JP2011224688A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2011224688A
JP2011224688A JP2010094819A JP2010094819A JP2011224688A JP 2011224688 A JP2011224688 A JP 2011224688A JP 2010094819 A JP2010094819 A JP 2010094819A JP 2010094819 A JP2010094819 A JP 2010094819A JP 2011224688 A JP2011224688 A JP 2011224688A
Authority
JP
Japan
Prior art keywords
thin layer
layer
cutting
hard coating
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094819A
Other languages
Japanese (ja)
Other versions
JP5594569B2 (en
Inventor
Tsutomu Ogami
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010094819A priority Critical patent/JP5594569B2/en
Publication of JP2011224688A publication Critical patent/JP2011224688A/en
Application granted granted Critical
Publication of JP5594569B2 publication Critical patent/JP5594569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool with a hard coating layer for exhibiting excellent abrasion resistance, in the high speed intermittent cutting work of a hard-to-cut material.SOLUTION: The surface-coated cutting tool is provided by depositing and forming the hard coating layer constituted of (Ti, Al, M)N (here, M is Nb or Ta) on a surface of a tool base body constituted of tungsten carbide group cemented carbide or titanium carbonitride group cermet. The hard coating layer is constituted as an alternate laminated structure of a thin layer A constituted of a granular crystal (Ti, Al, M)N and a thin layer B constituted of a columnar crystal (Ti, Al, M)N. The thin layer A and the thin layer B have layer thicknesses of 0.05-2 μm, respectively. The crystal grain size of the granular crystal is 30 nm or smaller, and the crystal grain size of the columnar crystal is 50-500 nm.

Description

本発明は、例えば、Ti基合金やNi基合金等の難削材を、高い発熱を伴う高速断続切削条件下で切削加工を行なった場合でも、硬質被覆層がすぐれた高温硬さ、高温強度を備えることによって、チッピング、欠損、剥離等の発生を防止するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, for example, even when a difficult-to-cut material such as a Ti-based alloy or a Ni-based alloy is cut under high-speed interrupted cutting conditions with high heat generation, the hard coating layer has excellent high-temperature hardness and high-temperature strength. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that prevents occurrence of chipping, chipping, peeling, and the like and exhibits excellent wear resistance over a long period of use.

一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

従来、表面被覆切削工具の一つとして、例えば、特許文献1に示されるように、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、TiとAlとM(但し、Mは、NbまたはTa)とを含んだ複合窒化物から構成される硬質被覆層を形成した被覆工具が知られている。   Conventionally, as one of surface-coated cutting tools, for example, as shown in Patent Document 1, a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is used. A hard coating layer composed of a composite nitride containing Ti, Al, and M (where M is Nb or Ta) is formed on the surface of the formed substrate (hereinafter collectively referred to as a tool substrate). Such coated tools are known.

さらに、前記従来の被覆工具は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に工具基体を装入し、装置内を加熱した状態で、硬質被覆層の組成に対応した組成を有する複数のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、前記工具基体表面に、所望の成分組成を有する(Ti,Al,M)N層からなる硬質被覆層を蒸着することによって製造されることも知られている。   Furthermore, the conventional coated tool is, for example, a state in which a tool base is inserted into an arc ion plating (AIP) apparatus, which is one type of physical vapor deposition apparatus schematically shown in FIG. 1, and the inside of the apparatus is heated. In the tool, an arc discharge is generated between a plurality of cathode electrodes (evaporation sources) having a composition corresponding to the composition of the hard coating layer and the anode electrode, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas. It is also known that it is produced by vapor-depositing a hard coating layer comprising a (Ti, Al, M) N layer having a desired component composition on the surface of a substrate.

特開2004−99966号公報JP 2004-99966 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、前記従来の被覆工具においては、これを特に高熱発生を伴うとともに切刃部に高負荷が作用する難削材の高速断続切削条件で用いた場合には、硬質被覆層にチッピング、欠損、剥離等が発生しやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been remarkably improved. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In the case of a coated tool, chipping, chipping, peeling, etc. occur in the hard coating layer when it is used under high-speed interrupted cutting conditions for difficult-to-cut materials with high heat generation and high load on the cutting edge. As a result, the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、硬質被覆層がすぐれた高温硬さ、高温強度、高温耐酸化性を備えるとともに、特にTi基合金やNi基合金等の難削材を、高い発熱を伴い、かつ、切刃部に高負荷が作用する高速断続切削条件で切削加工を行なった場合にも、チッピング、欠損、剥離等を発生することなく長期の使用に亘って、すぐれた耐摩耗性を発揮する被覆工具を開発すべく、硬質被覆層を構成する(Ti,Al,M)N層(但し、Mは、NbまたはTa)の結晶粒組織構造に着目し、研究を行った結果、以下の知見を得た。   Therefore, from the above viewpoint, the present inventors have a hard coating layer with excellent high temperature hardness, high temperature strength, high temperature oxidation resistance, and particularly difficult-to-cut materials such as Ti-based alloys and Ni-based alloys. Even when cutting under high-speed interrupted cutting conditions with high heat generation and high load acting on the cutting edge, it is excellent for long-term use without causing chipping, chipping, peeling, etc. In order to develop a coated tool that exhibits high wear resistance, the research focused on the grain structure of the (Ti, Al, M) N layer (where M is Nb or Ta) that constitutes the hard coating layer. As a result, the following knowledge was obtained.

前記従来の被覆工具の硬質被覆層を構成する(Ti,Al,M)N層の構成成分であるTi成分には高温強度を向上させると共に、TiとAlが共存含有した状態で高温耐酸化性を向上させる作用があり、また、M成分は耐熱強度を向上させる作用があり、そして、硬質被覆層は、これら各成分を含有することによって、所定の耐欠損性、耐酸化性、耐熱性および耐摩耗性等を発揮する。
ところで、前記従来の被覆工具においては、前記(Ti,Al,M)N層は、結晶質相とアモルファス相とで構成されているが、アークイオンプレーティング(AIP)装置で硬質被覆層を成膜するにあたり、蒸着条件として、例えば、装置内に導入する窒素ガスの圧力と、工具基体に印加するバイアス電圧を制御することによって、形成される(Ti,Al,M)N結晶粒の結晶粒組織(粒径、形態)を調整できることを本発明者らは見出した。
The Ti component, which is a constituent component of the (Ti, Al, M) N layer that constitutes the hard coating layer of the conventional coated tool, improves the high-temperature strength, and at the same time contains high-temperature oxidation resistance in the state where Ti and Al coexist. In addition, the M component has the effect of improving the heat resistance strength, and the hard coating layer contains these components, thereby providing predetermined fracture resistance, oxidation resistance, heat resistance and Demonstrate wear resistance.
By the way, in the conventional coated tool, the (Ti, Al, M) N layer is composed of a crystalline phase and an amorphous phase, but a hard coating layer is formed by an arc ion plating (AIP) apparatus. In forming the film, as the deposition conditions, for example, by controlling the pressure of the nitrogen gas introduced into the apparatus and the bias voltage applied to the tool base, the crystal grains of the (Ti, Al, M) N crystal grains formed The present inventors have found that the structure (particle size, morphology) can be adjusted.

そして、前記の蒸着条件の制御によって、微細な粒径の(Ti,Al,M)N粒状晶組織からなる薄層Aと、相対的に大粒径の(Ti,Al,M)N柱状晶組織からなる薄層Bとの交互積層構造によって硬質被覆層を形成したところ、粒状晶組織からなる薄層Aは耐摩耗性に優れ、一方、柱状晶組織からなる薄層Bは耐チッピング性、耐欠損性に優れ、さらに、薄層Aと薄層Bは同一成分組成、同一結晶構造であるため各薄層間の密着強度も大であって層間剥離の生じる恐れもないことから、薄層Aと薄層Bの交互積層構造からなる硬質被覆層は、高い発熱を伴うとともに切刃部に対して、高負荷が作用する難削材の高速断続切削においても、チッピング、欠損、剥離等を発生することなく、従来の被覆工具に比して、より一段とすぐれた耐摩耗性を長期に亘って発揮することを見出したのである。   Then, by controlling the vapor deposition conditions, a thin layer A composed of a fine grain size (Ti, Al, M) N granular crystal structure and a relatively large grain size (Ti, Al, M) N columnar crystal. When a hard coating layer is formed by an alternating laminated structure with a thin layer B composed of a structure, the thin layer A composed of a granular crystal structure is excellent in wear resistance, while the thin layer B composed of a columnar crystal structure is resistant to chipping, Since the thin layer A and the thin layer B have the same component composition and the same crystal structure, the adhesion strength between the thin layers is high and there is no possibility of delamination. The hard coating layer consisting of the alternating layered structure of A and thin layer B is accompanied by high heat generation, and even during high-speed intermittent cutting of difficult-to-cut materials with high load acting on the cutting edge, chipping, chipping, peeling, etc. It does not occur and is much more resistant to conventional coated tools. It was found to exert over a long period of time 耗性.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、0.8〜5.0μmの層厚のTiとAlとM(但し、Mは、NbまたはTa)の複合窒化物からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層は、TiとAlとMの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、前記薄層Aおよび薄層Bはそれぞれ0.05〜2.0μmの層厚を有し、さらに、前記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、前記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具。
(2)前記TiとAlとMの複合窒化物は、
組成式:(Ti1−X−YAl)N
で表した場合に、0.40≦X≦0.65、0.02≦Y≦0.3(但し、X、Yはいずれも原子比)を満足することを特徴とする(1)の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Ti, Al, and M having a layer thickness of 0.8 to 5.0 μm (where M is Nb or Nb) on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. In a surface-coated cutting tool in which a hard coating layer made of a composite nitride of Ta) is formed by vapor deposition,
The hard coating layer is configured as an alternately laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Ti, Al, and M and a thin layer B composed of a columnar crystal structure, and the thin layer A and the thin layer B Each have a layer thickness of 0.05 to 2.0 μm, the average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal of the columnar crystals constituting the thin layer B A surface-coated cutting tool having a particle size of 50 to 500 nm.
(2) The composite nitride of Ti, Al, and M is
Composition formula: (Ti 1-XY Al X MY ) N
The surface of (1) is characterized by satisfying 0.40 ≦ X ≦ 0.65 and 0.02 ≦ Y ≦ 0.3 (wherein X and Y are both atomic ratios) Coated cutting tool. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層に関し、より詳細に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described in more detail.

(a)硬質被覆層の組成
(Ti,Al,M)N層からなる硬質被覆層は、Alの含有割合の増加によって、結晶構造が立方晶から六方晶へ変化し、皮膜硬さが低下するので、少なくとも所定の皮膜硬さを保持するためには、その結晶構造を立方晶とする必要があり、そのためには、硬質被覆層の組成を、
組成式:(Ti1−X−YAl)N
で表した場合に、Xが0.65以下(但し、Xは原子比)となるようにAlの含有割合を定めることが望ましい。ただ、Xが0.40未満になると、結晶構造は立方晶を維持したままではあるが、相対的なTi含有割合の増加により、(Ti,Al,M)N層自体の高温硬さが急激に低下し、高速断続切削加工において最小限必要とされる耐摩耗性を確保することが困難になることから、硬質被覆層を構成する(Ti,Al,M)N層におけるTiとMとの合量に占めるAlの含有割合X(原子比)は、0.40≦X≦0.65を満足することが望ましい。
また、前記組成式において、Mの含有割合Yが0.02未満では、硬質被覆層の耐熱強度向上効果は少なく、一方、Mの含有割合Yが0.3を超えると、相対的にTiの含有割合が低下し、高温強度が低下傾向を示すようになることから、TiとAlとの合量に占めるMの含有割合Y(原子比)は、0.02≦Y≦0.3を満足することが望ましい。
(A) Composition of hard coating layer The hard coating layer composed of (Ti, Al, M) N layer has its crystal structure changed from cubic to hexagonal with an increase in Al content, and the film hardness decreases. Therefore, in order to maintain at least a predetermined film hardness, the crystal structure needs to be cubic, and for that purpose, the composition of the hard coating layer is
Composition formula: (Ti 1-XY Al X MY ) N
It is desirable to determine the Al content ratio so that X is 0.65 or less (where X is an atomic ratio). However, when X is less than 0.40, the crystal structure remains in a cubic structure, but due to the increase in the relative Ti content, the high temperature hardness of the (Ti, Al, M) N layer itself rapidly increases. It is difficult to ensure the wear resistance required at the minimum in high-speed interrupted cutting, so that the Ti and M in the (Ti, Al, M) N layer constituting the hard coating layer It is desirable that the content ratio X (atomic ratio) of Al in the total amount satisfies 0.40 ≦ X ≦ 0.65.
In the composition formula, when the content ratio Y of M is less than 0.02, the effect of improving the heat resistance strength of the hard coating layer is small. On the other hand, when the content ratio Y of M exceeds 0.3, the content of Ti is relatively small. Since the content ratio decreases and the high-temperature strength tends to decrease, the content ratio Y (atomic ratio) of M in the total amount of Ti and Al satisfies 0.02 ≦ Y ≦ 0.3. It is desirable to do.

(b)薄層A
薄層Aは、粒状晶組織の(Ti,Al,M)Nからなり、すぐれた皮膜硬さを有し硬質被覆層の耐摩耗性を向上させる。ただ、前記粒状晶組織の平均結晶粒径が30nmを超えると、 皮膜の硬さ向上効果が小さくなることから、粒状晶組織の平均結晶粒径は30nm以下とする。
なお、本発明でいう「平均結晶粒径」とは、層厚方向に直交する面(言い換えれば、基体表面と平行な面)において、透過型電子顕微鏡(TEM)観察写真によって測定し算出される結晶粒径の平均値をいい、層厚方向に沿った結晶粒の長さは本発明では「平均結晶粒径」とは呼ばない。
また、薄層Aの層厚は、0.05μm未満では耐摩耗性向上効果が少なく、一方、層厚が2μmを超えるようになると、切刃に高負荷が作用する高硬度鋼の高速切削で、チッピング、欠損を発生しやすくなるため、薄層Aの層厚は0.05〜2μmと定めた。
(B) Thin layer A
The thin layer A is made of (Ti, Al, M) N having a granular crystal structure, has an excellent film hardness, and improves the wear resistance of the hard coating layer. However, if the average crystal grain size of the granular crystal structure exceeds 30 nm, the effect of improving the hardness of the film is reduced, so the average crystal grain size of the granular crystal structure is set to 30 nm or less.
The “average crystal grain size” in the present invention is calculated by measuring with a transmission electron microscope (TEM) observation photograph on a plane orthogonal to the layer thickness direction (in other words, a plane parallel to the substrate surface). The average value of the crystal grain size is referred to, and the length of the crystal grain along the layer thickness direction is not called “average crystal grain size” in the present invention.
Also, if the layer thickness of the thin layer A is less than 0.05 μm, the effect of improving the wear resistance is small. On the other hand, if the layer thickness exceeds 2 μm, high-speed cutting of high-hardness steel in which a high load acts on the cutting edge. In order to easily cause chipping and defects, the layer thickness of the thin layer A is set to 0.05 to 2 μm.

(c)薄層B
柱状晶組織の(Ti,Al,M)Nからなる薄層Bは、すぐれた高温強度、靭性を示すが、薄層Bを構成する柱状晶組織の(Ti,Al,M)Nの平均結晶粒径が500nmを超えると結晶粒の粗大化による耐摩耗性の低下がみられ、一方、平均結晶粒径が50nm未満では、耐チッピング性、耐欠損性向上効果がみられないことから、薄層Bを構成する柱状晶組織の(Ti,Al,M)Nの平均結晶粒径は50〜500nmと定めた。
また、薄層Bの層厚が0.05μm未満では、耐チッピング性、耐欠損性向上効果が少なく、一方、層厚が2μmを超えると耐摩耗性の低下が顕著になることから、薄層Bの層厚を0.05〜2μmと定めた。
(C) Thin layer B
The thin layer B composed of (Ti, Al, M) N having a columnar crystal structure shows excellent high-temperature strength and toughness, but the average crystal of (Ti, Al, M) N having a columnar crystal structure constituting the thin layer B. When the particle size exceeds 500 nm, the wear resistance is reduced due to the coarsening of crystal grains. On the other hand, when the average crystal particle size is less than 50 nm, the effect of improving chipping resistance and fracture resistance is not observed. The average crystal grain size of (Ti, Al, M) N having a columnar crystal structure constituting the layer B was determined to be 50 to 500 nm.
Further, if the layer thickness of the thin layer B is less than 0.05 μm, the effect of improving chipping resistance and fracture resistance is small. On the other hand, if the layer thickness exceeds 2 μm, the wear resistance is significantly reduced. The layer thickness of B was set to 0.05 to 2 μm.

(d)薄層Aと薄層Bの交互積層
薄層Aと薄層Bの交互積層からなる本発明の硬質被覆層は、薄層Aが粒状晶組織、一方、薄層Bが柱状晶組織であって、その結晶粒形態が異なるものの、同一成分系、同一結晶構造(立方晶)の硬質被覆層として構成されているため、異成分系の薄層Aと薄層Bとの交互積層に比して、薄層Aと薄層B間の密着強度が大であり、硬質被覆層全体としての高温強度向上に寄与するばかりか、層間剥離等が生じる恐れもないため、高熱発生を伴い、しかも、切刃に高負荷が作用する高速強断続切削においてもすぐれた耐剥離性を発揮する。
ただ、薄層Aと薄層Bの交互積層からなる硬質被覆層の合計層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮することができないため工具寿命短命化の原因となり、一方、その合計層厚が5.0μmを越えると、チッピング、欠損が発生し易くなるため、その合計層厚は0.8〜5.0μmと定めた。
(D) Alternating lamination of thin layer A and thin layer B The hard coating layer of the present invention consisting of alternating lamination of thin layer A and thin layer B has the thin layer A having a granular crystal structure, while the thin layer B has a columnar crystal structure. However, although the crystal grain forms are different, since it is configured as a hard coating layer having the same component system and the same crystal structure (cubic crystal), it is possible to alternately stack thin layers A and B of different component systems. In comparison, the adhesion strength between the thin layer A and the thin layer B is large, and not only contributes to the high temperature strength improvement as the entire hard coating layer, but also there is no risk of delamination, etc., accompanied by high heat generation, In addition, it exhibits excellent peel resistance even in high-speed and strong intermittent cutting in which a high load acts on the cutting edge.
However, if the total thickness of the hard coating layer composed of the alternating layers of the thin layer A and the thin layer B is less than 0.8 μm, the excellent wear resistance of the hard coating layer cannot be exhibited over a long period of time, so that the tool life is short-lived. On the other hand, if the total layer thickness exceeds 5.0 μm, chipping and defects are likely to occur. Therefore, the total layer thickness is set to 0.8 to 5.0 μm.

本発明の被覆工具は、硬質被覆層が、すぐれた皮膜硬さ、耐熱性を有する粒状晶組織の(Ti,Al,M)N層からなる薄層Aと、すぐれた高温強度、靭性、耐熱性を示す柱状晶組織の(Ti,Al,M)N層からなる薄層Bの交互積層構造として構成されているので、硬質被覆層全体としてすぐれた高温硬さ、高温強度、耐熱性を有しており、その結果、高熱発生を伴い、切刃に高負荷が作用するTi基合金やNi基合金等の難削材の高速断続切削においても、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性を備えるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するものである。   The coated tool of the present invention comprises a thin layer A composed of a (Ti, Al, M) N layer having a granular crystal structure with excellent coating hardness and heat resistance, and excellent high-temperature strength, toughness and heat resistance. Since it is configured as an alternating layered structure of thin layers B composed of (Ti, Al, M) N layers with a columnar crystal structure that exhibits high properties, the hard coating layer as a whole has excellent high-temperature hardness, high-temperature strength, and heat resistance. As a result, even with high-speed intermittent cutting of difficult-to-cut materials such as Ti-base alloys and Ni-base alloys that generate high heat and a high load acts on the cutting edge, the hard coating layer has excellent chipping resistance, In addition to having chipping and peeling resistance, it exhibits excellent wear resistance over a long period of use.

表面被覆切削工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises a surface coating cutting tool is shown, (a) is a schematic plan view, (b) is a schematic front view.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. Tool bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.

(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、カソード電極(蒸発源)として、所定成分組成のCr−Al−M合金を、例えば、前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、一方のTi−Al−M合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)ついで装置内に導入する反応ガスとしての窒素ガスの圧力を表3に示す如く5〜7Paの範囲内の条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す如く−100〜−300Vの範囲内の直流バイアス電圧を印加した状態で、前記Ti−Al−M合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の粒状晶組織の(Ti,Al,M)N層からなる薄層Aを蒸着形成し、
(d)ついで、窒素ガスの圧力を表3に示す如く2〜4Paの範囲内の条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す如く−20〜−90Vの範囲内の直流バイアス電圧を印加した状態で、前記Ti−Al−M合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記薄層Aの表面に所定層厚の柱状晶組織の(Ti,Al,M)N層からなる薄層Bを形成し、
(e)前記薄層Aの形成と薄層B形成を交互に繰り返し行い、もって前記工具基体の表面に、表4、表5に示す薄層Aと薄層Bの交互積層構造からなる所定組成、所定結晶粒組織および所定層厚の硬質被覆層を蒸着形成することにより、本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. A Cr-Al-M alloy having a predetermined component composition is mounted as a cathode electrode (evaporation source) at a position spaced apart from the central axis on the inner rotary table by a predetermined distance in the radial direction. Arranged across the table,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by passing a current of 100 A between the cathode electrode and the anode electrode made of one Ti—Al—M alloy, and the tool base surface is bombard washed.
(C) Next, the pressure of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a condition within the range of 5 to 7 Pa as shown in Table 3, and the same as the tool base rotating while rotating on the rotary table. As shown in Table 3, with a DC bias voltage in the range of −100 to −300 V being applied, a predetermined current in the range of 50 to 100 A is applied between the cathode electrode and the anode electrode of the Ti—Al—M alloy. To generate an arc discharge, and a thin layer A composed of a (Ti, Al, M) N layer having a granular crystal structure having a predetermined layer thickness is formed on the surface of the tool base by vapor deposition.
(D) Next, the pressure of the nitrogen gas is adjusted to a condition in the range of 2 to 4 Pa as shown in Table 3, and the tool base that rotates while rotating on the rotary table is also set to -20 to 20 as shown in Table 3. With a DC bias voltage in the range of −90 V applied, a predetermined current in the range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the Ti—Al—M alloy to generate arc discharge. A thin layer B composed of a (Ti, Al, M) N layer having a columnar crystal structure having a predetermined layer thickness is formed on the surface of the thin layer A;
(E) The formation of the thin layer A and the formation of the thin layer B are alternately repeated, so that the predetermined composition comprising the laminated structure of the thin layers A and B shown in Tables 4 and 5 on the surface of the tool base. The surface coated carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 of the present invention were produced by vapor-depositing a hard coating layer having a predetermined crystal grain structure and a predetermined layer thickness, respectively.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、所定組成のTi−Al−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Ti−Al−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して表3に示す圧力条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す直流バイアス電圧を印加した状態で、前記Ti−Al−M合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表6、表7に示される組成、結晶粒組織および層厚の(Ti,Al,M)N層からなる硬質被覆層を蒸着形成することにより、比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. Insert the Ti-Al-M alloy with a predetermined composition as the cathode electrode (evaporation source), and first evacuate the inside of the device and keep it at a vacuum of 0.1 Pa or less, while using a heater. Is heated to 500 ° C., a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is passed between the Ti—Al—M alloy of the cathode electrode and the anode electrode to cause arc discharge. Then, the surface of the tool base is bombarded, and then nitrogen gas is introduced as a reaction gas into the apparatus to adjust the pressure conditions shown in Table 3 and rotate while rotating on the rotary table. An arc discharge is generated between the cathode electrode and the anode electrode of the Ti-Al-M alloy in the state where the DC bias voltage shown in Table 3 is applied to the tool base, and the tool bases A-1 to A- 10 and B-1 to B-6 are vapor-deposited with a hard coating layer composed of (Ti, Al, M) N layers having the compositions, crystal grain structures, and layer thicknesses shown in Tables 6 and 7. Thus, comparative surface coated carbide throw-away tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 were produced.

つぎに、前記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:Ti−6Al−4V合金の丸棒、
切削速度: 70 m/min.、
切り込み: 1.0 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのTi基合金の乾式高速切削加工試験(通常の切削速度は、40m/min.)、
被削材:Ni−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Alの丸棒、
切削速度: 60 m/min.、
切り込み: 1.5 mm、
送り: 0.15 mm/rev.、
切削時間: 4 分、
の条件(切削条件B)でのNi基合金の乾式高速切削加工試験(通常の切削速度は、40m/min.)、
被削材:Co−20Cr−15W−10Ni−1.5Mn−1Si−1Fe−0.12Cの丸棒、
切削速度: 65 m/min.、
切り込み: 1.2 mm、
送り: 0.20 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)でのCo基合金の乾式高速切削加工試験(通常の切削速度は、30m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the comparative coated carbide chip 1 are compared with the above-mentioned various coated carbide chips, all screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: Ti-6Al-4V alloy round bar,
Cutting speed: 70 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed cutting test of a Ti-based alloy under the conditions (cutting condition A) (normal cutting speed is 40 m / min.),
Work material: Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al round bar,
Cutting speed: 60 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 4 minutes,
A dry high-speed cutting test of a Ni-based alloy under the following conditions (cutting condition B) (normal cutting speed is 40 m / min.),
Work material: Co-20Cr-15W-10Ni-1.5Mn-1Si-1Fe-0.12C round bar,
Cutting speed: 65 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.20 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed cutting test (normal cutting speed is 30 m / min.) Of a Co-based alloy under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が6.5mm、10.5mm、および20.5mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 9, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide forming round bar sintered bodies having diameters of 6.5 mm, 10.5 mm, and 20.5 mm were formed, and further, the above three types of round bar sintered bodies were ground by grinding. In the combinations shown in Table 9, the diameter × length of the cutting edge portion was 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each had a four-blade square shape with a twist angle of 30 degrees. WC base cemented carbide tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、層厚方向に沿って表10に示される組成、結晶粒組織および層厚の薄層A、薄層Bを交互に蒸着形成し、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造からなる硬質被覆層を備える本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8を製造した。   Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, thin layer A and thin layer B having the composition, crystal grain structure and layer thickness shown in Table 10 along the layer thickness direction were alternately deposited to form thin layer A having a granular crystal structure and Surface-coated carbide end mills of the present invention (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 having a hard coating layer composed of an alternating laminated structure with a thin layer B having a columnar crystal structure were produced.

また、比較の目的で、前記工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、同じく表11に示される組成、結晶粒組織および層厚の(Ti,Al,M)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8を製造した。   For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, a hard coating layer composed of a (Ti, Al, M) N layer having the composition, crystal grain structure and layer thickness also shown in Table 11 was deposited, so that the comparative surface coating super Hard end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 were produced.

つぎに、本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、
本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のTi−6Al−4V合金の板材、
切削速度: 40 m/min.、
溝深さ(切り込み): 0.2 mm、
テーブル送り: 150 mm/分、
の条件でのTi基合金の乾式高速溝切削加工試験(通常の切削速度は、25m/min.)を行い、
本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Alの板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 0.3 mm、
テーブル送り: 250 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬エンドミル7、8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のCo−23Cr−6Mo−2Ni−1Fe−0.6Si−0.4Cの板材、
切削速度: 45 m/min.、
溝深さ(切り込み): 1.0 mm、
テーブル送り: 120 mm/分、
の条件でのCo基合金の乾式高速溝切削加工試験(通常の切削速度は、20m/min.)を行い、
前記のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
前記の測定結果を表10、表11にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8,
About this invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3,
Work material-plane: 100 mm × 250 mm, thickness: plate of Ti-6Al-4V alloy with dimensions of 50 mm,
Cutting speed: 40 m / min. ,
Groove depth (cut): 0.2 mm,
Table feed: 150 mm / min,
A dry high-speed grooving test of a Ti-based alloy under the conditions (normal cutting speed is 25 m / min.)
For the coated carbide end mills 4-6 of the present invention and the comparative coated carbide end mills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al plate material with dimensions of 50 mm,
Cutting speed: 55 m / min. ,
Groove depth (cut): 0.3 mm,
Table feed: 250 mm / min,
A dry high-speed grooving test of a Ni-based alloy under the conditions (normal cutting speed is 30 m / min.),
For the coated carbide end mills 7 and 8 of the present invention and the comparative coated carbide end mills 7 and 8,
Work material-plane: 100 mm x 250 mm, thickness: Co-23Cr-6Mo-2Ni-1Fe-0.6Si-0.4C plate material with dimensions of 50 mm,
Cutting speed: 45 m / min. ,
Groove depth (cut): 1.0 mm,
Table feed: 120 mm / min,
A dry high-speed grooving test of a Co-based alloy under the conditions (normal cutting speed is 20 m / min.),
In any of the above groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Table 10 and Table 11, respectively.

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

実施例2で製造した直径が6.5mm(超硬基体C−1〜C−3形成用)、10.5mm(超硬基体C−4〜C−6形成用)、および20.5mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 were 6.5 mm (for forming carbide substrates C-1 to C-3), 10.5 mm (for forming carbide substrates C-4 to C-6), and 20.5 mm (ultraviolet). 3 types of round bar sintered bodies (for forming hard base bodies C-7 and C-8) are used, and from these 3 types of round bar sintered bodies, the diameter x length of the groove forming portion is determined by grinding. Dimensions of 4 mm × 13 mm (Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8) In addition, WC-based cemented carbide tool bases (drills) D-1 to D-8 each having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表12に示される組成、結晶粒組織および層厚の薄層A、薄層Bを交互に蒸着形成し、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造からなる硬質被覆層を備える本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8を製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, thin layer A and thin layer B having the composition, crystal grain structure and layer thickness shown in Table 12 were alternately deposited to form thin layer A and columnar structure of granular crystal structure. Surface-coated carbide drills of the present invention (hereinafter referred to as the present invention coated carbide drills) 1 to 8 having a hard coating layer composed of an alternating laminated structure with a thin layer B having a crystal structure were manufactured.

また、比較の目的で、前記の工具基体(ドリル)D−1〜D−3、D−4〜D−6、D−7、D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、同じく表13に示される組成、結晶粒組織および層厚の(Ti,Al,M)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8を製造した。   Further, for the purpose of comparison, honing is applied to the surfaces of the tool bases (drills) D-1 to D-3, D-4 to D-6, D-7, and D-8, and ultrasonic waves are obtained in acetone. In the state of being washed and dried, the same was inserted into the arc ion plating apparatus shown in FIG. 1 and the same composition as that of Example 1 with the composition, crystal grain structure and layer thickness shown in Table 13 (Ti , Al, M) N-layer hard coating was deposited to produce comparative surface-coated carbide drills (hereinafter referred to as comparative coated carbide drills) 1-8.

つぎに、本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のTi−6Al−4V合金の板材、
切削速度: 40 m/min.、
送り: 0.2 mm/rev、
穴深さ: 8 mm、
の条件でのTi基合金の湿式高速穴あけ切削加工試験(通常の切削速度は、20m/min.)を行い、
本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Alの板材、
切削速度: 45 m/min.、
送り: 0.15 mm/rev、
穴深さ: 14 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度は、25m/min.)を行い、
本発明被覆超硬ドリル7、8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のCo−23Cr−6Mo−2Ni−1Fe−0.6Si−0.4Cの板材、
切削速度: 55 m/min.、
送り: 0.25 mm/rev、
穴深さ: 25 mm、
の条件でのCo基合金の湿式高速穴あけ切削加工試験(通常の切削速度は、30m/min.)を行い、
前記いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12、表13にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8, for the present invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material-plane: 100 mm × 250 mm, thickness: plate of Ti-6Al-4V alloy with dimensions of 50 mm,
Cutting speed: 40 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 8 mm,
A wet high-speed drilling test of a Ti-based alloy under the conditions (normal cutting speed is 20 m / min.),
About this invention coated carbide drills 4-6 and comparative coated carbide drills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: Ni-18Cr-3Mo-18.5Fe-0.9Ti-1.0 (Nb + Ta) -0.5Al plate material with dimensions of 50 mm,
Cutting speed: 45 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 14 mm,
A wet high-speed drilling test of a Ni-based alloy under the conditions (normal cutting speed is 25 m / min.),
About the coated carbide drills 7 and 8 of the present invention and the comparative coated carbide drills 7 and 8,
Work material-plane: 100 mm x 250 mm, thickness: Co-23Cr-6Mo-2Ni-1Fe-0.6Si-0.4C plate material with dimensions of 50 mm,
Cutting speed: 55 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 25 mm,
A wet high-speed drilling test of a Co-based alloy under the conditions (normal cutting speed is 30 m / min.),
In any of the wet high-speed drilling tests (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 12 and 13, respectively.

Figure 2011224688
Figure 2011224688

Figure 2011224688
Figure 2011224688

この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆超硬ドリル1〜8、および、比較表面被覆切削工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、比較被覆超硬ドリル1〜8の硬質被覆層の組成を、透過型電子顕微鏡を用いたエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、前記の各硬質被覆層の平均層厚を透過型電子顕微鏡により断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
The present invention coated carbide tips 1 to 16, the present invention coated carbide end mills 1 to 8, the present invention coated carbide drills 1 to 8, and the comparative surface coated cutting tool as the surface coated cutting tool of the present invention obtained as a result. The composition of hard coating layers of comparative coated carbide tips 1-16, comparative coated carbide end mills 1-8, comparative coated carbide drills 1-8 as energy dispersive X-ray analysis using a transmission electron microscope As a result of measurement, each showed substantially the same composition as the target composition.
Moreover, when the average layer thickness of each said hard coating layer was measured with the transmission electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

さらに、本発明表面被覆切削工具の薄層A、薄層Bを構成する(Ti,Al,M)N層および比較表面被覆切削工具の硬質被覆層を構成する(Ti,Al,M)N層について、各層の結晶粒組織を透過型電子顕微鏡により求め、その結果を表4〜7、10〜13に示した。   Further, the (Ti, Al, M) N layer constituting the thin layer A and the thin layer B of the surface-coated cutting tool of the present invention and the (Ti, Al, M) N layer constituting the hard coating layer of the comparative surface-coated cutting tool. The crystal grain structure of each layer was determined by a transmission electron microscope, and the results are shown in Tables 4-7 and 10-13.

表8、10〜13に示される結果から、本発明表面被覆切削工具は、硬質被覆層がすぐれた耐摩耗性を示す薄層Aと、すぐれた耐チッピング性、耐欠損性を示す薄層Bとの交互積層構造からなり、さらに、耐熱性を有し、層間密着強度も大であるので、その結果、高熱発生を伴い、切刃に対し高負荷が作用する難削材の高速断続切削加工でも、すぐれた耐チッピング性、耐欠損性とともにすぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が粒状晶のみあるいは柱状晶のみからなる単一結晶粒組織の(Ti,Al,M)N層からなる被覆工具は、耐チッピング性、耐欠損性あるいは耐摩耗性のいずれかが劣るため、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 8 and 10-13, the surface-coated cutting tool of the present invention has a thin layer A that exhibits excellent wear resistance and a thin layer B that exhibits excellent chipping resistance and fracture resistance. In addition, it has high heat resistance and high interlayer adhesion strength. As a result, high-speed intermittent cutting of difficult-to-cut materials with high heat generation and high load acting on the cutting edge. However, while exhibiting excellent chipping resistance and chipping resistance as well as excellent wear resistance over a long period of time, the hard coating layer has a single grain structure consisting of only granular crystals or columnar crystals (Ti , Al, M) N-layered tools are clearly inferior in chipping resistance, chipping resistance or wear resistance, and therefore reach the service life in a relatively short time.

前述のように、この発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴い切刃に対して高負荷が作用する難削材の高速断続切削加工でも、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the surface-coated cutting tool of the present invention is not only capable of cutting under normal cutting conditions such as various types of steel and cast iron, and particularly, it is difficult to apply a high load to the cutting blade with high heat generation. Even in high-speed intermittent cutting of cutting materials, it exhibits excellent wear resistance over a long period of time, so it is sufficient for improving the performance of cutting devices, saving labor and energy, and reducing costs It can respond to satisfaction.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、0.8〜5.0μmの層厚のTiとAlとM(但し、Mは、NbまたはTa)の複合窒化物からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層は、TiとAlとMの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、前記薄層Aおよび薄層Bはそれぞれ0.05〜2.0μmの層厚を有し、さらに、前記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、前記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具。
A composite of Ti, Al and M (where M is Nb or Ta) having a layer thickness of 0.8 to 5.0 μm on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet In a surface-coated cutting tool in which a hard coating layer made of nitride is vapor-deposited,
The hard coating layer is configured as an alternately laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Ti, Al, and M and a thin layer B composed of a columnar crystal structure, and the thin layer A and the thin layer B Each have a layer thickness of 0.05 to 2.0 μm, the average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal of the columnar crystals constituting the thin layer B A surface-coated cutting tool having a particle size of 50 to 500 nm.
前記TiとAlとMの複合窒化物は、
組成式:(Ti1−X−YAl)N
で表した場合に、0.40≦X≦0.65、0.02≦Y≦0.3(但し、X、Yはいずれも原子比)を満足することを特徴とする請求項1記載の表面被覆切削工具。
The composite nitride of Ti, Al and M is
Composition formula: (Ti 1-XY Al X MY ) N
2, wherein 0.40 ≦ X ≦ 0.65 and 0.02 ≦ Y ≦ 0.3 (wherein X and Y are atomic ratios) are satisfied. Surface coated cutting tool.
JP2010094819A 2010-04-16 2010-04-16 Surface coated cutting tool Expired - Fee Related JP5594569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094819A JP5594569B2 (en) 2010-04-16 2010-04-16 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094819A JP5594569B2 (en) 2010-04-16 2010-04-16 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2011224688A true JP2011224688A (en) 2011-11-10
JP5594569B2 JP5594569B2 (en) 2014-09-24

Family

ID=45040702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094819A Expired - Fee Related JP5594569B2 (en) 2010-04-16 2010-04-16 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5594569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533936A (en) * 2012-09-08 2015-11-26 エーリコン・サーフェス・ソリューションズ・アーゲー・トリューバッハ Titanium-aluminum-tantalum-based coatings exhibiting improved thermal stability
US10471516B2 (en) * 2017-01-07 2019-11-12 Tungaloy Corporation Coated cutting tool
JP7124267B1 (en) * 2021-06-30 2022-08-24 住友電工ハードメタル株式会社 Cutting tools

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099966A (en) * 2002-09-09 2004-04-02 Kobe Steel Ltd Hard film having excellent wear resistance, production method therefor, cutting tool and target for forming hard film
JP2006281363A (en) * 2005-03-31 2006-10-19 Kyocera Corp Surface coated member and surface coated cutting tool
JP2007105841A (en) * 2005-10-14 2007-04-26 Mitsubishi Materials Corp Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099966A (en) * 2002-09-09 2004-04-02 Kobe Steel Ltd Hard film having excellent wear resistance, production method therefor, cutting tool and target for forming hard film
JP2006281363A (en) * 2005-03-31 2006-10-19 Kyocera Corp Surface coated member and surface coated cutting tool
JP2007105841A (en) * 2005-10-14 2007-04-26 Mitsubishi Materials Corp Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533936A (en) * 2012-09-08 2015-11-26 エーリコン・サーフェス・ソリューションズ・アーゲー・トリューバッハ Titanium-aluminum-tantalum-based coatings exhibiting improved thermal stability
JP2019143251A (en) * 2012-09-08 2019-08-29 エーリコン・サーフェス・ソリューションズ・アーゲー・プフェフィコン Titanium-aluminum-tantalum-based coated material showing improved heat stability
KR20210054602A (en) * 2012-09-08 2021-05-13 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 Ti-Al-Ta-BASED COATING EXHIBITING ENHANCED THERMAL STABILITY
JP2022003168A (en) * 2012-09-08 2022-01-11 エーリコン・サーフェス・ソリューションズ・アーゲー・プフェフィコン Coating of titanium-aluminum-tantalum base showing improved thermal stability
KR102386800B1 (en) * 2012-09-08 2022-04-14 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 Ti-Al-Ta-BASED COATING EXHIBITING ENHANCED THERMAL STABILITY
JP7480098B2 (en) 2012-09-08 2024-05-09 エーリコン・サーフェス・ソリューションズ・アーゲー・プフェフィコン Titanium-aluminum-tantalum based coatings exhibiting improved thermal stability
US10471516B2 (en) * 2017-01-07 2019-11-12 Tungaloy Corporation Coated cutting tool
JP7124267B1 (en) * 2021-06-30 2022-08-24 住友電工ハードメタル株式会社 Cutting tools
WO2023276067A1 (en) * 2021-06-30 2023-01-05 住友電工ハードメタル株式会社 Cutting tool
US11802333B2 (en) 2021-06-30 2023-10-31 Sumitomo Electric Hardmetal Corp. Cutting tool
EP4364875A4 (en) * 2021-06-30 2024-05-08 Sumitomo Electric Hardmetal Corp Cutting tool

Also Published As

Publication number Publication date
JP5594569B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP5594577B2 (en) Surface coated cutting tool
JP5440345B2 (en) Surface coated cutting tool
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP5440353B2 (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5440346B2 (en) Surface coated cutting tool
JP5594569B2 (en) Surface coated cutting tool
JP2009101474A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP5454787B2 (en) Surface coated cutting tool
JP2011152627A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP5459618B2 (en) Surface coated cutting tool
JP2009101475A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5440352B2 (en) Surface coated cutting tool
JP5454788B2 (en) Surface coated cutting tool
JP5440351B2 (en) Surface coated cutting tool
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP5440350B2 (en) Surface coated cutting tool
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5594569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees