JP2007105841A - Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut - Google Patents
Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut Download PDFInfo
- Publication number
- JP2007105841A JP2007105841A JP2005300208A JP2005300208A JP2007105841A JP 2007105841 A JP2007105841 A JP 2007105841A JP 2005300208 A JP2005300208 A JP 2005300208A JP 2005300208 A JP2005300208 A JP 2005300208A JP 2007105841 A JP2007105841 A JP 2007105841A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- coated
- speed
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速切削加工に用いた場合にも、硬質被覆層が前記高反応性被削材に対してきわめて低い反応性を示し、この結果すぐれた耐摩耗性を長期に亘って発揮するようになる、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面あるいは高速度工具鋼基体の表面に硬質被覆層を形成した表面被覆切削工具に関するものである。 This invention is particularly suitable for high-speed cutting with high heat generation of highly reactive work materials such as Ti alloys, high Si-containing Al alloys, and free-cutting steels, and the hard coating layer is highly reactive. Carbide made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet that exhibits extremely low reactivity to the workable material and results in excellent wear resistance over a long period of time. The present invention relates to a surface-coated cutting tool in which a hard coating layer is formed on the surface of a base or the surface of a high-speed tool steel base.
一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
また、表面被覆切削工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(X+Y) AlX TaY]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)、
を満足するTiとAlとTaの複合窒化物[以下、(Ti,Al,Ta)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる表面被覆超硬工具が知られており、かかる従来の表面被覆超硬工具においては、硬質被覆層を構成する前記(Ti,Al,Ta)N層が、構成成分であるAlによって高温硬さおよび耐熱性、同Tiによって高温強度、さらに同Taによって被削材との間に反応抑止効果を発揮するようになることも知られている。
Also, as one of the surface-coated cutting tools, for example, on the surface of a cemented carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, Having a single phase structure, and
Formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that an atomic ratio, X is from .50 to 0.65, Y represents a 0.01-0.10)
Surface-coated carbide formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and Ta [hereinafter referred to as (Ti, Al, Ta) N] satisfying the following conditions with an average layer thickness of 2 to 8 μm A tool is known, and in such a conventional surface-coated carbide tool, the (Ti, Al, Ta) N layer constituting the hard coating layer has high temperature hardness and heat resistance due to Al as a constituent component. It is also known that Ti exerts a high temperature strength, and further Ta exerts a reaction suppressing effect with the work material.
さらに、上記の表面被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層である(Ti,Al,Ta)N層の組成に対応した組成を有するTi−Al−Ta合金がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の表面被覆超硬工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の切削加工を、高熱発生を伴なう高速切削加工条件で行うのに用いた場合には、特に硬質被覆層と前記高反応性被削材との反応が、高熱発生に伴って促進されることと相俟って、急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。
In recent years, the performance of cutting devices has been dramatically improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In surface-coated carbide tools, when used for cutting carbon steel, low alloy steel, and ordinary cast iron under high-speed cutting conditions, there is no problem, showing normal cutting performance. Particularly hard when cutting highly reactive work materials such as Ti alloys, high Si-containing Al alloys, and free-cutting steel under high-speed cutting conditions with high heat generation. The reaction between the coating layer and the highly reactive work material, coupled with the acceleration of high heat generation, proceeds rapidly, resulting in a wear life in a relatively short time. Is the current situation.
そこで、本発明者等は、上述のような観点から、特に上記高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,Ta)N層に着目し、研究を行った結果、
(a) 硬質被覆層を構成する(Ti,Al,Ta)N層において、Ta成分の含有割合を多くすればするほど高反応性被削材との反応性は低下するようになるが、上記の従来(Ti,Al,Ta)N層における1〜10原子%程度のTa含有割合では、前記高反応性被削材との反応を、高熱発生を伴う高速切削加工で満足に抑制することはできず、高速切削加工で前記高反応性被削材との反応を十分に抑制するためには前記1〜10原子%をはるかに越えた20〜35原子%のTa含有が必要であり、一方20〜35原子%のTa成分を含有した(Ti,Al,Ta)N層を硬質被覆層として実用に供するには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合は著しく低い状態となるのが避けられず、この結果高温硬さのきわめて低いものとなること。
In view of the above, the present inventors have developed a surface-coated cutting tool that exhibits excellent wear resistance in which a hard coating layer is excellent in high-speed cutting of the highly reactive work material. As a result of conducting research by paying attention to the (Ti, Al, Ta) N layer that constitutes the hard coating layer of conventional coated carbide tools,
(a) In the (Ti, Al, Ta) N layer constituting the hard coating layer, the reactivity with the highly reactive work material decreases as the content ratio of the Ta component increases. In the conventional (Ti, Al, Ta) N layer, the Ta content ratio of about 1 to 10 atomic% can satisfactorily suppress the reaction with the highly reactive work material by high-speed cutting with high heat generation. In order to sufficiently suppress the reaction with the highly reactive work material in high-speed cutting, it is necessary to contain 20 to 35 atomic% of Ta, far exceeding the above 1 to 10 atomic%, In order to practically use a (Ti, Al, Ta) N layer containing 20 to 35 atomic% Ta component as a hard coating layer, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high temperature strength. In this case, the content ratio of the Al component is avoided to be extremely low. Are not those become very low for this result high-temperature hardness.
(b)上記(a)のTa含有割合を20〜35原子%に高めて被削材との反応抑制効果を向上させた(Ti,Al,Ta)N層(以下、薄層Aという)と、前記薄層Aに比してTa含有割合は低いが、相対的にAl含有割合を高くし、所定の相対的に高い高温硬さを備えた(Ti,Al,Ta)N層(以下、薄層Bという)を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で交互積層すると、この交互積層構造の(Ti,Al,Ta)N層は、高Ta含有の薄層Aのもつすぐれた被削材反応抑制効果と、相対的にAl含有割合が高い薄層Bのもつ所定の高温硬さを相兼ね備えるようになること。
ここで、薄層A、薄層Bの組成式は、次のとおりである。
薄層Aの組成式:[Ti1-(E+F)AlETaF]N(但し、原子比で、Eは0.15〜0.30、Fは0.20〜0.35を示す)
薄層Bの組成式:[Ti1-(M+N)AlMTaN]N(但し、原子比で、Mは0.50〜0.65、Nは0.01〜0.10を示す)
(B) a (Ti, Al, Ta) N layer (hereinafter referred to as a thin layer A) in which the Ta content ratio in (a) is increased to 20 to 35 atomic% to improve the reaction suppression effect with the work material; The Ta content ratio is lower than that of the thin layer A, but the Al content ratio is relatively high, and a (Ti, Al, Ta) N layer (hereinafter, referred to as “high temperature hardness”) is provided. When the thin layers B are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), the (Ti, Al, Ta) N layer having this alternately laminated structure has a high Ta layer. Combining the excellent work material reaction suppressing effect of the contained thin layer A and the predetermined high-temperature hardness of the thin layer B having a relatively high Al content.
Here, the composition formulas of the thin layer A and the thin layer B are as follows.
Composition formula of the thin layer A: [Ti 1- (E + F) Al E Ta F] N ( where, in terms of atomic ratio, E is 0.15 to 0.30, F represents a 0.20 to 0.35)
Composition formula of the thin layer B: [Ti 1- (M + N) Al M Ta N] N ( where, in terms of atomic ratio, M is .50 to 0.65, N denotes the 0.01-0.10)
(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Ta)N層は、高反応性被削材の高速切削加工で要求される被削材反応抑制効果を有するものの、十分満足な高温硬さおよび耐熱性を有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、被削材反応抑制効果は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Ta)N層、すなわち、
組成式:[Ti1-(X+Y)AlXTaY]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)を満足する、単一相構造の(Ti,Al,Ta)N層、
を設けた構造にすると、この上部層と下部層からなる硬質被覆層は、一段とすぐれた被削材反応抑制効果に加えて、すぐれた高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬工具は、上記の高反応性被削材の高い高熱発生を伴う高速切削加工でも、前記高反応性被削材と硬質被覆層との反応摩耗が著しく抑制された状態で切削が行われるので、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Ta) N layer having the alternately laminated structure of the thin layer A and the thin layer B in (b) is a work material reaction required for high-speed cutting of a highly reactive work material. Although it has a suppressing effect, it does not have a sufficiently satisfactory high-temperature hardness and heat resistance, so this is provided as the upper layer of the hard coating layer, while the lower layer is insufficient in the work material reaction suppressing effect (Ti, Al, Ta) N layer having a composition corresponding to the above conventional hard coating layer having a relatively high content of Al component and having excellent high temperature hardness and heat resistance,
Formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that an atomic ratio, X is from .50 to 0.65, Y represents a 0.01-0.10) satisfies the single (Ti, Al, Ta) N layer of single phase structure,
With this structure, the hard coating layer composed of the upper layer and the lower layer has excellent high-temperature hardness and heat resistance, as well as high-temperature strength, in addition to excellent work material reaction suppression effect. Therefore, the coated carbide tool formed by vapor-depositing this hard coating layer can be used for the high-reactive work material and the hard coating layer even in high-speed cutting with high heat generation of the high-reactivity work material. Since cutting is performed in a state in which reactive wear is remarkably suppressed, excellent wear resistance can be exhibited over a long period of time without occurrence of chipping.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
(a)いずれもTiとAlとTaの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(E+F)AlETaF]N(ただし、原子比で、Eは0.15〜0.30、Fは0.20〜0.35を示す)を満足するTiとAlとTaの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(M+N)AlMTaN]N(ただし、原子比で、Mは0.50〜0.65、Nは0.01〜0.10を示す)を満足するTiとAlとTaの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)AlXTaY]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)を満足するTiとAlとTaの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具に特徴を有するものである。
This invention was made based on the above research results,
On the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, or on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Ta, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. Have
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E represents 0.15 to 0.30 and F represents 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and Ta,
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (M + N) Al M Ta N ] N (wherein M is 0.50 to 0.65 and N is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and Ta,
(C) the lower layer has a single phase structure;
Formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that an atomic ratio, X is from .50 to 0.65, Y denotes the 0.01-0.10) and Ti which satisfies A composite nitride layer of Al and Ta,
It is characterized by a surface-coated cutting tool that exhibits excellent wear resistance in high-speed cutting of a highly reactive work material formed by vapor-depositing a hard coating layer comprising:
つぎに、この発明の表面被覆切削工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層を構成する硬質被覆層の組成式および平均層厚
硬質被覆層(Ti,Al,Ta)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同Ta成分には特に被削材との反応性を著しく低減させる作用があり、下部層ではAl成分の含有割合を多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すX値がTiとTaとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、高反応性被削材の高速切削加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示す同X値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、X値を0.50〜0.65と定めた。
また、Taの割合を示すY値がTiとAlの合量に占める割合で、0.01未満では、所定の被削材反応抑制効果を確保することができず、一方同Y値が0.10を超えると、高温強度に明確な低下傾向が現れるようになることから、Y値を0.01〜0.10と定めた。
さらに、その平均層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the surface-coated cutting tool of the present invention are limited as described above will be described.
(A) Composition formula and average layer thickness of the hard coating layer constituting the lower layer The Al component in the hard coating layer (Ti, Al, Ta) N layer improves the high temperature hardness and heat resistance, while the Ti component Has the effect of significantly reducing the reactivity with the work material, particularly the Ta component, and the lower layer increases the Al component content to provide high high temperature hardness and heat resistance. When the X value indicating the Al content ratio is less than 0.50 in the total amount of Ti and Ta (atomic ratio, the same shall apply hereinafter), the Ti ratio is relatively high, and highly reactive cutting. The excellent high-temperature hardness and heat resistance required for high-speed cutting of the material cannot be ensured, and wear progresses rapidly, while the X value indicating the Al ratio is 0.65. If it exceeds, the proportion of Ti becomes relatively small and high. The X value was determined to be 0.50 to 0.65 because the temperature strength dropped sharply and as a result chipping (slight chipping) was likely to occur.
Further, if the Y value indicating the proportion of Ta is a proportion of the total amount of Ti and Al, and less than 0.01, a predetermined work material reaction suppression effect cannot be ensured, while the Y value is 0. When it exceeds 10, since a clear decreasing tendency appears in the high-temperature strength, the Y value was set to 0.01 to 0.10.
Furthermore, if the average layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while the average layer thickness is 6 μm. If it exceeds, chipping is likely to occur, so the average layer thickness was set to 2 to 6 μm.
(b)上部層の薄層Aを構成する硬質被覆層の組成式
上部層の薄層Aの(Ti,Al,Ta)NにおけるTa成分は、上記の通りその含有割合をできるだけ高くして、被削材反応抑制効果を一段と向上させ、もって高熱発生を伴う高反応性被削材の高速切削加工での反応摩耗低減を図る目的で含有させるものであり、したがって、その含有割合を示すF値がTiとAlの合量に占める割合で、0.20未満では、高速切削加工時に所望のすぐれた被削材反応抑制効果を確保することができず、一方同F値が0.35を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、層自体が具備すべき高温強度を確保することができなくなり高温強度が急激に低下し、これが上部層全体の高温強度低下の原因となり、チッピングが発生し易くなることから、F値を0.20〜0.35と定めた。
また、Alの割合を示すE値がTiとTaの合量に占める割合で、0.15未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同E値が0.30を超えると、高温強度が低下し、チッピング発生の原因となることから、E値を0.15〜0.30と定めた。
(B) Composition formula of the hard coating layer constituting the thin layer A of the upper layer The Ta component in (Ti, Al, Ta) N of the thin layer A of the upper layer is made as high as possible, as described above, It is included for the purpose of further improving the work material reaction suppressing effect and reducing reactive wear in high-speed cutting of high-reactive work material accompanied by high heat generation. Is a proportion of the total amount of Ti and Al, and if it is less than 0.20, the desired excellent work material reaction suppressing effect cannot be ensured during high-speed cutting, while the F value exceeds 0.35. And the content ratio of the Ti component becomes relatively small, the high temperature strength that the layer itself should have cannot be ensured, and the high temperature strength rapidly decreases, which causes a decrease in the high temperature strength of the entire upper layer. , Chipping is likely to occur Therefore, the F value was determined to be 0.20 to 0.35.
Further, the E value indicating the proportion of Al is the proportion of the total amount of Ti and Ta, and if it is less than 0.15, the minimum high-temperature hardness and heat resistance cannot be ensured, causing wear promotion, On the other hand, if the E value exceeds 0.30, the high-temperature strength decreases and causes chipping, so the E value was set to 0.15 to 0.30.
(c)上部層の薄層Bを構成する硬質被覆層の組成式
薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(高温硬さ、耐熱性)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、Ta成分の含有割合を高めその被削材反応抑制効果の向上を図ったものであるが、上部層には所定の高温強度も求められており、これを確保するためには薄層Aに所定量のTiを含有する必要がある。そうすると、薄層AにおけるAlの含有割合は、少なくならざるを得ず、その結果として、薄層Aは高温硬さおよび耐熱性が不十分となり、ひいては、耐摩耗性の低下につながる。
そこで、上部層の薄層Bにおいては、薄層Aに比してTa成分の含有割合を相対的に低くするが、一方Al成分の含有割合を相対的に高く維持することで、相対的に高い高温硬さと耐熱性を具備せしめ、隣接する薄層Aの高温硬さ、耐熱性不足を補い、もって、前記薄層Aのもつすぐれた被削材反応抑制効果と、前記薄層Bのもつ所定の高温硬さおよび耐熱性を具備した上部層を形成する。
薄層Bの組成式におけるAlの含有割合を示すM値が0.50未満になると、Alの含有割合が少なくなり過ぎて、所定の高温硬さ、耐熱性を確保することができず、この結果摩耗進行が促進するようになり、一方同M値が0.65を越えると、相対的にTi成分の含有割合が低下して、上部層の高温強度低下は避けられず、チッピング発生の原因となることから、M値を0.50〜0.65と定めた。
また、Taの割合を示すN値がTiとAlの合量に占める割合で、0.01未満では、上部層全体の被削材反応抑制効果の低下が避けられず、一方同N値が0.10を超えると、高温強度が低下し、チッピングが発生し易くなることから、N値を0.01〜0.10と定めた。
(C) Composition formula of the hard coating layer constituting the thin layer B of the upper layer The thin layer B is an upper layer composed of an alternating laminated structure of the thin layer A and the thin layer B. The main purpose is to supplement (high temperature hardness, heat resistance).
As described above, the thin layer A of the upper layer is intended to increase the content ratio of the Ta component and improve the work material reaction suppression effect, but the upper layer is also required to have a predetermined high temperature strength. In order to ensure this, the thin layer A needs to contain a predetermined amount of Ti. If it does so, the content rate of Al in the thin layer A must be reduced, As a result, the thin layer A becomes inadequate in high temperature hardness and heat resistance, and it leads to the fall of abrasion resistance by extension.
Therefore, in the thin layer B of the upper layer, the content ratio of the Ta component is relatively lower than that of the thin layer A, while the content ratio of the Al component is kept relatively high, High temperature hardness and heat resistance are provided to compensate for the lack of heat resistance and heat resistance of the adjacent thin layer A, so that the thin layer A has excellent work material reaction suppression effect and the thin layer B has An upper layer having a predetermined high temperature hardness and heat resistance is formed.
When the M value indicating the Al content ratio in the composition formula of the thin layer B is less than 0.50, the Al content ratio is too small, and the predetermined high-temperature hardness and heat resistance cannot be ensured. As a result, the progress of wear is promoted. On the other hand, if the M value exceeds 0.65, the content ratio of the Ti component is relatively reduced, and the high-temperature strength of the upper layer is inevitably lowered, causing chipping. Therefore, the M value was set to 0.50 to 0.65.
Further, if the N value indicating the ratio of Ta is the ratio of the total amount of Ti and Al, and less than 0.01, a reduction in the work material reaction suppression effect of the entire upper layer is inevitable, while the N value is 0. If it exceeds .10, the high temperature strength decreases and chipping is likely to occur, so the N value was determined to be 0.01 to 0.10.
(d)上部層の薄層Aと薄層Bの一層平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が5nm未満ではそれぞれの薄層を上記の組成のものとして明確に形成することが困難であり、この結果上部層に所望のすぐれた被削材反応抑制効果、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば被削材反応抑制効果不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進するようになることから、それぞれの層厚を5〜20nmと定めた。
すなわち、薄層Bは、薄層Aの特性を補強するために設けられたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が5〜20nmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた被削材反応抑制作用を有し、かつ、所定の高温硬さ、高温強度、耐熱性を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち、薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば被削材反応抑制効果不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を5〜20nmと定めた。
薄層Aと薄層Bの一層平均層厚を5〜20nmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた被削材反応抑制効果を有し、かつ、高温硬さ、高温強度、耐熱性を兼ね備えた硬質被覆層が得られる。
(D) Single layer average layer thickness of thin layer A and thin layer B of the upper layer Thin layer A and thin layer B of the upper layer, and if each single layer average layer thickness is less than 5 nm, each thin layer is of the above composition It is difficult to form clearly, and as a result, it is not possible to ensure a desired excellent work material reaction suppressing effect on the upper layer, furthermore, a predetermined high-temperature hardness and heat resistance, and each layer thickness is 20 nm. If it exceeds, the defects of each thin layer, that is, if it is thin layer A, high temperature hardness and insufficient heat resistance, and if it is thin layer B, insufficient effect of suppressing the reaction of the work material will appear locally in the layer, which causes chipping Therefore, the thickness of each layer was set to 5 to 20 nm.
That is, the thin layer B is provided to reinforce the characteristics of the thin layer A, but if the average layer thickness of each of the thin layer A and the thin layer B is within the range of 5 to 20 nm, the thin layer B is thin. The upper layer composed of the alternately laminated structure of the layer A and the thin layer B is a single layer having excellent work material reaction suppressing action and having a predetermined high temperature hardness, high temperature strength, and heat resistance. However, when the average layer thickness of each of the thin layer A and the thin layer B exceeds 20 nm, the disadvantage of each thin layer, that is, if the thin layer A is high temperature hardness and insufficient heat resistance, thin In layer B, the lack of work material reaction suppression effect appears locally in the layer, and the upper layer cannot exhibit good characteristics as a single layer as a whole. The average layer thickness of each layer B was determined to be 5 to 20 nm.
By forming an upper layer having an alternate laminated structure with a single layer average layer thickness of the thin layer A and the thin layer B in the range of 5 to 20 nm on the lower layer surface, it has an excellent work material reaction suppression effect, And the hard coating layer which has high temperature hardness, high temperature strength, and heat resistance is obtained.
(e)上部層の平均層厚
上部層全体の平均層厚が0.5μm未満では、自身のもつすぐれた被削材反応抑制効果および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Average layer thickness of the upper layer If the average layer thickness of the entire upper layer is less than 0.5 μm, the hard coating layer has a long-lasting effect of suppressing its own work material reaction and predetermined high-temperature hardness and heat resistance. However, when the layer thickness exceeds 1.5 μm, chipping is likely to occur. Therefore, the layer thickness is determined to be 0.5 to 1.5 μm.
この発明の表面被覆切削工具は、硬質被覆層が(Ti,Al,Ta)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた被削材反応抑制効果を具備せしめ、同単一相構造の下部層が相対的にすぐれた高温硬さと耐熱性を有することから、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速切削加工でも、前記硬質被覆層の反応摩耗が著しく抑制されるようになり、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the surface-coated cutting tool of the present invention, the hard coating layer is composed of a (Ti, Al, Ta) N layer, and the upper layer of the hard coating layer has an alternate laminated structure of thin layers A and thin layers B. In particular, since the lower layer of the single-phase structure has relatively high high temperature hardness and heat resistance while maintaining the high temperature hardness and heat resistance of Even in high-speed cutting with high heat generation of extremely reactive work materials such as alloys, high-Si content Al alloys, and free-cutting steel, the reactive wear of the hard coating layer is remarkably suppressed, which is excellent. It exhibits wear resistance over a long period of time.
つぎに、この発明の表面被覆切削工具を実施例により具体的に説明する。 Next, the surface-coated cutting tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.
(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Ta合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層Bおよび下部層形成用Ti−Al−Ta合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Ta合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Ta合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層Bおよび下部層形成用Ti−Al−Ta合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し、再び前記薄層A形成用Ti−Al−Ta合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層Bおよび下部層形成用Ti−Al−Ta合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and used as a cathode electrode (evaporation source) on one side with the target compositions shown in Tables 3 and 4, respectively. As the upper layer Ti-Al-Ta alloy for forming the thin layer A having the corresponding component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 are also used. The upper layer thin layer B and the lower layer forming Ti-Al-Ta alloy are disposed opposite to each other with the rotary table interposed therebetween,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the thin layer B and Ti-Al-Ta alloy for forming the lower layer and the lower layer and the anode electrode to generate arc discharge. Bombard cleaning with Ti-Al-Ta alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the layer B and the Ti—Al—Ta alloy for forming the lower layer and the anode electrode, and the target composition shown in Tables 3 and 4 is formed on the surface of the carbide substrate. And a (Ti, Al, Ta) N layer having a single phase structure with a target layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the carbide substrate rotating while rotating on the rotary table. In the applied state, a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy for forming the thin layer A to generate arc discharge, and the carbide A thin layer A having a predetermined layer thickness is formed on the surface of the substrate. After the thin layer A is formed, the arc discharge is stopped. Instead, the cathode electrode of the Ti-Al-Ta alloy for forming the thin layer B and the lower layer Similarly, a predetermined current in the range of 50 to 200 A is passed between the anode electrodes to generate arc discharge to form a thin layer B having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer A is formed again. Ti-Al-Ta alloy The formation of thin layer A by arc discharge between the cathode electrode and the anode electrode and the formation of thin layer B by arc discharge between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy for forming the thin layer B and the lower layer are alternately performed. Thus, an upper layer composed of alternately laminated thin layers A and B having a target composition and a target layer thickness of one layer along the layer thickness direction is similarly formed on the surface of the cemented carbide substrate. By carrying out vapor deposition with the overall target layer thicknesses shown in Tables 3 and 4, the present invention surface-coated carbide throwaway tip (hereinafter referred to as the present invention coated carbide tip) 1 to 1 as the present invention coated carbide tool. 16 were produced respectively.
比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−Ta合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Ta合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Ta合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。 For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating apparatus shown in FIG. A Ti—Al—Ta alloy having a component composition corresponding to the target composition shown in Table 5 was attached as a cathode electrode (evaporation source), and the inside of the apparatus was first evacuated to 0.1 Pa. While maintaining the following vacuum, the inside of the apparatus was heated to 400 ° C. with a heater, a DC bias voltage of −1000 V was applied to the carbide substrate, and the Ti—Al—Ta alloy and anode electrode of the cathode electrode were applied. A current of 100 A is passed between them to generate an arc discharge, so that the surface of the carbide substrate is bombarded with the Ti—Al—Ta alloy, and then nitrogen gas is introduced into the apparatus as a reactive gas to obtain 3 Pa of And a bias voltage applied to the cemented carbide substrate is lowered to -100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy. Each of A-1 to A-10 and B-1 to B-6 has a (Ti, Al, Ta) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 5. By forming the hard coating layer by vapor deposition, conventional surface-coated carbide throw-away tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional coated carbide tools were produced, respectively.
つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材:JIS・60種(組成、質量%で、Ti−6%Al−4%V)の丸棒、
切削速度: 90 m/min.、
切り込み: 1.2 mm、
送り: 0.2 mm/rev.、
切削時間: 10 分、
の条件(切削条件Aという)でのTi合金の乾式連続高速切削加工試験(通常の切削速度は40m/min.)、
被削材:JIS・AC9B(組成、質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 300 m/min.、
切り込み: 1.2 mm、
送り: 0.12 mm/rev.、
切削時間: 10 分、
の条件(切削条件Bという)での高Si含有Al合金の乾式断続高速切削加工試験(通常の切削速度は150m/min.)、
被削材:JIS・SUM22(組成、質量%で、Fe−1%Mn−0.3%S−0.1%P)の丸棒、
切削速度: 400 m/min.、
切り込み: 1.2 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件(切削条件Cという)での快削鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chip 1 in the state in which each of the various coated carbide chips is screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: Round bar of JIS 60 types (composition, mass%, Ti-6% Al-4% V),
Cutting speed: 90 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of Ti alloy under the conditions (cutting condition A) (normal cutting speed is 40 m / min.),
Work material: JIS-AC9B (composition, mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) in the longitudinal direction at equal intervals, 4 longitudinally round bars.
Cutting speed: 300 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.12 mm / rev. ,
Cutting time: 10 minutes,
Dry interrupted high-speed cutting test (normal cutting speed is 150 m / min.) Of a high Si content Al alloy under the conditions (cutting condition B)
Work material: JIS / SUM22 (composition, mass%, Fe-1% Mn-0.3% S-0.1% P) round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 200 m / min.) Of free-cutting steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 6.
(イ)原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
(ロ)また、直径が8mm、13mm、および26mmの3種の寸法の高速度工具鋼(JIS・SKH55)素材から、機械加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもった高速度工具鋼(以下、HSSという)基体(エンドミル)E−1〜E−6をそれぞれ製造した。HSS基体(エンドミル)E−1〜E−2、E−3〜E−4、E−5〜E−6の寸法・形状は、それぞれ、前記超硬基体(エンドミル)C−1〜C−3、C−4〜C−6、C−7〜C−8のそれと同じである。
(A) As raw material powder, medium coarse WC powder having an average particle size of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, 2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, Co powder of 1.8 μm was prepared, and these raw material powders were blended in the blending composition shown in Table 7, respectively, and added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressure of 100 MPa Are pressed into various green compacts of a predetermined shape, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa. And after holding at this temperature for 1 hour, As a result, three types of cemented carbide substrate-forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm were formed. In the combination shown in the above, the diameter × length of the cutting edge is 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each has a four-blade square shape with a twist angle of 30 degrees. Cemented carbide substrates (end mills) C-1 to C-8 were produced, respectively.
(B) Also, the diameter of the cutting edge part x in the combinations shown in Table 7 by machining from three types of high-speed tool steel (JIS / SKH55) materials with a diameter of 8 mm, 13 mm, and 26 mm. High-speed tool steel (hereinafter referred to as HSS) base (end mill) E having a four-blade square shape with dimensions of 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and a twist angle of 30 degrees. -1 to E-6 were produced. The dimensions and shapes of the HSS substrates (end mills) E-1 to E-2, E-3 to E-4, and E-5 to E-6 are the same as the carbide substrates (end mills) C-1 to C-3. , C-4 to C-6, and C-7 to C-8.
ついで、これらの超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8及び本発明表面被覆高速度工具鋼製エンドミル(以下、本発明被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。 Next, the surfaces of these carbide substrates (end mills) C-1 to C-8 and HSS substrates (end mills) E-1 to E-6 were ultrasonically cleaned in acetone and dried, as shown in FIG. From the (Ti, Al, Ta) N layer having a single phase structure with the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above. The total target layer thickness shown in Table 8 is also the lower layer, and the upper layer consisting of the alternating layers of the thin layer A and the thin layer B having the target composition and the single target layer thickness are also shown in Table 8 along the layer thickness direction. As a surface-coated cutting tool of the present invention, the surface-coated carbide end mill (hereinafter referred to as the present invention coated carbide end mill) 1 to 8 and the surface-coated high-speed tool steel end mill (hereinafter referred to as the present invention) Hereinafter, the present invention coated HSS engine Mill and refers) 9-14 were prepared, respectively.
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより、従来表面被覆切削工具としての従来表面被覆超硬製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8及び従来表面被覆高速度工具鋼製エンドミル(以下、従来被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。 For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 and HSS substrates (end mills) E-1 to E-6 were ultrasonically cleaned in acetone and dried. 2 is charged in the arc ion plating apparatus shown in FIG. 2 and has a single-phase structure with the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1 (Ti, Al). , Ta) By depositing a hard coating layer comprising an N layer, conventional surface-coated carbide end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 as conventional surface-coated cutting tools and conventional surface-coated high speeds Tool steel end mills (hereinafter referred to as conventional coated HSS end mills) 9 to 14 were produced.
(a)つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、
(a−1)本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUM22(質量%で、Fe−1%Mn−0.3%S−0.1%P)の板材、
切削速度: 220 m/min.、
溝深さ(切り込み): 2.0 mm、
テーブル送り: 750 mm/分、
の条件での快削鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)を行い、
(a−2)本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・60種(質量%で、Ti−6%Al−4%V)の板材
切削速度: 90 m/min.、
溝深さ(切り込み): 3.5 mm、
テーブル送り: 400 mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は40m/min.)を行い、
(a−3)本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・AC9B(質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)の板材、
切削速度: 200 m/min.、
溝深さ(切り込み): 7.0 mm、
テーブル送り: 500 mm/分、
の条件での高Si含有Al合金の乾式高速溝切削加工試験(通常の切削速度は100m/min.)を行い、
上記(a−1)〜(a−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
(b)つぎに、本発明被覆HSSエンドミル9〜14および従来被覆HSSエンドミル9〜14のうち、
(b−1)本発明被覆HSSエンドミル9、10および従来被覆HSSエンドミル9、10については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・60種(質量%で、Ti−6%Al−4%V)の板材、
切削速度: 30 m/min.、
溝深さ(切り込み): 2.0 mm、
テーブル送り: 80 mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は15m/min.)を行い、
(b−2)本発明被覆HSSエンドミル11、12および従来被覆HSSエンドミル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・AC9B(質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)の板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 4.0 mm、
テーブル送り: 320 mm/分、
の条件での高Si含有Al合金の乾式高速溝切削加工試験(通常の切削速度は60m/min.)を行い、
(b−3)本発明被覆HSSエンドミル13、14および従来被覆HSSエンドミル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUM22(質量%で、Fe−1%Mn−0.3%S−0.1%P)の板材、
切削速度: 80 m/min.、
溝深さ(切り込み): 8.0 mm、
テーブル送り: 250 mm/分、
の条件での快削鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)を行い、
上記(b−1)〜(b−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記(a−1)〜(a−3)、(b−1)〜(b−3)の測定結果を表8,9にそれぞれ示した。
(A) Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8,
(A-1) About this invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS · SUM22 (mass%, Fe-1% Mn-0.3% S-0.1% P) plate material,
Cutting speed: 220 m / min. ,
Groove depth (cut): 2.0 mm,
Table feed: 750 mm / min,
A dry high-speed grooving test of free-cutting steel under the conditions (normal cutting speed is 100 m / min.)
(A-2) About this invention coated carbide end mills 4-6 and conventional coated carbide end mills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS.60 type (mass%, Ti-6% Al-4% V) plate material Cutting speed: 90 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 400 mm / min,
A dry high-speed grooving test of the Ti alloy under the conditions (normal cutting speed is 40 m / min.),
(A-3) About the coated
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / AC9B (mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) plate material,
Cutting speed: 200 m / min. ,
Groove depth (cut): 7.0 mm,
Table feed: 500 mm / min,
A dry high-speed grooving test of a high Si content Al alloy under the conditions (normal cutting speed is 100 m / min.),
In any of the above groove cutting tests (a-1) to (a-3), the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. Was measured.
(B) Next, among the present coated HSS end mills 9 to 14 and the conventional coated HSS end mills 9 to 14,
(B-1) About the present coated HSS end mills 9 and 10 and the conventional coated HSS end mills 9 and 10,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS 60 type (mass%, Ti-6% Al-4% V) plate material,
Cutting speed: 30 m / min. ,
Groove depth (cut): 2.0 mm,
Table feed: 80 mm / min,
A dry high-speed grooving test of the Ti alloy under the conditions (normal cutting speed is 15 m / min.),
(B-2) About this invention coated HSS end mills 11 and 12 and conventional coated HSS end mills 11 and 12,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / AC9B (mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) plate material,
Cutting speed: 120 m / min. ,
Groove depth (cut): 4.0 mm,
Table feed: 320 mm / min,
A dry high-speed grooving test of a high Si content Al alloy under the conditions (normal cutting speed is 60 m / min.),
(B-3) About this invention coated HSS end mills 13 and 14 and conventional coated HSS end mills 13 and 14,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS · SUM22 (mass%, Fe-1% Mn-0.3% S-0.1% P) plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 8.0 mm,
Table feed: 250 mm / min,
A dry high-speed grooving test of free-cutting steel under the conditions (normal cutting speed is 40 m / min.)
In any of the groove cutting tests of (b-1) to (b-3) above, the cutting groove length until the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life. Was measured.
The measurement results of the above (a-1) to (a-3) and (b-1) to (b-3) are shown in Tables 8 and 9, respectively.
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、 8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
また、上記の実施例2で用いた高速度工具鋼(JIS・SKH55)素材を用い、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×25mm(HSS基体F−1、F−2)、 8mm×45mm(HSS基体F−3、F−4)、および16mm×90mm(HSS基体F−5、F−6)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった高速度工具鋼製のHSS基体(ドリル)F−1〜F−6をそれぞれ製造した。
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.
In addition, using the high-speed tool steel (JIS / SKH55) material used in Example 2 above, the diameter and length of the groove forming portion were 4 mm × 25 mm (HSS substrates F-1, F- 2), 8 mm x 45 mm (HSS bases F-3, F-4), and 16 mm x 90 mm (HSS bases F-5, F-6), and each has a two-blade shape with a twist angle of 30 degrees. HSS substrates (drills) F-1 to F-6 made of high-speed tool steel were produced.
ついで、これらの超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8及び本発明表面被覆HSSドリル(以下、本発明被覆HSSドリルと云う)9〜14をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 and HSS substrates (drills) F-1 to F-6 are honed, ultrasonically cleaned in acetone, and dried. In the same manner, the arc ion plating apparatus shown in FIG. 1 was charged, and under the same conditions as in Example 1, it had a single phase structure with the target composition and target layer thickness shown in Table 10 (Ti, Al , Ta) The lower layer composed of N layer and the upper layer composed of the alternating layers of the thin layer A and the thin layer B having the target composition and the single target layer thickness which are also shown in Table 10 along the layer thickness direction. By carrying out vapor deposition with the overall target layer thickness shown, the present invention surface coated carbide drills (hereinafter referred to as the present invention coated carbide drill) 1 to 8 as the present invention surface coated cutting tool and the present invention surface coated HSS. Drill (hereinafter referred to as the present invention HSS drill) Say) 9-14 was prepared, respectively.
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより、従来表面被覆切削工具としての従来表面被覆超硬製ドリル(以下、従来被覆超硬ドリルと云う)1〜8及び従来表面被覆HSSドリル(以下、従来被覆HSSドリルと云う)9〜14をそれぞれ製造した。 For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 and HSS substrates (drills) F-1 to F-6 are subjected to honing and ultrasonically cleaned in acetone. In a dry state, the same was put into the arc ion plating apparatus shown in FIG. 2, and under the same conditions as in Example 1, a single phase structure with the target composition and target layer thickness also shown in Table 11 was obtained. By vapor-depositing a hard coating layer comprising a (Ti, Al, Ta) N layer, conventional surface-coated carbide drills (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional surface-coated cutting tools and Conventional surface-coated HSS drills (hereinafter referred to as conventional coated HSS drills) 9 to 14 were produced.
(c)つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、
(c−1)本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUM22(質量%で、Fe−1%Mn−0.3%S−0.1%P)の板材、
切削速度: 90 m/min.、
送り: 0.18 mm/rev、
穴深さ: 6 mm、
の条件での快削鋼の湿式高速穴あけ切削加工試験(通常の切削速度は45m/min.)を行い、
(c−2)本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・60種(質量%で、Ti−6%Al−4%V)の板材、
切削速度: 50 m/min.、
送り: 0.1 mm/rev、
穴深さ: 10 mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)を行い、
(c−3)本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・AC9B(質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)の板材、
切削速度: 140 m/min.、
送り: 0.25 mm/rev、
穴深さ: 20 mm、
の条件での高Si含有Al合金の湿式高速穴あけ切削加工試験(通常の切削速度は70m/min.)を行い、
上記(c−1)〜(c−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
(d)つぎに、上記本発明被覆HSSドリル9〜14および従来被覆HSSドリル9〜14のうち、
(d−1)本発明被覆HSSドリル9、10および従来被覆HSSドリル9、10については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUM22(質量%で、Fe−1%Mn−0.3%S−0.1%P)の板材、
切削速度: 70 m/min.、
送り: 0.15 mm/rev、
穴深さ: 12 mm、
の条件での快削鋼の湿式高速穴あけ切削加工試験(通常の切削速度は35m/min.)を行い、
(d−2)本発明被覆HSSドリル11、12および従来被覆HSSドリル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・60種(質量%で、Ti−6%Al−4%V)の板材、
切削速度: 30 m/min.、
送り: 0.15 mm/rev、
穴深さ: 24 mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、
(d−3)本発明被覆HSSドリル13、14および従来被覆HSSドリル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・AC9B(質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)の板材、
切削速度: 70 m/min.、
送り: 0.25 mm/rev、
穴深さ: 48 mm、
の条件での高Si含有Al合金の湿式高速穴あけ切削加工試験(通常の切削速度は35m/min.)を行い、
上記(d−1)〜(d−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
上記(c−1)〜(c−3)、(d−1)〜(d−3)の測定結果を表10、11にそれぞれ示した。
(C) Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8,
(C-1) About this invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS · SUM22 (mass%, Fe-1% Mn-0.3% S-0.1% P) plate material,
Cutting speed: 90 m / min. ,
Feed: 0.18 mm / rev,
Hole depth: 6 mm,
A wet high speed drilling test of free cutting steel under the conditions (normal cutting speed is 45 m / min.)
(C-2) About the present coated carbide drills 4-6 and the conventional coated carbide drills 4-6,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS 60 type (mass%, Ti-6% Al-4% V) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 10 mm,
A wet high-speed drilling test of the Ti alloy under the conditions (normal cutting speed is 25 m / min.),
(C-3) About the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / AC9B (mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) plate material,
Cutting speed: 140 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 20 mm,
Wet high speed drilling test of high Si content Al alloy under the conditions (normal cutting speed is 70 m / min.)
In any of the wet high-speed drilling tests (using water-soluble cutting oil) of any of the above (c-1) to (c-3), the number of drilling processes until the flank wear width of the tip cutting edge surface reaches 0.3 mm Was measured. The measurement results are shown in Tables 10 and 11, respectively.
(D) Next, among the above-mentioned present invention coated HSS drills 9-14 and conventional coated HSS drills 9-14,
(D-1) For the coated HSS drills 9 and 10 of the present invention and the conventional coated HSS drills 9 and 10,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS · SUM22 (mass%, Fe-1% Mn-0.3% S-0.1% P) plate material,
Cutting speed: 70 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 12 mm,
A wet high speed drilling test of free cutting steel under normal conditions (normal cutting speed is 35 m / min.)
(D-2) About this invention coated HSS drills 11 and 12 and conventional coated HSS drills 11 and 12,
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm JIS 60 type (mass%, Ti-6% Al-4% V) plate material,
Cutting speed: 30 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 24 mm,
A wet high-speed drilling test of the Ti alloy under the conditions (normal cutting speed is 15 m / min.),
(D-3) About this invention coated HSS drills 13 and 14 and conventional coated HSS drills 13 and 14,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / AC9B (mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) plate material,
Cutting speed: 70 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 48 mm,
Wet high speed drilling test of high Si content Al alloy under the conditions (normal cutting speed is 35 m / min.)
In any of the wet high-speed drilling tests (using water-soluble cutting oil) in any of the above (d-1) to (d-3), the number of drilling processes until the flank wear width of the tip cutting edge surface reaches 0.3 mm Was measured.
The measurement results of the above (c-1) to (c-3) and (d-1) to (d-3) are shown in Tables 10 and 11, respectively.
この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆HSSエンドミル9〜14、本発明被覆超硬ドリル1〜8および本発明被覆HSSドリル9〜14の(Ti,Al,Ta)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、従来被覆HSSエンドミル9〜14、従来被覆超硬ドリル1〜8および従来被覆HSSドリル9〜14の(Ti,Al,Ta)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 As a result, the present coated carbide tips 1 to 16 as the present surface coated cutting tool, the present coated carbide end mill 1 to 8, the present coated HSS end mill 9 to 14, the present coated carbide drill 1 to 8 and the present invention coated HSS drills 9 to 14 (Ti, Al, Ta) N hard coating layer composed of (Ti, Al, Ta) N, upper layer thin layer A and thin layer B, the composition of the same lower layer, as a conventional coated tool Conventional coated carbide tips 1 to 16, conventional coated carbide end mills 1 to 8, conventional coated HSS end mills 9 to 14, conventional coated carbide drills 1 to 8 and conventional coated HSS drills 9 to 14 (Ti, Al, Ta ) When the composition of the hard coating layer made of N was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, each showed substantially the same composition as the target composition.
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表3〜11に示される結果から、本発明表面被覆切削工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層(0.5〜1.5μmの平均層厚を有す)と、単一相構造の下部層(2〜6μmの平均層厚を有す)からなり、前記上部層がすぐれた被削材反応抑制効果を有し、また、前記下部層がすぐれた高温硬さおよび耐熱性を備えているので、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速切削加工に用いた場合にも、前記硬質被覆層と高反応性被削材との間で反応摩耗が著しく抑制された状態で切削が行われるので、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,Ta)N層からなる比較被覆切削工具は、前記高反応性被削材の高速切削加工では、特に前記硬質被覆層と高反応性被削材との間の反応摩耗が著しく、この結果比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 11, the surface-coated cutting tool of the present invention has an upper layer in which the hard coating layer has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm. Workpiece reaction with an excellent upper layer (consisting of an average layer thickness of 0.5 to 1.5 μm) and a lower layer of single phase structure (having an average layer thickness of 2 to 6 μm) Since the lower layer has excellent high-temperature hardness and heat resistance, it has a highly effective work material such as Ti alloy, high Si content Al alloy, and free-cutting steel. Even when used for high-speed cutting with high heat generation, cutting is performed in a state where the reactive wear is remarkably suppressed between the hard coating layer and the highly reactive work material. The hard coating layer is a single-phase (Ti, Al, Ta) N layer? The comparative coated cutting tool is used in a relatively short time, especially in the high-speed cutting of the high-reactive work material, especially the reactive wear between the hard coating layer and the high-reactive work material. It is clear that it reaches the end of its life.
上述のように、この発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高反応性被削材の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
As described above, the surface-coated cutting tool of the present invention is capable of cutting at normal cutting conditions such as various steels and cast irons, particularly high-speed cutting with high heat generation of highly reactive work materials. Because it exhibits excellent wear resistance even during machining and exhibits excellent cutting performance over a long period of time, it is sufficient for improving the performance of cutting equipment, saving labor and energy, and reducing costs It can respond to satisfaction.
Claims (1)
(a)いずれもTiとAlとTaの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(E+F)AlETaF]N(ただし、原子比で、Eは0.15〜0.30、Fは0.20〜0.35を示す)を満足するTiとAlとTaの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(M+N)AlMTaN]N(ただし、原子比で、Mは0.50〜0.65、Nは0.01〜0.10を示す)を満足するTiとAlとTaの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)AlXTaY]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.10を示す)を満足するTiとAlとTaの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。 On the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, or on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Ta, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. Have
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E represents 0.15 to 0.30 and F represents 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and Ta,
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (M + N) Al M Ta N ] N (wherein M is 0.50 to 0.65 and N is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and Ta,
(C) the lower layer has a single phase structure;
Formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that an atomic ratio, X is from .50 to 0.65, Y denotes the 0.01-0.10) and Ti which satisfies A composite nitride layer of Al and Ta,
A surface-coated cutting tool that exhibits excellent wear resistance in high-speed cutting of a highly reactive work material formed by vapor-depositing a hard coating layer made of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005300208A JP2007105841A (en) | 2005-10-14 | 2005-10-14 | Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005300208A JP2007105841A (en) | 2005-10-14 | 2005-10-14 | Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007105841A true JP2007105841A (en) | 2007-04-26 |
Family
ID=38032099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005300208A Withdrawn JP2007105841A (en) | 2005-10-14 | 2005-10-14 | Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007105841A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011224688A (en) * | 2010-04-16 | 2011-11-10 | Mitsubishi Materials Corp | Surface-coated cutting tool |
EP3396015A4 (en) * | 2016-03-18 | 2019-09-11 | Northeastern University | Composite functional cutter coating for cutting titanium alloy and preparation method therefor |
WO2019181220A1 (en) * | 2018-03-19 | 2019-09-26 | 住友電工ハードメタル株式会社 | Surface coated cutting tool |
JP7124267B1 (en) * | 2021-06-30 | 2022-08-24 | 住友電工ハードメタル株式会社 | Cutting tools |
WO2023191049A1 (en) * | 2022-03-31 | 2023-10-05 | 京セラ株式会社 | Coated tool and cutting tool |
-
2005
- 2005-10-14 JP JP2005300208A patent/JP2007105841A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011224688A (en) * | 2010-04-16 | 2011-11-10 | Mitsubishi Materials Corp | Surface-coated cutting tool |
EP3396015A4 (en) * | 2016-03-18 | 2019-09-11 | Northeastern University | Composite functional cutter coating for cutting titanium alloy and preparation method therefor |
WO2019181220A1 (en) * | 2018-03-19 | 2019-09-26 | 住友電工ハードメタル株式会社 | Surface coated cutting tool |
JPWO2019181220A1 (en) * | 2018-03-19 | 2020-12-17 | 住友電工ハードメタル株式会社 | Surface coating cutting tool |
US11534836B2 (en) | 2018-03-19 | 2022-12-27 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool |
JP7124267B1 (en) * | 2021-06-30 | 2022-08-24 | 住友電工ハードメタル株式会社 | Cutting tools |
WO2023276067A1 (en) * | 2021-06-30 | 2023-01-05 | 住友電工ハードメタル株式会社 | Cutting tool |
US11802333B2 (en) | 2021-06-30 | 2023-10-31 | Sumitomo Electric Hardmetal Corp. | Cutting tool |
EP4364875A4 (en) * | 2021-06-30 | 2024-05-08 | Sumitomo Electric Hardmetal Corp. | Cutting tool |
WO2023191049A1 (en) * | 2022-03-31 | 2023-10-05 | 京セラ株式会社 | Coated tool and cutting tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4697661B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy | |
JP2009061520A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting | |
JP4706915B2 (en) | Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys | |
JP4645821B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP2007105841A (en) | Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut | |
JP4702538B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4687965B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP5196122B2 (en) | Surface coated cutting tool | |
JP5088480B2 (en) | Surface coated cutting tool | |
JP2006334739A (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting of heat resistant alloy | |
JP4697662B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP4771198B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials | |
JP2006334740A (en) | Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material | |
JP4756445B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4697660B2 (en) | Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel | |
JP2007105843A (en) | Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut | |
JP4771199B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4697659B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy | |
JP4720996B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4706921B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP3978723B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP4697389B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4645818B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP5099495B2 (en) | Surface coated cutting tool | |
JP5077743B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090106 |