が0.40未満では所望のすぐれた耐熱性を確保することができず、一方B値が0.60を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、層自体が具備すべき高温強度を確保することができなり、チッピング発生の原因となることから、B値を0.40〜0.60と定めた。
また、Alの割合を示すA値がTiとCrの合量に占める割合で、0.01未満では、最低限の高温硬さおよび高温耐酸化性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度が急激に低下するようになり、チッピングが発生し易くなることから、A値を0.01〜0.10と定めた。
(B) Composition formula of thin layer A of the upper layer The Cr component in (Ti, Al, Cr) N of the thin layer A of the upper layer is as high as possible to improve the heat resistance as described above. Therefore, it is contained for the purpose of improving the heat-resistant plastic deformation property in high-speed cutting of a heat-resistant alloy accompanied by high heat generation. Therefore, if the B value is less than 0.40, desired excellent heat resistance can be secured. On the other hand, if the B value exceeds 0.60, the content ratio of the Ti component is relatively reduced, and the high-temperature strength that the layer itself should have can be secured, which causes chipping. Therefore, the B value was set to 0.40 to 0.60.
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and Cr, and if it is less than 0.01, the minimum high-temperature hardness and high-temperature oxidation resistance cannot be ensured, and the cause of accelerated wear On the other hand, if the A value exceeds 0.10, the high-temperature strength suddenly decreases and chipping is likely to occur. Therefore, the A value was determined to be 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してCr成分の含有割合を相対的に低くし、その分Al成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび高温耐酸化性を具備せしめ、隣接する薄層Aの高温硬さおよび高温耐酸化性不足を補強し、もって、前記薄層Aの有するすぐれた耐熱性と、前記薄層Bの有する相対的に高い高温硬さおよび高温耐酸化性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.20未満になると、所定の相対的に高い高温硬さおよび高温耐酸化性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.35を越えると、上部層全体の高温強度低下は避けられず、チッピング発生の原因となることから、C値を0.20〜0.35と定めた。
また、Crの割合を示すD値がTiとAlの合量に占める割合で、0.15未満では、上部層全体の耐熱性の低下が避けられず、一方同D値が0.30を超えると、上部層全体の高温強度が急激に低下するようになることから、D値を0.15〜0.30と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the Cr component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and high-temperature oxidation resistance, reinforces high-temperature hardness and high-temperature oxidation resistance of the adjacent thin layer A, The upper layer having the excellent heat resistance of the layer A and the relatively high high temperature hardness and high temperature oxidation resistance of the thin layer B is formed, and the Al content in the composition formula is shown. When the C value is less than 0.20, the predetermined relatively high high temperature hardness and high temperature oxidation resistance cannot be ensured, and the progress of wear is promoted, while the C value is 0.35. If this is exceeded, a drop in the high-temperature strength of the entire upper layer is inevitable, and chipping occurs For this reason, the C value was set to 0.20 to 0.35.
Further, the D value indicating the ratio of Cr is the ratio of the total amount of Ti and Al, and if it is less than 0.15, the heat resistance of the entire upper layer is inevitably lowered, while the D value exceeds 0.30. Then, since the high-temperature strength of the entire upper layer suddenly decreases, the D value was set to 0.15 to 0.30.

(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた耐熱性、さらに所定の相対的に高い高温硬さと高温耐酸化性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと高温耐酸化性不足、薄層Bであれば耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進するようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. It is impossible to ensure excellent heat resistance, and a predetermined relatively high high-temperature hardness and high-temperature oxidation resistance. Further, when the thickness of each layer exceeds 20 nm, the disadvantage of each thin layer, that is, the thin layer A If there is insufficient high-temperature hardness and high-temperature oxidation resistance, and if it is thin layer B, insufficient heat resistance will appear locally in the layer, which may cause chipping or promote wear progress. Each layer thickness was determined to be 5 to 20 nm.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた耐熱性および所定の高温硬さと高温耐酸化性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, it is impossible to provide the hard coating layer with its excellent heat resistance and predetermined high temperature hardness and high temperature oxidation resistance over a long period of time. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆サーメット工具は、硬質被覆層が(Ti,Al,Cr)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと高温耐酸化性を保持した状態で、すぐれた耐熱性を具備せしめ、同単一相構造の下部層が相対的にすぐれた高温硬さと高温耐酸化性を有することから、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の高い発熱を伴う高速切削加工でも、前記硬質被覆層の熱塑性変形が著しく抑制されるようになり、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated cermet tool of the present invention, the hard coating layer is composed of a (Ti, Al, Cr) N layer, and the upper layer of the hard coating layer has an alternate laminated structure of the thin layer A and the thin layer B. High heat hardness and high temperature oxidation resistance are maintained, and excellent heat resistance is provided, and the lower layer of the single phase structure has relatively high high temperature hardness and high temperature oxidation resistance. Even in high-speed cutting with high heat generation of heat-resistant alloys such as Ni alloy, Co alloy, and Ni alloy, the thermoplastic coating of the hard coating layer is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time. It is.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの範囲内の所定の平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder each having a predetermined average particle diameter in the range of 1 to 3 μm, And Co powder, these raw material powders are blended in the composition shown in Table 1, wet mixed for 72 hours by a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. The body was sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to have a chip shape of ISO standard / CNMG120408. It was to form a WC-based cemented carbide substrate a-1 to a-10 of.

また、原料粉末として、いずれも0.5〜2μmの範囲内の所定の平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, all having a predetermined average particle diameter in the range of 0.5 to 2 μm, TaC powder, WC powder, Co powder, and Ni powder are prepared. These raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then compacted at a pressure of 100 MPa. The green compact was pressed into a body and sintered in a 2 kPa nitrogen atmosphere at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge was subjected to a honing process of R: 0.03. to form a TiCN based cermet substrate B-1 to B-6 having a tip shape of ISO standard · CNMG120408 Te.

(a)ついで、上記の基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Cr合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−Cr合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−Cr合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−Cr合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって基体表面を前記Ti−Al−Cr合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Cr合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−Cr合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−Cr合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−Cr合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the substrates A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the inner rotary table, and corresponded to the target compositions shown in Tables 3 and 4 as cathode electrodes (evaporation sources) on one side, respectively. The Ti-Al-Cr alloy for forming the upper layer thin layer A having the component composition and the cathode electrode (evaporation source) on the other side also had component compositions corresponding to the target compositions shown in Tables 3 and 4, respectively. A Ti-Al-Cr alloy for forming the thin layer B as an upper layer is disposed opposite to the rotary table, and a cathode electrode (along the rotary table at a position shifted by 90 degrees from both the Ti-Al-Cr alloys. Evaporation source) The Ti-Al-Cr alloy for the lower layer formed is attached,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the direct current of −1000 V is applied to the base that rotates while rotating on the rotary table A bias voltage is applied, and a current of 100 A is passed between the Ti-Al-Cr alloy for forming the lower layer and the anode electrode to generate an arc discharge, whereby the substrate surface is bombarded by the Ti-Al-Cr alloy. Wash and
(C) Introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the substrate rotating while rotating on the rotary table, and forming the lower layer A current of 100 A is passed between the Ti-Al-Cr alloy for an anode and the anode electrode to generate an arc discharge, so that a single phase having a target composition and a target layer thickness shown in Tables 3 and 4 is formed on the surface of the substrate. (Ti, Al, Cr) N layer having a structure is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the thin substrate is applied in a state where a DC bias voltage of −100 V is applied to the substrate rotating while rotating on the rotary table. A predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Cr alloy for forming layer A to generate arc discharge, and a thin layer having a predetermined layer thickness is formed on the surface of the substrate. After forming the layer A, the arc discharge is stopped after the thin layer A is formed, and instead, the cathode layer and the anode electrode of the Ti-Al-Cr alloy for forming the thin layer B are also within the range of 50 to 200A. An arc discharge is generated by flowing a predetermined current to form a thin layer B having a predetermined layer thickness, and then the arc discharge is stopped (in this case, the formation of the thin layer B may be started), and the thin layer is again formed. A-forming Ti-Al-C The formation of the thin layer A by arc discharge between the cathode electrode and the anode electrode of the alloy and the formation of the thin layer B by arc discharge between the cathode electrode and the anode electrode of the Ti-Al-Cr alloy for forming the thin layer B are alternately performed. Repeatedly, on the surface of the substrate , an upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition and the single target layer thickness shown in Tables 3 and 4 along the layer thickness direction is also shown in Table 3, The surface-coated cermet throwaway tips (hereinafter referred to as the present invention-coated tips ) 1 to 16 as the present invention-coated cermet tools were produced by vapor deposition with the overall target layer thickness shown in FIG.

また、比較の目的で、これら基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−Cr合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって基体表面を前記Ti−Al−Cr合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Cr合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層からなる硬質被覆層を蒸着形成することにより、従来被覆サーメット工具に相当する比較被覆サーメット工具としての比較表面被覆サーメット製スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating apparatus shown in FIG. A Ti—Al—Cr alloy having a component composition corresponding to the target composition shown in Table 5 was attached as a cathode electrode (evaporation source), and the apparatus was first evacuated to 0.1 Pa. While maintaining the following vacuum, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the substrate , and the Ti—Al—Cr alloy of the cathode electrode and the anode electrode were by flowing a 100A current to generate an arc discharge, it has bombarded washed substrate surface in the Ti-Al-Cr alloy, and then reaction of 3Pa by introducing nitrogen gas as a reaction gas into the apparatus cut With the gas, lowering the bias voltage applied to the substrate to -100 V, the cause arcing between the cathode electrode and the anode electrode of Ti-Al-Cr alloy, wherein with the substrate A-1 to A A hard coating layer composed of a (Ti, Al, Cr) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 5 is deposited on each surface of -10 and B-1 to B-6. By forming, comparative surface-coated cermet throwaway tips (hereinafter referred to as comparative coated tips ) 1 to 16 as comparative coated cermet tools corresponding to conventional coated cermet tools were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・SUH31の丸棒、
切削速度:200m/min.、
切り込み:2mm、
送り:0.2mm/rev.、
切削時間:15分、
の条件(切削条件A)での耐熱鋼の乾式連続高速切削加工試験(通常の切削速度は100m/min.)、
被削材:質量%で、Co−25.5%Cr−7.5%W−10.5%Niの組成をもったCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:100m/min.、
切り込み:1mm、
送り:0.15mm/rev.、
切削時間:5分、
の条件(切削条件B)でのCo合金の乾式断続高速切削加工試験(通常の切削速度は50m/min.)、
被削材:質量%で、Ni−15.5%Cr−0.9%Co−8%Feの組成をもったNi合金の丸棒、
切削速度:90m/min.、
切り込み:2mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件(切削条件C)でのNi合金の乾式連続高速切削加工試験(通常の切削速度は40m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / SUH31 round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 15 minutes,
Dry continuous high-speed cutting test of heat-resistant steel under the conditions (cutting condition A) (normal cutting speed is 100 m / min.),
Work material: Round bar with four longitudinal grooves at equal intervals in the length direction of Co alloy having a composition of Co-25.5% Cr-7.5% W-10.5% Ni in mass%.
Cutting speed: 100 m / min. ,
Cutting depth: 1mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test of Co alloy under the conditions (cutting condition B) (normal cutting speed is 50 m / min.),
Work material: Ni alloy round bar with a composition of Ni-15.5% Cr-0.9% Co-8% Fe in mass%,
Cutting speed: 90 m / min. ,
Cutting depth: 2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 40 m / min.) Of the Ni alloy under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions , 8 mm in diameter, 13 mm, and 26mm to form a three base-forming rod sintered body, the further three round bar sintered body of said at grinding, in combinations shown in Table 7 A base made of a WC-base cemented carbide having a four-blade square shape with a diameter × length of the cutting edge of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. (End mill) C-1 to C-8 were produced.

ついで、これらの基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1 under the same conditions as in No. 1, and a lower layer composed of a (Ti, Al, Cr) N layer having a single phase structure with the target composition and target layer thickness shown in Table 8, and Table 8 along the layer thickness direction. A book as a coated cermet tool of the present invention is formed by vapor-depositing an upper layer composed of alternating layers of thin layer A and thin layer B having a target composition and a single target layer thickness with the overall target layer thickness shown in Table 8 as well. Invention surface coated cermet end mills (hereinafter referred to as the present invention coated end mills ) 1 to 8 were produced.

また、比較の目的で、上記の基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具に相当する比較被覆サーメット工具としての比較表面被覆サーメット製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. By depositing a hard coating layer comprising a (Ti, Al, Cr) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1 above. Comparative surface-coated cermet end mills (hereinafter referred to as comparative coated end mills ) 1 to 8 as comparative coated cermet tools corresponding to conventional coated cermet tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Ni−15.5%Cr−0.9%Co−8%Fe)のNi合金の板材、
切削速度:70m/min.、
溝深さ(切り込み):3mm、
テーブル送り:280mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH31の板材、
切削速度:100m/min.、
溝深さ(切り込み):4mm、
テーブル送り:500mm/分、
の条件での耐熱鋼の乾式高速溝切削加工試験(通常の切削速度は50m/min.)、本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Co−25.5%Cr−7.5%W−10.5%Ni)のCo合金の板材、
切削速度:60m/min.、
溝深さ(切り込み):5mm、
テーブル送り:150mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は30m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8, the present invention coated end mills 1-3 and comparative coated end mills 1-3 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ni alloy plate of the above composition (mass%, Ni-15.5% Cr-0.9% Co-8% Fe),
Cutting speed: 70 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 280 mm / min,
The dry high-speed grooving test of Ni alloy under the conditions (normal cutting speed is 30 m / min.), The coated end mills 4 to 6 and the comparative coated end mills 4 to 6 of the present invention ,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm plate material of JIS / SUH31,
Cutting speed: 100 m / min. ,
Groove depth (cut): 4 mm
Table feed: 500 mm / min,
With respect to the heat-resistant steel dry high-speed grooving test (normal cutting speed is 50 m / min.), The coated end mills 7 and 8 of the present invention and the comparative coated end mills 7 and 8
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm Co alloy of the above composition (mass%, Co-25.5% Cr-7.5% W-10.5% Ni) Board,
Cutting speed: 60 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 150 mm / min,
The dry high-speed grooving test of Co alloy under the conditions (normal cutting speed is 30 m / min.) Is performed, and the flank wear width of the outer peripheral edge of the cutting edge is the service life in any grooving test. The cutting groove length up to 0.1 mm as a standard was measured. The measurement results are shown in Tables 8 and 9, respectively.

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

上記の実施例2で製造した直径が8mm(基体C−1〜C−3形成用)、13mm(基体C−4〜C−6形成用)、および26mm(基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(基体D−1〜D−3)、8mm×22mm(基体D−4〜D−6)、および16mm×45mm(基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameter prepared in Example 2 of 8 mm (for substrates C-1 through C-3 form), 13 mm (for substrates C-4~C-6 form), and 26 mm (base C-7, C-8 form with three round bar sintered body use), from the three round bar sintered at grinding, diameter × length of the groove forming portions respectively 4 mm × 13 mm (base D-1 to D -3), 8mm × 22mm (base D-4~D-6), and dimensions of 16 mm × 45 mm (base D-7, D-8) , and both with a two-blade shape of the twist angle of 30 degrees Substrates (drills) D-1 to D-8 made of WC-base cemented carbide were produced.

ついで、これらの基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of a (Ti, Al, Cr) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 10, and also in the layer thickness direction In accordance with the present invention, the upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition shown in Table 10 and a single target layer thickness is formed by vapor deposition with the overall target layer thickness shown in Table 10 as well. The surface-coated cermet drills according to the present invention (hereinafter referred to as the present invention-coated drills ) 1 to 8 as coated cermet tools were produced, respectively.

また、比較の目的で、上記の基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具に相当する比較被覆サーメット工具としての比較表面被覆サーメット製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plate shown in FIG. A hard coating layer comprising a (Ti, Al, Cr) N layer having a single phase structure with the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1 above. The surface-coated cermet drills (hereinafter referred to as comparative coated drills ) 1 to 8 as comparative coated cermet tools corresponding to conventional coated cermet tools were produced.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもった上記組成(質量%で、Co−25.5%Cr−7.5%W−10.5%Ni)のCo合金の板材、
切削速度:50m/min.、
送り:0.1mm/rev、
穴深さ:6mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)、本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Ni−15.5%Cr−0.9%Co−8%Fe)のNi合金の板材、
切削速度:70m/min.、
送り:0.2mm/rev、
穴深さ:15mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH31の板材、
切削速度:100m/min.、
送り:0.4mm/rev、
穴深さ:30mm、
の条件での耐熱鋼の湿式高速穴あけ切削加工試験(通常の切削速度は50m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane: 100 mm × 250, thickness: 50 mm Co alloy of the above composition (mass%, Co-25.5% Cr-7.5% W-10.5% Ni) Board,
Cutting speed: 50 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 6mm,
For the Co alloy wet high-speed drilling test (normal cutting speed is 20 m / min.), The inventive coated drills 4 to 6 and the comparative coated drills 4 to 6
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ni alloy plate of the above composition (mass%, Ni-15.5% Cr-0.9% Co-8% Fe),
Cutting speed: 70 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 15mm,
With respect to the Ni alloy wet high speed drilling cutting test (normal cutting speed is 30 m / min.), The present invention coated drills 7 and 8 and the comparative coated drills 7 and 8,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm plate material of JIS / SUH31,
Cutting speed: 100 m / min. ,
Feed: 0.4mm / rev,
Hole depth: 30mm,
Wet high-speed drilling test of heat-resistant steel under normal conditions (normal cutting speed is 50 m / min.), And any wet high-speed drilling test (using water-soluble cutting oil) The number of drilling processes until the flank wear width reached 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 0004771199
Figure 0004771199

Figure 0004771199
Figure 0004771199

この結果得られた本発明被覆サーメット工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の(Ti,Al,Cr)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆サーメット工具に相当する比較被覆サーメット工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の(Ti,Al,Cr)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 Hard coating layer made of (Ti, Al, Cr) N of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated cermet tool obtained as a result. Thin layer A and thin layer B of the upper layer, and the composition of the lower layer, and comparative coated tips 1-16, comparative coated end mills 1-8 as comparative coated cermet tools corresponding to conventional coated cermet tools, and The composition of the hard coating layer made of (Ti, Al, Cr) N of the comparative coated drills 1 to 8 was measured by energy dispersive X-ray analysis using a transmission electron microscope. Showed the same composition.

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜11に示される結果から、本発明被覆サーメット工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,Cr)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さと高温耐酸化性、さらに前記上部層がすぐれた耐熱性を有し、硬質被覆層はこれらのすぐれた特性を総合的に兼ね備えたものとなるので、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の高い発熱を伴う高速切削加工に用いた場合にも、前記硬質被覆層がすぐれた耐熱塑性変形性を発揮するので、正常摩耗形態を取りながら切削加工が行われるようになり、この結果すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,Cr)N層からなる比較被覆サーメット工具は、前記耐熱合金の高速切削加工では、前記硬質被覆層の耐熱性不足が原因で熱塑性変形が発生し、偏摩耗形態での切削加工が避けられないことから、摩耗の進行が一段と速くなり、この結果比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 11, each of the coated cermet tools of the present invention has a single-phase structure lower layer composed of (Ti, Al, Cr) N, each having a hard coating layer having a different composition, and a layer thickness. Each layer is composed of an upper layer having an alternating layered structure of thin layers A and thin layers B of 5 to 20 nm, the lower layer has excellent high temperature hardness and oxidation resistance, and the upper layer has excellent heat resistance. In addition, since the hard coating layer has these excellent characteristics comprehensively, especially when used for high-speed cutting with high heat generation of heat-resistant alloys such as heat-resistant steel, Co alloy, and Ni alloy, Since the hard coating layer exhibits excellent heat-resistant plastic deformation, cutting is performed while taking a normal wear form. As a result, the hard coating layer exhibits excellent wear resistance. (Ti of single phase structure Al, the comparative coated cermet tool composed of Cr) N layer, in the high speed machining of heat resistant alloys, the heat resistance insufficient hard layer thermal plastic deformation caused by, is avoided cutting in uneven wear form From this, it is clear that the progress of wear is further accelerated, and as a result, the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、特に各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの高速切削条件での切削加工は勿論のこと、特に耐熱合金の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであり、被削材に対して汎用性を有するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention is accompanied not only by cutting under high-speed cutting conditions such as various carbon steels, low alloy steels, and even ordinary cast iron, but particularly with high heat generation of heat resistant alloys. Excellent wear resistance even during high-speed cutting, excellent cutting performance over a long period of time, and versatility for work materials. In addition, it can cope with the cost reduction sufficiently satisfactorily.

本発明被覆サーメット工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated cermet tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の表面に、
(a)いずれもTiとAlとCrの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlCr]N(ただし、原子比で、Aは0.01〜0.10、Bは0.40〜0.60を示す)を満足するTiとAlとCrの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCr]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足するTiとAlとCrの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlCr]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.15を示す)を満足するTiとAlとCrの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具。
On the surface of the cermet substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Cr. The upper layer has a layer thickness of 0.5 to 1.5 μm, and the lower layer has a layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (A + B) Al A Cr B ] N (wherein A represents 0.01 to 0.10 and B represents 0.40 to 0.60) A composite nitride layer of Al and Cr;
The thin layer B is
Formula: [Ti 1- (C + D ) Al C Cr D] N ( provided that an atomic ratio, C is 0.20 to 0.35, D denotes the 0.15 to 0.30) and Ti which satisfies A composite nitride layer of Al and Cr,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Cr F ] N (wherein E is 0.45 to 0.65 and F is 0.01 to 0.15 in atomic ratio) A composite nitride layer of Al and Cr;
A surface-coated cermet cutting tool that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys, formed by vapor-depositing a hard coating layer made of
JP2005038610A 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys Expired - Fee Related JP4771199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038610A JP4771199B2 (en) 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038610A JP4771199B2 (en) 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Publications (2)

Publication Number Publication Date
JP2006224216A JP2006224216A (en) 2006-08-31
JP4771199B2 true JP4771199B2 (en) 2011-09-14

Family

ID=36986017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038610A Expired - Fee Related JP4771199B2 (en) 2005-02-16 2005-02-16 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Country Status (1)

Country Link
JP (1) JP4771199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074772B2 (en) * 2007-01-09 2012-11-14 住友電気工業株式会社 Surface coated cutting tool
JP4921984B2 (en) * 2007-01-09 2012-04-25 住友電気工業株式会社 Surface coated cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP3416937B2 (en) * 1994-10-28 2003-06-16 住友電気工業株式会社 Laminate
JP3719731B2 (en) * 1995-01-31 2005-11-24 日立ツール株式会社 Coated cutting tool / Coated wear-resistant tool
JP3877124B2 (en) * 2000-03-09 2007-02-07 日立ツール株式会社 Hard coating coated member
JP4112834B2 (en) * 2000-12-28 2008-07-02 株式会社神戸製鋼所 Target for forming hard coatings for cutting tools
JP3928480B2 (en) * 2002-05-27 2007-06-13 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Also Published As

Publication number Publication date
JP2006224216A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP4706915B2 (en) Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2009125832A (en) Surface-coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697660B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4766443B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP4697659B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP4771197B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees