JP4697659B2 - Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy - Google Patents

Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy Download PDF

Info

Publication number
JP4697659B2
JP4697659B2 JP2005188422A JP2005188422A JP4697659B2 JP 4697659 B2 JP4697659 B2 JP 4697659B2 JP 2005188422 A JP2005188422 A JP 2005188422A JP 2005188422 A JP2005188422 A JP 2005188422A JP 4697659 B2 JP4697659 B2 JP 4697659B2
Authority
JP
Japan
Prior art keywords
layer
cutting
speed
coated
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005188422A
Other languages
Japanese (ja)
Other versions
JP2007007741A (en
Inventor
和則 佐藤
惠滋 中村
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005188422A priority Critical patent/JP4697659B2/en
Publication of JP2007007741A publication Critical patent/JP2007007741A/en
Application granted granted Critical
Publication of JP4697659B2 publication Critical patent/JP4697659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた高温耐酸化性を有し、したがって特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の切削加工を、高い発熱を伴う高速切削加工条件で行った場合にも、硬質被覆層の摩耗進行が著しく抑制され、この結果すぐれた耐摩耗性を長期に亘って発揮する、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面あるいは高速度工具鋼基体の表面に硬質被覆層を形成した表面被覆切削工具に関するものである。   This invention has excellent high-temperature oxidation resistance with a hard coating layer. Therefore, especially when heat-resistant steel, Co alloy, and heat-resistant alloys such as Ni alloy are cut under high-speed cutting conditions with high heat generation. In addition, the progress of wear of the hard coating layer is remarkably suppressed, and as a result, the surface of the cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet that exhibits excellent wear resistance over a long period of time. Alternatively, the present invention relates to a surface-coated cutting tool in which a hard coating layer is formed on the surface of a high-speed tool steel base.

一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、表面被覆切削工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(E+F) Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.10を示す)、
を満足するTiとAlとY(イットリウム)の複合窒化物[以下、(Ti,Al,Y)Nで示す]層からなる硬質被覆層を2〜6μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,Y)N層は、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度、さらに同Yによって高温耐酸化性の向上した特性を具備することも知られている。
Also, as one of the surface-coated cutting tools, for example, on the surface of a cemented carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, Having a single phase structure, and
Formula: [Ti 1- (E + F ) Al E Y F] N ( provided that an atomic ratio, E is 0.50 to .65, F denotes the 0.01-0.10)
A hard coating layer composed of a composite nitride of Ti, Al, and Y (yttrium) [hereinafter referred to as (Ti, Al, Y) N] layer satisfying the following conditions is vapor-deposited with an average layer thickness of 2 to 6 μm. Carbide tools are known, and the (Ti, Al, Y) N layer has improved high-temperature hardness and heat resistance by Al as a constituent component, high-temperature strength by Ti, and high-temperature oxidation resistance by Y. It is also known to have properties.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Y合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Y)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平8−199338号公報
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) on which a Ti—Al—Y alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, Y) N layer.
JP-A-8-199338

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の切削加工を、高速切削加工条件で行うのに用いた場合には、切削時の熱発生が著しく、硬質被覆層である(Ti,Al,Y)N層には、高温耐酸化性不足が原因で摩耗が急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, when used for cutting carbon steel, low alloy steel, and ordinary cast iron under high-speed cutting conditions, there is no problem with normal cutting performance. When cutting heat-resistant alloys such as steel, Co alloy, and Ni alloy under high-speed cutting conditions, heat generation during cutting is significant and the hard coating layer (Ti, Al, Y) ) In the N layer, wear progresses rapidly due to insufficient high-temperature oxidation resistance, and as a result, the wear life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に上記耐熱合金の高速切削加工で硬質被覆層が正常摩耗形態をとり、すぐれた耐摩耗性を長期に亘って発揮する表面被覆切削工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,Y)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,Y)N層において、Y成分の含有割合を多くすればするほど高温耐酸化性は向上するようになるが、上記の従来(Ti,Al,Y)N層における1〜10原子%程度のY含有割合では、前記耐熱合金の高熱発生を伴う高速切削加工で摩耗進行を充分に抑制するにたるすぐれた高温耐酸化性を具備せしめることはできず、前記耐熱合金の高速切削加工で摩耗進行を充分に抑制するに足る、すぐれた高温耐酸化性を確保するためには前記1〜10原子%をはるかに越えた15〜30原子%のY成分の含有が必要であり、一方15〜30原子%のY成分を含有した(Ti,Al,Y)N層は脆化がひどく、このため高温強度の向上に寄与するTi成分の所定量の含有が不可欠となるが、このように多量のY成分と所定量のTi成分を含有した場合、Al成分の含有余地はきわめて小さなものとなり、この結果高温硬さおよび耐熱性のきわめて低いものとなるので、これ単独では硬質被覆層として実用に供することができないこと。
In view of the above, the inventors of the present invention have a surface-coated cutting tool in which the hard coating layer takes a normal wear form especially in high-speed cutting of the above heat-resistant alloy and exhibits excellent wear resistance over a long period of time. As a result of conducting research by paying attention to the (Ti, Al, Y) N layer that constitutes the hard coating layer of the above conventional coated carbide tool,
(A) In the (Ti, Al, Y) N layer constituting the hard coating layer, the higher the content ratio of the Y component, the higher the high-temperature oxidation resistance, but the conventional (Ti, Al , Y) When the Y content is about 1 to 10 atomic% in the N layer, it is possible to provide excellent high-temperature oxidation resistance that sufficiently suppresses the progress of wear in high-speed cutting with high heat generation of the heat-resistant alloy. In order to ensure excellent high-temperature oxidation resistance sufficient to sufficiently suppress the progress of wear by high-speed cutting of the heat-resistant alloy, 15-30 atomic% far exceeding the above-mentioned 1-10 atomic%. On the other hand, the (Ti, Al, Y) N layer containing 15 to 30 atomic% of the Y component is severely brittle, and for this reason, a predetermined amount of the Ti component that contributes to the improvement of the high-temperature strength. Is essential, but in this way a large amount When a component and a predetermined amount of Ti component are contained, there is very little room for the Al component, and as a result, the high temperature hardness and heat resistance are extremely low. What can not be.


(b)上記(a)の(Ti,Al,Y)N層において、Y含有割合をきわめて高くし、一方Y成分の含有割合を高めた分、Al含有割合を低くした(Ti,Al,Y)N層(以下、薄層Aという)と、前記薄層Aに比してY含有割合は低いが、相対的にAl含有割合を高くし、所定の相対的に高い高温硬さと耐熱性とを備えた(Ti,Al,Y)N層(以下、薄層Bという)を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で交互積層すると、この交互積層構造の(Ti,Al,Y)N層は、高Y含有の薄層Aのもつすぐれた高温耐酸化性を損なうことなく、しかも、相対的にAl含有割合が高い薄層Bによってその高温硬さと耐熱性とが補われることにより、すぐれた高温耐酸化性を具備すると同時に相対的に高い高温硬さと耐熱性とを保持した交互積層構造の(Ti,Al,Y)N層となること。

ここで、薄層A、薄層Bの組成式は、次のとおりである。

薄層Aの組成式:「Ti1-(A+B)Al]N(但し、原子比で、Aは0.15〜0.30、Bは0.15〜0.30を示す)
薄層Bの組成式:[Ti1-(C+D)Al]N(但し、原子比で、Cは0.50〜0.65、Dは0.01〜0.10を示す)

(B) In the (Ti, Al, Y) N layer of the above (a), the Y content ratio was made extremely high, while the Al content ratio was lowered by increasing the Y component content ratio (Ti, Al, Y). ) N layer (hereinafter referred to as thin layer A), Y content is lower than the thin layer A, Al content is relatively high, predetermined relatively high high temperature hardness and heat resistance (Ti, Al, Y) N layers (hereinafter referred to as “thin layers B”) provided with the above-mentioned layers are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers). The (Ti, Al, Y) N layer having the structure does not impair the excellent high-temperature oxidation resistance of the thin layer A having a high Y content, and the thin layer B having a relatively high Al content ratio allows the high temperature hard And high heat resistance to compensate for high temperature oxidation resistance and relative The alternate stacked structure which holds a high high-temperature hardness and heat resistance (Ti, Al, Y) N layer and made possible.

Here, the composition formulas of the thin layer A and the thin layer B are as follows.

Composition formula of the thin layer A: “Ti 1− (A + B) Al A Y B ] N (where A represents 0.15 to 0.30 and B represents 0.15 to 0.30 in atomic ratio)
Composition formula of thin layer B: [Ti 1- (C + D) Al C Y D ] N (however, in atomic ratio, C is 0.50 to 0.65, D is 0.01 to 0.10)

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Y)N層は、耐熱合金の高速切削加工で要求される、すぐれた高温耐酸化性を有するものの、未だ十分満足な高温硬さおよび耐熱性を有するものではないので、これを硬質被覆層の上部層として設け、一方同下部層として、十分な高温耐酸化性は具備しないものの、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Y)N層、すなわち、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.50〜0.60、Fは0.01〜0.10を示す)を満足する、単一相構造の(Ti,Al,Y)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた高温耐酸化性に加えて、高温硬さと耐熱性、さらに高温強度を複合的に具備したものとなるので、この硬質被覆層を蒸着形成してなる表面被覆切削工具は、上記の耐熱合金の高熱発生を伴う高速切削加工でも、前記硬質被覆層の摩耗進行が著しく抑制されるようになることから、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Y) N layer having the alternate layered structure of the thin layer A and the thin layer B in (b) has excellent high temperature oxidation resistance required for high speed cutting of a heat resistant alloy. Although it does not yet have a sufficiently high temperature hardness and heat resistance, it is provided as an upper layer of the hard coating layer, while the lower layer does not have sufficient high temperature oxidation resistance, (Ti, Al, Y) N layer having a composition corresponding to the above-described conventional hard coating layer having a high Al component content and excellent high-temperature hardness and heat resistance,
Composition formula: [Ti 1− (E + F) Al E Y F ] N (wherein E is 0.50 to 0.60 and F is 0.01 to 0.10 in atomic ratio), (Ti, Al, Y) N layer of single phase structure,
In this structure, the hard coating layer has a combination of high temperature hardness, heat resistance, and high temperature strength, in addition to excellent high temperature oxidation resistance. The surface-coated cutting tool formed by vapor-depositing has excellent wear resistance because the progress of wear of the hard coating layer is remarkably suppressed even in high-speed cutting with high heat generation of the above heat-resistant alloy. It will come out for a long time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
(a)いずれも(Ti,Al,Y)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)Al]N(ただし、原子比で、Aは0.15〜0.30、Bは0.15〜0.30を示す)を満足する(Ti,Al,Y)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)Al]N(ただし、原子比で、Cは0.50〜0.65、Dは0.01〜0.10を示す)を満足する(Ti,Al,Y)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.10を示す)を満足する(Ti,Al,Y)N層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具に特徴を有するものである。
This invention was made based on the above research results,

On the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, or on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, Y) N, the upper layer has a thickness of 0.5 to 1.5 μm, and the lower layer has a thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: [Ti 1− (A + B) Al A Y B ] N (wherein A is 0.15 to 0.30 and B is 0.15 to 0.30 in terms of atomic ratio) (Ti , Al, Y) N layer,
The thin layer B is
Composition formula: [Ti 1− (C + D) Al C Y D ] N (wherein C is 0.50 to 0.65 and D is 0.01 to 0.10 in atomic ratio) (Ti , Al, Y) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Ti 1− (E + F) Al E Y F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.10 in atomic ratio) (Ti , Al, Y) N layer,
It is characterized by a surface-coated cutting tool that exhibits excellent wear resistance in high-speed cutting of a heat-resistant alloy formed by vapor-depositing a hard coating layer made of

つぎに、この発明の表面被覆切削工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Y)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同Y成分には高温耐酸化性を向上させる作用があり、下部層ではAl成分の含有割合を全体的に多くして、高い高温硬さと耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとYとの合量に占める割合(原子比、以下同じ)で0.50未満では、きわめて発熱の高い耐熱合金の高速切削加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行促進の原因となり、一方Alの割合を示すE値が同0.65を越えると、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
また、Yの割合を示すF値がTiとAlの合量に占める割合で、0.01未満では、所定の最小限の高温耐酸化性を確保することができず、一方同F値が0.10を超えると、下部層の具備する上記のすぐれた特性、すなわち高温硬さと耐熱性、および高温強度が急激に低下するようになることから、F値を0.01〜0.10と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the surface-coated cutting tool of the present invention are limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, Y) N layer constituting the hard coating layer improves the high temperature hardness and heat resistance, while the Ti component Has the effect of improving the high-temperature strength and further the high-temperature oxidation resistance of the Y component. In the lower layer, the Al component content is generally increased to provide high-temperature hardness and heat resistance. If the E value indicating the content ratio is less than 0.50 in terms of the total amount of Ti and Y (atomic ratio, the same shall apply hereinafter), excellent high-temperature hardness required for high-speed cutting of heat-resistant alloys with extremely high heat generation In addition, heat resistance cannot be ensured, causing wear progress promotion. On the other hand, if the E value indicating the Al ratio exceeds 0.65, the high-temperature strength decreases rapidly, resulting in chipping (small chipping). Etc. are likely to occur. It was set to 0.50 to 0.65.
Further, if the F value indicating the proportion of Y is the proportion of the total amount of Ti and Al, and less than 0.01, a predetermined minimum high temperature oxidation resistance cannot be ensured, while the F value is 0. If it exceeds .10, the above-mentioned excellent characteristics of the lower layer, that is, high temperature hardness and heat resistance, and high temperature strength suddenly decrease, so the F value is set to 0.01 to 0.10. It was.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while if the layer thickness exceeds 6 μm Since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Y)NにおけるY成分は、上記の通りその含有割合をできるだけ高くして、高温耐酸化性を一段と向上させ、もって高熱発生を伴う耐熱合金の高速切削加工での摩耗進行を抑制する目的で含有するものであり、したがってB値が0.15未満では所望のすぐれた高温耐酸化性を確保することができず、一方B値が0.30を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、層自体が具備すべき高温強度を確保することができなり、層として実用に供することができなくなることから、B値を0.15〜0.30と定めた。
また、Alの割合を示すA値がTiとYの合量に占める割合で、0.15未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.30を超えると、高温強度が急激に低下するようになり、チッピング発生の原因となることから、A値を0.15〜0.30と定めた。
(B) Composition formula of upper layer thin layer A As described above, the Y component in (Ti, Al, Y) N of the upper layer thin layer A is made as high as possible to further enhance high-temperature oxidation resistance. It is included for the purpose of suppressing the progress of wear in high-speed cutting of a heat-resistant alloy with high heat generation, and therefore, if the B value is less than 0.15, the desired excellent high-temperature oxidation resistance should be ensured. On the other hand, when the B value exceeds 0.30, the content ratio of the Ti component is relatively decreased, and the high-temperature strength that the layer itself should have can be secured, and the layer is practically used. Therefore, the B value was set to 0.15 to 0.30.
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and Y, and if it is less than 0.15, the minimum high-temperature hardness and heat resistance cannot be ensured, causing wear acceleration, On the other hand, if the A value exceeds 0.30, the high-temperature strength suddenly decreases and causes chipping, so the A value was set to 0.15 to 0.30.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してY成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さと耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた高温耐酸化性を損なうことなく、しかも、前記薄層Bの有する相対的にすぐれた高温硬さと耐熱性を具備した上部層を形成するものである。

薄層Bの組成式におけるAlの含有割合を示すC値が0.50未満になると、所定の相対的にすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.65を越えると、上部層全体の高温強度低下は避けられず、チッピング発生の原因となることから、C値を0.50〜0.65と定めた。
また、Yの割合を示すD値がTiとAlの合量に占める割合で、0.01未満では、上部層全体の高温耐酸化性の低下が避けられず、一方同D値が0.10を超えると、上部層全体の高温強度が急激に低下するようになることから、D値を0.01〜0.10と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the Y component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high temperature hardness and heat resistance, reinforces the high temperature hardness and insufficient heat resistance of the adjacent thin layer A, and thus the thin layer A has excellent properties. The upper layer having the relatively excellent high temperature hardness and heat resistance of the thin layer B is formed without impairing the high temperature oxidation resistance.

If the C value indicating the Al content in the composition formula of the thin layer B is less than 0.50, the predetermined relatively excellent high-temperature hardness and heat resistance cannot be ensured, and the progress of wear is promoted. On the other hand, when the C value exceeds 0.65, the high temperature strength of the entire upper layer is inevitably lowered, and this causes chipping. Therefore, the C value is set to 0.50 to 0.65.
Further, if the D value indicating the proportion of Y is the proportion of the total amount of Ti and Al, and less than 0.01, a decrease in the high-temperature oxidation resistance of the entire upper layer is inevitable, while the D value is 0.10. Since the high-temperature strength of the entire upper layer suddenly decreases, the D value is set to 0.01 to 0.10.

(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた高温耐酸化性、さらに所定の相対的に高い高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば高温耐酸化性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進するようになることから、それぞれの層厚を5〜20nmと定めた。

すなわち、薄層Bは、薄層Aの有する特性のうちの不十分な特性を補うために設けたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が5〜20nmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた高温耐酸化性を具備し、しかもこれを損なうことなく所定の高温硬さ、耐熱性を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が20nmを越えると、薄層Aの高温硬さ、耐熱性不足、あるいは、薄層Bの熱伝導性不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を5〜20nmと定めた。
薄層Aと薄層Bの一層平均層厚を5〜20nmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた高温耐酸化性、高温硬さ、耐熱性および高温強度を兼ね備えた硬質被覆層が得られる。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent high-temperature oxidation resistance, and a predetermined relatively high high-temperature hardness and heat resistance cannot be ensured. Further, when the thickness of each layer exceeds 20 nm, the disadvantage of each thin layer, that is, the thin layer A If there is insufficient high-temperature hardness and heat resistance, if it is thin layer B, insufficient high-temperature oxidation resistance will appear locally in the layer, which is likely to cause chipping and promote wear progress. Each layer thickness was determined to be 5 to 20 nm.

That is, the thin layer B is provided to compensate for insufficient properties among the properties of the thin layer A, but the average layer thickness of each of the thin layers A and B is in the range of 5 to 20 nm. If it is in the upper layer, the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B has excellent high temperature oxidation resistance, and as if it had predetermined high temperature hardness and heat resistance without impairing this. It acts as if it is a single layer. However, if the average layer thickness of each of the thin layer A and the thin layer B exceeds 20 nm, the high temperature hardness of the thin layer A, insufficient heat resistance, or the thin layer B Insufficient thermal conductivity appears locally in the layer, and the upper layer as a whole cannot exhibit good characteristics as a single layer, so the average layer thickness of each of the thin layer A and the thin layer B Was determined to be 5 to 20 nm.
By forming on the lower layer surface an upper layer having an alternate layer structure in which the average layer thickness of the thin layer A and the thin layer B is in the range of 5 to 20 nm, excellent high temperature oxidation resistance, high temperature hardness, heat resistance Thus, a hard coating layer having both properties and high temperature strength can be obtained.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた高温耐酸化性および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer When the layer thickness is less than 0.5 μm, the excellent high temperature oxidation resistance and the predetermined high temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の表面被覆切削工具は、硬質被覆層が(Ti,Al,Y)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた高温耐酸化性を具備せしめ、同単一相構造の下部層が相対的にすぐれた高温硬さと耐熱性を有することから、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の高い発熱を伴う高速切削加工でも、前記硬質被覆層の摩耗進行が抑制され、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the surface-coated cutting tool of the present invention, the hard coating layer is composed of a (Ti, Al, Y) N layer. The upper layer of the hard coating layer has a predetermined structure by forming an alternating layer structure of thin layers A and thin layers B. In addition to maintaining the high temperature hardness and heat resistance of the steel, it has excellent high temperature oxidation resistance, and the lower layer of the single phase structure has relatively high temperature hardness and heat resistance. Even in high-speed cutting with high heat generation of heat-resistant alloys such as Co alloys and Ni alloys, the progress of wear of the hard coating layer is suppressed, and excellent wear resistance is exhibited over a long period of time.

つぎに、この発明の表面被覆切削工具を実施例により具体的に説明する。   Next, the surface-coated cutting tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Y合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層Bおよび下部層形成用Ti−Al−Y合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Ti−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Y合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Ti−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Y合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層Bおよび下部層形成用Ti−Al−Y合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し、再び前記薄層A形成用Ti−Al−Y合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層Bおよび下部層形成用Ti−Al−Y合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and used as a cathode electrode (evaporation source) on one side with the target compositions shown in Tables 3 and 4, respectively. As the upper layer Ti-Al-Y alloy with the corresponding component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 are also used. The upper layer thin layer B and the lower layer forming Ti-Al-Y alloy are disposed opposite to each other with the rotary table interposed therebetween,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a current of 100 A is applied between the thin layer B and the Ti-Al-Y alloy for forming the lower layer and the anode electrode to generate an arc discharge. Bombarded with Ti-Al-Y alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the layer B and the Ti-Al-Y alloy for forming the lower layer and the anode electrode, so that the target compositions shown in Tables 3 and 4 are formed on the surface of the cemented carbide substrate. And a (Ti, Al, Y) N layer having a single phase structure with a target layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to a carbide substrate rotating while rotating on the rotary table, A predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Y alloy for forming the thin layer A to generate an arc discharge, and the surface of the cemented carbide substrate is predetermined. After forming the thin layer A, the arc discharge is stopped, and instead, the thin layer B and the Ti-Al-Y alloy for forming the lower layer are similarly placed between the cathode electrode and the anode electrode. A predetermined current in the range of 50 to 200 A is applied to generate arc discharge to form a thin layer B having a predetermined thickness, then the arc discharge is stopped, and the thin layer A forming Ti-Al-Y is again formed. Alloy cathode electrode and anode The formation of the thin layer A by arc discharge between the electrodes and the formation of the thin layer B by arc discharge between the cathode electrode and the anode electrode of the Ti-Al-Y alloy for forming the thin layer B and the lower layer are alternately repeated. Therefore, on the surface of the cemented carbide substrate, an upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition and the single target layer thickness shown in Tables 3 and 4 along the layer thickness direction is similarly shown in Tables 3 and 4. The surface coated carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 as the present invention coated carbide tools are produced by vapor deposition with the overall target layer thickness shown in FIG. did.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−Y合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Y合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Y合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Y合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Ti—Al—Y alloy having a component composition corresponding to the target composition shown in Table 5 was mounted as a cathode electrode (evaporation source) as a cathode electrode (evaporation source). The apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of 1 Pa or less, and then a −1000 V DC bias voltage was applied to the carbide substrate, and the Ti—Al—Y alloy and anode of the cathode electrode were applied. An electric current of 100 A is passed between the electrodes to generate an arc discharge, so that the surface of the carbide substrate is bombarded with the Ti—Al—Y alloy, and then nitrogen gas is introduced into the apparatus as a reactive gas to 3 Pa. And a bias voltage applied to the cemented carbide substrate is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Y alloy. Each of A-1 to A-10 and B-1 to B-6 has a (Ti, Al, Y) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 5. By forming the hard coating layer by vapor deposition, comparative surface-coated carbide throw-away tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 as comparative coated carbide tools corresponding to conventional coated carbide tools are respectively provided. Manufactured.

つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材: JIS SUH310 の丸棒、
切削速度:150 m/min.、
切り込み:1.2 mm、
送り: 0.3 mm/rev.、
切削時間:10 分、
の条件(切削条件A)での耐熱鋼の乾式連続高速切削加工試験(通常の切削速度は100m/min.)、
被削材:質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成をもったCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:120 m/min.、
切り込み:1.0 mm、
送り: 0.3 mm/rev.、
切削時間:5 分、
の条件(切削条件B)でのCo合金の乾式断続高速切削加工試験(通常の切削速度は70m/min.)、
被削材:質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成をもったNi合金の丸棒、
切削速度:120 m/min.、
切り込み:1.2 mm、
送り: 0.2 mm/rev.、
切削時間:10 分、
の条件(切削条件C)でのNi合金の乾式連続高速切削加工試験(通常の切削速度は80m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the comparative coated carbide chip 1 are compared with the above-mentioned various coated carbide chips, all of which are screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS SUH310 round bar,
Cutting speed: 150 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of heat-resistant steel under the conditions (cutting condition A) (normal cutting speed is 100 m / min.),
Work material: Co alloy having the composition of Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0-Mn1.20-C0.40 by mass% Four longitudinal grooved round bars equally spaced in the length direction,
Cutting speed: 120 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry interrupted high-speed cutting test of a Co alloy under the following conditions (cutting condition B) (normal cutting speed is 70 m / min.),
Work material: Ni alloy having a composition of Ni52.5-Cr19.0-Fe18.5-Nb5.1-Ti0.9-Al0.5-Mn0.2-Si0.2-C0.04 by mass% Round bar,
Cutting speed: 120 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed was 80 m / min.) Of Ni alloy under the above conditions (cutting condition C) was carried out, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

(イ)原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
(ロ)また、直径が8mm、13mm、および26mmの3種の寸法の高速度工具鋼(JIS・SKH57)素材から、機械加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもった高速度工具鋼(以下、HSSという)基体(エンドミル)E−1〜E−6をそれぞれ製造した。HSS基体(エンドミル)E−1〜E−2、E−3〜E−4、E−5〜E−6の寸法・形状は、それぞれ、前記超硬基体(エンドミル)C−1〜C−3、C−4〜C−6、C−7〜C−8のそれと同じである。
(A) As raw material powder, medium coarse WC powder having an average particle size of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, 2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, Co powder of 1.8 μm was prepared, and these raw material powders were blended in the blending composition shown in Table 7, respectively, and added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressure of 100 MPa Are pressed into various green compacts of a predetermined shape, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa. And after holding at this temperature for 1 hour, As a result, three types of cemented carbide substrate-forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm were formed. In the combination shown in the above, the diameter × length of the cutting edge is 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each has a four-blade square shape with a twist angle of 30 degrees. Cemented carbide substrates (end mills) C-1 to C-8 were produced, respectively.
(B) Also, the diameter of the cutting edge part in the combinations shown in Table 7 by machining from high-speed tool steel (JIS / SKH57) materials of three types of diameters of 8 mm, 13 mm, and 26 mm × High-speed tool steel (hereinafter referred to as HSS) base (end mill) E having a four-blade square shape with dimensions of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. -1 to E-6 were produced. The dimensions and shapes of the HSS substrates (end mills) E-1 to E-2, E-3 to E-4, and E-5 to E-6 are the same as the carbide substrates (end mills) C-1 to C-3. , C-4 to C-6, and C-7 to C-8.


ついで、これらの超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8及び本発明表面被覆高速度工具鋼製エンドミル(以下、本発明被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。

Next, the surfaces of these carbide substrates (end mills) C-1 to C-8 and HSS substrates (end mills) E-1 to E-6 were ultrasonically cleaned in acetone and dried, as shown in FIG. From the (Ti, Al, Y) N layer having a single phase structure with the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above. The total target layer thickness shown in Table 8 is also the lower layer, and the upper layer consisting of the alternating layers of the thin layer A and the thin layer B having the target composition and the single target layer thickness are also shown in Table 8 along the layer thickness direction. As a surface-coated cutting tool of the present invention, the surface-coated carbide end mill (hereinafter referred to as the present invention coated carbide end mill) 1 to 8 and the surface-coated high-speed tool steel end mill (hereinafter referred to as the present invention) The present invention coated HSS end Le and refers) 9-14 were prepared, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8及び比較表面被覆高速度工具鋼製エンドミル(以下、比較被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 and HSS substrates (end mills) E-1 to E-6 were ultrasonically cleaned in acetone and dried. 2 is charged in the arc ion plating apparatus shown in FIG. 2 and has a single-phase structure with the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1 (Ti, Al). , Y) By vapor-depositing a hard coating layer composed of an N layer, comparative surface-coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 and comparative surface-coated high-speed tool steel end mills (hereinafter referred to as 9-14, each of which was referred to as a comparative coated HSS end mill.


(a)つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、
(a−1)本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった質量%で、Ni52.5-Cr19.0−Fe18.5−Nb5.1−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の板材、
切削速度:60 m/min.、
溝深さ(切り込み):3 mm、
テーブル送り:120 mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は35m/min.)を行い、
(a−2)本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH310の板材、
切削速度:80 m/min.、
溝深さ(切り込み):5 mm、
テーブル送り:120 mm/分、
の条件での耐熱鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)を行い、
(a−3)本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、
切削速度:70 m/min.、
溝深さ(切り込み):10 mm、
テーブル送り:110 mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は40m/min.)を行い、
上記(a−1)〜(a−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。

(A) Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8,
(A-1) About this invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3,
Work material-plane: 100 mm × 250 mm, thickness: mass% with dimensions of 50 mm, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Ti0.9-Al0.5-Mn0.2 A Ni alloy plate having a composition of -Si0.2-C0.04,
Cutting speed: 60 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 120 mm / min,
A dry high-speed grooving test of the Ni alloy under the conditions (normal cutting speed is 35 m / min.),
(A-2) About this invention coated carbide end mills 4-6 and conventional coated carbide end mills 4-6,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm plate material of JIS / SUH310,
Cutting speed: 80 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 120 mm / min,
A dry high-speed grooving test of the heat-resistant steel under the conditions (normal cutting speed is 40 m / min.),
(A-3) About the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50% by weight, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0 -Co alloy plate material having a composition of Mn1.20-C0.40,
Cutting speed: 70 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 110 mm / min,
A dry high-speed grooving test of the Co alloy under the conditions (normal cutting speed is 40 m / min.),
In any of the above groove cutting tests (a-1) to (a-3), the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. Was measured.

(b)つぎに、本発明被覆HSSエンドミル9〜14および比較被覆HSSエンドミル9〜14のうち、

(b−1)本発明被覆HSSエンドミル9、10および従来被覆HSSエンドミル9、10については、

被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった質量%で、Ni52.5-Cr19.0−Fe18.5−Nb5.1−Ti0.9−Al0.5−Mn0.2−Si0.2−C0.04の組成を有するNi合金の板材、
切削速度:40 m/min.、
溝深さ(切り込み):2 mm、
テーブル送り:100 mm/分、
の条件での 合金の乾式高速溝切削加工試験(通常の切削速度は20m/min.)を行い、
(b−2)本発明被覆HSSエンドミル11、12および従来被覆HSSエンドミル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH310の板材、
切削速度:50 m/min.、
溝深さ(切り込み):3 mm、
テーブル送り:90 mm/分、

の条件での耐熱鋼の乾式高速溝切削加工試験(通常の切削速度は25m/min.)を行い、

(b−3)本発明被覆HSSエンドミル13、14および従来被覆HSSエンドミル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった質量%で、Co43.0−Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、
切削速度:40 m/min.、
溝深さ(切り込み):6 mm、
テーブル送り:85 mm/分、

の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は20m/min.)を行い、

上記(b−1)〜(b−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記(a−1)〜(a−3)、(b−1)〜(b−3)の測定結果を表8,9にそれぞれ示した。
(B) Next, among the coated HSS end mills 9 to 14 and the comparative coated HSS end mills 9 to 14 of the present invention,

(B-1) About the present coated HSS end mills 9 and 10 and the conventional coated HSS end mills 9 and 10,

Work material-plane: 100 mm × 250 mm, thickness: mass% with dimensions of 50 mm, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Ti0.9-Al0.5-Mn0.2 A Ni alloy plate having a composition of -Si0.2-C0.04,
Cutting speed: 40 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 100 mm / min,
A dry high-speed grooving test of the alloy under the conditions (normal cutting speed is 20 m / min.)
(B-2) About this invention coated HSS end mills 11 and 12 and conventional coated HSS end mills 11 and 12,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm plate material of JIS / SUH310,
Cutting speed: 50 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 90 mm / min,

A dry high-speed grooving test of the heat-resistant steel under the conditions (normal cutting speed is 25 m / min.),

(B-3) About this invention coated HSS end mills 13 and 14 and conventional coated HSS end mills 13 and 14,
Work material-plane: 100 mm × 250 mm, thickness: 50% by weight, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0 -Co alloy plate material having a composition of Mn1.20-C0.40,
Cutting speed: 40 m / min. ,
Groove depth (cut): 6 mm,
Table feed: 85 mm / min,

A dry high-speed grooving test of the Co alloy under the conditions (normal cutting speed is 20 m / min.),

In any of the groove cutting tests of (b-1) to (b-3) above, the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. Was measured.
The measurement results of the above (a-1) to (a-3) and (b-1) to (b-3) are shown in Tables 8 and 9, respectively.

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659


上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。

また、上記の実施例2で用いた高速度工具鋼(JIS・SKH57)素材を用い、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(HSS基体F−1、F−2)、8mm×22mm(HSS基体F−3、F−4)、および16mm×45mm(HSS基体F−5、F−6)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった高速度工具鋼製のHSS基体(ドリル)F−1〜F−6をそれぞれ製造した。

The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

In addition, the high speed tool steel (JIS / SKH57) material used in Example 2 above was used, and the diameter x length of the groove forming portion was 4 mm × 13 mm (HSS bases F-1, F- 2), 8 mm × 22 mm (HSS bases F-3, F-4) and 16 mm × 45 mm (HSS bases F-5, F-6), and each has a two-blade shape with a twist angle of 30 degrees. HSS substrates (drills) F-1 to F-6 made of high-speed tool steel were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8及び本発明表面被覆HSSドリル(以下、本発明被覆HSSドリルと云う)9〜14をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 and HSS substrates (drills) F-1 to F-6 are honed, ultrasonically cleaned in acetone, and dried. In the same manner, the arc ion plating apparatus shown in FIG. 1 was charged, and under the same conditions as in Example 1, it had a single phase structure with the target composition and target layer thickness shown in Table 10 (Ti, Al , Y) The lower layer consisting of N layers and the upper layer consisting of alternating layers of the thin layer A and the thin layer B with the target composition and the single target layer thickness also shown in Table 10 along the layer thickness direction are also shown in Table 10 By carrying out vapor deposition with the overall target layer thickness shown, the present invention surface coated carbide drills (hereinafter referred to as the present invention coated carbide drill) 1 to 8 as the present invention surface coated cutting tool and the present invention surface coated HSS. Drill (hereinafter referred to as the present invention coated HSS drill) Say) 9 to 14 were prepared, respectively.


また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Y)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8及び比較表面被覆HSSドリル(以下、比較被覆HSSドリルと云う)9〜14をそれぞれ製造した。

For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 and HSS substrates (drills) F-1 to F-6 are subjected to honing and ultrasonically cleaned in acetone. In a dry state, the same was put into the arc ion plating apparatus shown in FIG. 2, and under the same conditions as in Example 1, a single phase structure with the target composition and target layer thickness also shown in Table 11 was obtained. By vapor-depositing a hard coating layer comprising a (Ti, Al, Y) N layer, a comparative surface-coated carbide drill (hereinafter referred to as a comparative coated carbide drill) 1 to 8 and a comparative surface-coated HSS drill (hereinafter referred to as a comparative surface coated carbide drill) (Referred to as comparative coated HSS drills) 9-14.


(c)つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、
(c−1)本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、

被削材−平面:100mm×250、厚さ:50mmの寸法をもった質量%で、Co43.0-Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、

切削速度:90 m/min.、
送り: 0.15 mm/rev、
穴深さ: 8 mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)を行い、
(c−2)本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Ti0.9−Al0.5−Mn0.2−Si0.02−C0.04の組成を有するNi合金の板材、
切削速度:80 m/min.、
送り:0.25 mm/rev、
穴深さ:16 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は50m/min.)を行い、
(c−3)本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH310の板材、
切削速度:70 m/min.、
送り:0.30 mm/rev、
穴深さ:32 mm、
の条件での耐熱鋼の湿式高速穴あけ切削加工試験(通常の切削速度は35m/min.)を行い、
上記(c−1)〜(c−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。

(C) Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8,
(C-1) About this invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,

Work material-plane: 100 mm × 250, thickness: mass% with dimensions of 50 mm, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0 -Co alloy plate material having a composition of Mn1.20-C0.40,

Cutting speed: 90 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 8 mm,
A wet high speed drilling test of the Co alloy under the conditions (normal cutting speed is 60 m / min.),
(C-2) About the present coated carbide drills 4-6 and the conventional coated carbide drills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50% by mass, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Ti0.9-Al0.5-Mn0.2 -Ni alloy plate material having a composition of -Si0.02-C0.04,
Cutting speed: 80 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 16 mm,
A wet high-speed drilling test of the Ni alloy under the conditions (normal cutting speed is 50 m / min.),
(C-3) About the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm plate material of JIS / SUH310,
Cutting speed: 70 m / min. ,
Feed: 0.30 mm / rev,
Hole depth: 32 mm,
Wet high-speed drilling test of heat-resistant steel under the conditions (normal cutting speed is 35 m / min.)
In any of the wet high-speed drilling tests (using water-soluble cutting oil) of any of the above (c-1) to (c-3), the number of drilling processes until the flank wear width of the tip cutting edge surface reaches 0.3 mm Was measured.

(d)つぎに、上記本発明被覆HSSドリル9〜14および従来被覆HSSドリル9〜14のうち、
(d−1)本発明被覆HSSドリル9、10および従来被覆HSSドリル9、10については、

被削材−平面:100mm×250、厚さ:50mmの寸法をもった質量%で、Co43.0-Ni20.0−Cr20.0−Mo4.0−W4.0−Nb4.0−Fe3.0−Mn1.20−C0.40の組成を有するCo合金の板材、

切削速度:40 m/min.、
送り:0.15 mm/rev、
穴深さ:8 mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は20m/min.)を行い、
(d−2)本発明被覆HSSドリル11、12および従来被覆HSSドリル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった質量%で、Ni52.5−Cr19.0−Fe18.5−Nb5.1−Ti0.9−Al0.5−Mn0.2−Si0.02−C0.04の組成を有するNi合金の板材、
切削速度:30 m/min.、
送り:0.15 mm/rev、
穴深さ:16 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、
(d−3)本発明被覆HSSドリル13、14および従来被覆HSSドリル13、14については、

被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUH310の板材、
切削速度:30 m/min.、
送り:0.30 mm/rev、
穴深さ:32 mm、
の条件での耐熱鋼の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、

上記(d−1)〜(d−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
上記(c−1)〜(c−3)、(d−1)〜(d−3)の測定結果を表10、11にそれぞれ示した。
(D) Next, among the above-mentioned present invention coated HSS drills 9-14 and conventional coated HSS drills 9-14,
(D-1) For the coated HSS drills 9 and 10 of the present invention and the conventional coated HSS drills 9 and 10,

Work material-plane: 100 mm × 250, thickness: mass% with dimensions of 50 mm, Co43.0-Ni20.0-Cr20.0-Mo4.0-W4.0-Nb4.0-Fe3.0 -Co alloy plate material having a composition of Mn1.20-C0.40,

Cutting speed: 40 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 8 mm,
A wet high speed drilling test of the Co alloy under the conditions (normal cutting speed is 20 m / min.),
(D-2) About this invention coated HSS drills 11 and 12 and conventional coated HSS drills 11 and 12,
Work material-plane: 100 mm × 250 mm, thickness: 50% by mass, Ni52.5-Cr19.0-Fe18.5-Nb5.1-Ti0.9-Al0.5-Mn0.2 -Ni alloy plate material having a composition of -Si0.02-C0.04,
Cutting speed: 30 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 16 mm,
A wet high-speed drilling test of Ni alloy under the conditions (normal cutting speed is 15 m / min.),
(D-3) About this invention coated HSS drills 13 and 14 and conventional coated HSS drills 13 and 14,

Work material-Plane: 100 mm × 250 mm, thickness: 50 mm plate material of JIS / SUH310,
Cutting speed: 30 m / min. ,
Feed: 0.30 mm / rev,
Hole depth: 32 mm,
Wet high-speed drilling test of heat-resistant steel under the conditions (normal cutting speed is 15 m / min.)

In any of the wet high-speed drilling tests (using water-soluble cutting oil) in any of the above (d-1) to (d-3), the number of drilling processes until the flank wear width of the tip cutting edge surface reaches 0.3 mm Was measured.
The measurement results of the above (c-1) to (c-3) and (d-1) to (d-3) are shown in Tables 10 and 11, respectively.

Figure 0004697659
Figure 0004697659

Figure 0004697659
Figure 0004697659

この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆HSSエンドミル9〜14、本発明被覆超硬ドリル1〜8および本発明被覆HSSドリル9〜14の(Ti,Al,Y)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに、比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、比較被覆HSSエンドミル9〜14、比較被覆超硬ドリル1〜8および比較被覆HSSドリル9〜14の(Ti,Al,Y)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the present coated carbide tips 1 to 16 as the present surface coated cutting tool, the present coated carbide end mill 1 to 8, the present coated HSS end mill 9 to 14, the present coated carbide drill 1 to 8 and the present invention coated HSS drills 9-14 (Ti, Al, Y) N hard coating layer composed of (Ti, Al, Y) N, upper layer thin layer A and thin layer B, further composition of the lower layer, and comparative coating super It consists of (Ti, Al, Y) N of hard tips 1-16, comparative coated carbide end mills 1-8, comparative coated HSS end mills 9-14, comparative coated carbide drills 1-8, and comparative coated HSS drills 9-14. When the composition of the hard coating layer was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, the composition was substantially the same as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜11に示される結果から、本発明表面被覆切削工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層(0.5〜1.5μmの平均層厚を有す)と、単一相構造の下部層(2〜6μmの平均層厚を有す)からなり、前記上部層が所定の高温硬さと耐熱性を保持した状態で、すぐれた高温耐酸化性を具備し、また、前記下部層がすぐれた高温硬さと耐熱性を有しているので、硬質被覆層はこれらのすぐれた特性を総合的に兼ね備えたものとなり、特に耐熱鋼やCo合金、さらにNi合金などの耐熱合金の高い発熱を伴う高速切削加工に用いた場合にも、前記硬質被覆層の摩耗進行が抑制され、この結果すぐれた耐摩耗性を発揮するの対して、硬質被覆層が単一相構造の(Ti,Al,Y)N層からなる比較被覆切削工具は、前記耐熱合金の高速切削加工では、前記硬質被覆層の高温耐酸化性不足が原因で摩耗が進行し、この結果比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 11, the surface-coated cutting tool of the present invention has an upper layer in which the hard coating layer has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm. (Having an average layer thickness of 0.5 to 1.5 μm) and a lower layer having a single phase structure (having an average layer thickness of 2 to 6 μm), the upper layer having a predetermined high temperature hardness and heat resistance It has excellent high-temperature oxidation resistance while maintaining its properties, and since the lower layer has excellent high-temperature hardness and heat resistance, the hard coating layer comprehensively exhibits these excellent characteristics. Even when used in high-speed cutting with high heat generation of heat-resistant alloys such as heat-resistant steel, Co alloy, and Ni alloy, the progress of wear of the hard coating layer is suppressed. Whereas the hard coating layer has a single phase structure (Ti , Al, Y) The comparative coated cutting tool consisting of N layer wears due to insufficient high-temperature oxidation resistance of the hard coating layer in high-speed cutting of the heat-resistant alloy. As a result, it is used in a relatively short time. It is clear that it reaches the end of its life.

上述のように、この発明の表面被覆切削工具は、各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの高速切削条件での切削加工は勿論のこと、特に耐熱合金の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであり、被削材に対して汎用性を有するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the surface-coated cutting tool according to the present invention involves not only cutting under high-speed cutting conditions such as various carbon steels, low alloy steels, and ordinary cast iron, but also particularly high heat generation of heat resistant alloys. Excellent wear resistance even during high-speed cutting, excellent cutting performance over a long period of time, and versatility for work materials. In addition, it can cope with the cost reduction sufficiently satisfactorily.

本発明表面被覆切削工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the surface coating cutting tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
(a)いずれもTiとAlとY(イットリウム)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメーター)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)Al]N(ただし、原子比で、Aは0.15〜0.30、Bは0.15〜0.30を示す)を満足するTiとAlとYの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(C+D)Al]N(ただし、原子比で、Cは0.50〜0.65、Dは0.01〜0.10を示す)を満足するTiとAlとYの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.10を示す)を満足するTiとAlとYの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
On the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, or on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al and Y (yttrium), the upper layer being an average layer of 0.5 to 1.5 μm, and the lower layer being an average layer of 2 to 6 μm Each has a thickness,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1- (A + B) Al A Y B ] N (wherein A is 0.15 to 0.30 and B is 0.15 to 0.30 in atomic ratio) A composite nitride layer of Al and Y;
The thin layer B is
Ti satisfying the composition formula: [Ti 1-(C + D) Al C Y D ] N (wherein C is 0.50 to 0.65 and D is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and Y,
(C) the lower layer has a single phase structure;
Formula: [Ti 1- (E + F ) Al E Y F] N ( provided that an atomic ratio, E is 0.50 to .65, F denotes the 0.01-0.10) and Ti which satisfies A composite nitride layer of Al and Y;
A surface-coated cutting tool that exhibits excellent wear resistance in high-speed cutting of a heat-resistant alloy, formed by vapor-depositing a hard coating layer comprising
JP2005188422A 2005-06-28 2005-06-28 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy Expired - Fee Related JP4697659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188422A JP4697659B2 (en) 2005-06-28 2005-06-28 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188422A JP4697659B2 (en) 2005-06-28 2005-06-28 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy

Publications (2)

Publication Number Publication Date
JP2007007741A JP2007007741A (en) 2007-01-18
JP4697659B2 true JP4697659B2 (en) 2011-06-08

Family

ID=37746869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188422A Expired - Fee Related JP4697659B2 (en) 2005-06-28 2005-06-28 Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy

Country Status (1)

Country Link
JP (1) JP4697659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104260440A (en) * 2014-09-25 2015-01-07 温岭市温峤友德工具厂 Nanocomposite coated tool containing Al, Ti, Si, Y and N and manufacturing method of nanocomposite coated tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334606A (en) * 1999-03-19 2000-12-05 Hitachi Tool Engineering Ltd Hard film coated tool
JP2003311507A (en) * 2002-04-26 2003-11-05 Mitsubishi Materials Corp Cutting tool made of surface coated sintered having hard coating layer with excellent chipping resistance under high speed heavy cutting conditions
JP2006307323A (en) * 2005-03-31 2006-11-09 Hitachi Tool Engineering Ltd Hard film coated member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334606A (en) * 1999-03-19 2000-12-05 Hitachi Tool Engineering Ltd Hard film coated tool
JP2003311507A (en) * 2002-04-26 2003-11-05 Mitsubishi Materials Corp Cutting tool made of surface coated sintered having hard coating layer with excellent chipping resistance under high speed heavy cutting conditions
JP2006307323A (en) * 2005-03-31 2006-11-09 Hitachi Tool Engineering Ltd Hard film coated member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104260440A (en) * 2014-09-25 2015-01-07 温岭市温峤友德工具厂 Nanocomposite coated tool containing Al, Ti, Si, Y and N and manufacturing method of nanocomposite coated tool

Also Published As

Publication number Publication date
JP2007007741A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP4697661B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4706915B2 (en) Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5041222B2 (en) Surface coated cutting tool
JP2007105841A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
JP4702538B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP5196122B2 (en) Surface coated cutting tool
JP2006334739A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting of heat resistant alloy
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697660B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4697659B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4720996B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4706921B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007105843A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5099495B2 (en) Surface coated cutting tool
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110207

R150 Certificate of patent or registration of utility model

Ref document number: 4697659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110220

LAPS Cancellation because of no payment of annual fees