JP5429693B2 - Surface coated cutting tool with excellent wear resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent wear resistance due to hard coating layer Download PDF

Info

Publication number
JP5429693B2
JP5429693B2 JP2010093319A JP2010093319A JP5429693B2 JP 5429693 B2 JP5429693 B2 JP 5429693B2 JP 2010093319 A JP2010093319 A JP 2010093319A JP 2010093319 A JP2010093319 A JP 2010093319A JP 5429693 B2 JP5429693 B2 JP 5429693B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
thin layer
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010093319A
Other languages
Japanese (ja)
Other versions
JP2011218530A (en
Inventor
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010093319A priority Critical patent/JP5429693B2/en
Publication of JP2011218530A publication Critical patent/JP2011218530A/en
Application granted granted Critical
Publication of JP5429693B2 publication Critical patent/JP5429693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば、合金工具鋼の焼入れ材等の高硬度鋼を、高い発熱を伴う高速切削条件下で切削加工を行なった場合でも、硬質被覆層がすぐれた高温硬さ、高温強度を備えることによって、チッピング、欠損、剥離等の発生を防止するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has high-temperature hardness and high-temperature strength with an excellent hard coating layer even when, for example, high-hardness steel such as a hardened alloy tool steel is cut under high-speed cutting conditions with high heat generation. Thus, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that prevents occurrence of chipping, chipping, peeling, and the like and exhibits excellent wear resistance over a long period of use.

一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

従来、表面被覆切削工具の一つとして、例えば、特許文献1に示されるように、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、相対的にSiに富みアモルファスであるCrとAlとSiとNとも1種との化合物相と、相対的にSiに乏しい結晶質のCrとAlとSiとNとも1種との化合物相とから構成される硬質被覆層を形成した被覆工具が知られており、また、例えば、特許文献2に示されるように、工具基体の表面に、アモルファスである高Si濃度領域相と結晶質である低Si濃度領域相を有する(Cr,Al,Si)N硬質被覆層を形成した被覆工具も知られており、これら従来の被覆工具においては、硬質被覆層の脆性が大幅に改善され、硬質被覆層の高硬度及び耐酸化性を犠牲にすることなく、高靭性で耐チッピング性に優れた被覆工具が得られることが知られている。   Conventionally, as one of surface-coated cutting tools, for example, as shown in Patent Document 1, a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is used. As a hard coating layer, a relatively Si-rich amorphous Cr, Al, Si, and N compound phase is relatively formed on the surface of the substrate (hereinafter collectively referred to as a tool substrate). In particular, there is known a coated tool in which a hard coating layer composed of crystalline Cr, Al, Si, N, and one compound phase, both of which is poor in Si, is formed. In addition, a coated tool in which a (Cr, Al, Si) N hard coating layer having an amorphous high Si concentration region phase and a crystalline low Si concentration region phase is formed on the surface of the tool base is also known. And this In conventional coated tools, the brittleness of the hard coating layer is greatly improved, and a coated tool with high toughness and excellent chipping resistance can be obtained without sacrificing the high hardness and oxidation resistance of the hard coating layer. It has been known.

さらに、上記従来の被覆工具は、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に工具基体を装入し、装置内を加熱した状態で、硬質被覆層の組成に対応した組成を有する複数のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、前記工具基体表面に、所望の化合物相、領域相を有する上記(Cr,Al,Si)N層からなる硬質被覆層を蒸着することによって製造される。   Furthermore, the above-mentioned conventional coated tool is, for example, a state in which a tool base is inserted into an arc ion plating (AIP) apparatus, which is a kind of physical vapor deposition apparatus shown in FIG. The tool base is formed by generating arc discharge between a plurality of cathode electrodes (evaporation sources) having a composition corresponding to the composition of the hard coating layer and the anode electrode, and simultaneously introducing nitrogen gas as a reaction gas into the apparatus. It is manufactured by vapor-depositing a hard coating layer composed of the (Cr, Al, Si) N layer having a desired compound phase and region phase on the surface.

特開2002−337007号公報JP 2002-337007 A 特開2003−89004号公報JP 2003-89004 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の被覆工具においては、これを特に高熱発生を伴うとともに切刃部に高負荷が作用する高硬度鋼の高速切削条件で用いた場合には、硬質被覆層にチッピング、欠損、剥離等が発生しやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In the case of a coated tool, chipping, chipping, peeling, etc. are likely to occur in the hard coating layer when it is used under high-speed cutting conditions of high-hardness steel with high heat generation and high load acting on the cutting edge. As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、硬質被覆層がすぐれた高温硬さ、高温強度、高温耐酸化性を備えるとともに、特に合金工具鋼の焼入れ材等の高硬度鋼を、高い発熱を伴い、かつ、切刃部に高負荷が作用する高速切削条件で切削加工を行なった場合にも、チッピング、欠損、剥離等を発生することなく長期の使用に亘って、すぐれた耐摩耗性を発揮する被覆工具を開発すべく、硬質被覆層を構成する(Cr,Al,Si)N層の結晶粒組織構造に着目し、研究を行った結果、以下の知見を得た。   Therefore, the inventors have high-temperature hardness, high-temperature strength, high-temperature oxidation resistance with excellent hard coating layer from the above viewpoint, and particularly high-hardness steel such as a hardened material of alloy tool steel, Even when cutting is performed under high-speed cutting conditions with high heat generation and high load acting on the cutting edge, it has excellent resistance to long-term use without causing chipping, chipping or peeling. In order to develop a coated tool that exhibits wearability, the following knowledge was obtained as a result of research by paying attention to the crystal structure of the (Cr, Al, Si) N layer constituting the hard coating layer.

上記従来の被覆工具の硬質被覆層を構成する(Cr,Al,Si)N層の構成成分であるCr成分には高温強度を向上させると共に、CrとAlが共存含有した状態で高温耐酸化性を向上させる作用があり、また、Si成分は耐熱性を向上させる作用があり、そして、硬質被覆層は、これら各成分を含有することによって、所定の耐欠損性、耐酸化性、耐熱性および耐摩耗性等を発揮する。
ところで、前記従来の被覆工具においては、上記(Cr,Al,Si)N層は、結晶質相とアモルファス相とで構成されているが、アークイオンプレーティング(AIP)装置で硬質被覆層を成膜するにあたり、蒸着条件として、例えば、装置内に導入する窒素ガスの圧力と、工具基体に印加するバイアス電圧を制御することによって、形成される(Cr,Al,Si)N結晶粒の結晶粒組織(粒径、形態)を調整できることを本発明者らは見出した。
The Cr component, which is a component of the (Cr, Al, Si) N layer that constitutes the hard coating layer of the above conventional coated tool, improves the high-temperature strength and at the same time contains high-temperature oxidation resistance when Cr and Al coexist. In addition, the Si component has the effect of improving the heat resistance, and the hard coating layer contains these components, so that the predetermined chipping resistance, oxidation resistance, heat resistance and Demonstrate wear resistance.
By the way, in the conventional coated tool, the (Cr, Al, Si) N layer is composed of a crystalline phase and an amorphous phase, but a hard coating layer is formed by an arc ion plating (AIP) apparatus. In forming the film, as the deposition conditions, for example, by controlling the pressure of nitrogen gas introduced into the apparatus and the bias voltage applied to the tool base, the crystal grains of (Cr, Al, Si) N crystal grains formed The present inventors have found that the structure (particle size, morphology) can be adjusted.

そして、上記の蒸着条件の制御によって、微細な粒径の(Cr,Al,Si)N粒状晶組織からなる薄層Aと、相対的に大粒径の(Cr,Al,Si)N柱状晶組織からなる薄層Bとの交互積層構造によって硬質被覆層を形成したところ、粒状晶組織からなる薄層Aは耐摩耗性に優れ、一方、柱状晶組織からなる薄層Bは耐チッピング性、耐欠損性に優れ、さらに、薄層Aと薄層Bは同一成分組成、同一結晶構造であるため各薄層間の密着強度も大であって層間剥離の生じる恐れもないことから、薄層Aと薄層Bの交互積層構造からなる硬質被覆層は、高い発熱を伴うとともに切刃部に対して、高負荷が作用する高硬度鋼の高速切削においても、チッピング、欠損、剥離等を発生することなく、従来の被覆工具に比して、より一段とすぐれた耐摩耗性を長期に亘って発揮することを見出したのである。   Then, by controlling the above deposition conditions, the thin layer A composed of a fine grain size (Cr, Al, Si) N granular crystal structure and a relatively large grain size (Cr, Al, Si) N columnar crystal. When a hard coating layer is formed by an alternating laminated structure with a thin layer B composed of a structure, the thin layer A composed of a granular crystal structure is excellent in wear resistance, while the thin layer B composed of a columnar crystal structure is resistant to chipping, Since the thin layer A and the thin layer B have the same component composition and the same crystal structure, the adhesion strength between the thin layers is high and there is no possibility of delamination. The hard coating layer consisting of alternating layers of A and thin layers B generates high heat generation and generates chipping, chipping, peeling, etc. even during high-speed cutting of high-hardness steel with high load acting on the cutting edge. And better than conventional coated tools It was found to exert over the wear resistance in long-term.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、0.8〜5.0μmの層厚のCrとAlとSiの複合窒化物からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
該硬質被覆層は、CrとAlとSiの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、薄層Aおよび薄層Bはそれぞれ0.05〜2μmの層厚を有し、さらに、上記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、上記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具。
(2) 上記CrとAlとSiの複合窒化物は、
組成式:(Cr1−X−YAlSi)N
で表した場合に、0.40≦X≦0.70、0.005≦Y≦0.08(但し、X、Yはいずれも原子比)を満足することを特徴とする前記(1)記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) Hard coating made of a composite nitride of Cr, Al, and Si having a layer thickness of 0.8 to 5.0 μm on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet In a surface-coated cutting tool in which a layer is formed by vapor deposition,
The hard coating layer is configured as an alternately laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Cr, Al, and Si and a thin layer B composed of a columnar crystal structure, and the thin layer A and the thin layer B are Each having a layer thickness of 0.05 to 2 μm, the average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal grain size of the columnar crystals constituting the thin layer B is A surface-coated cutting tool having a thickness of 50 to 500 nm.
(2) The composite nitride of Cr, Al, and Si is
Composition formula: (Cr 1-XY Al X Si Y ) N
(1), wherein 0.40 ≦ X ≦ 0.70 and 0.005 ≦ Y ≦ 0.08 (wherein X and Y are atomic ratios) are satisfied. Surface coated cutting tool. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層に関し、より詳細に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described in more detail.

(a)硬質被覆層の組成
(Cr,Al,Si)N層からなる硬質被覆層は、Alの含有割合の増加によって、結晶構造が立方晶から六方晶へ変化し、皮膜硬さが低下するので、少なくとも所定の皮膜硬さを保持するためには、その結晶構造を立方晶とする必要があり、そのためには、硬質被覆層の組成を、
組成式:(Cr1−X−YAlSi)N
で表した場合に、Xが0.70以下(但し、Xは原子比)となるようにAlの含有割合を定めることが望ましい。ただ、Xが0.40未満になると、結晶構造は立方晶を維持したままではあるが、相対的なCr含有割合の増加により、(Cr,Al,Si)N層自体の高温硬さが急激に低下し、高速切削加工において最小限必要とされる耐摩耗性を確保することが困難になることから、硬質被覆層を構成する(Cr,Al,Si)N層におけるCrとSiとの合量に占めるAlの含有割合X(原子比)は、0.40≦X≦0.70を満足することが望ましい。
また、上記組成式において、Siの含有割合Yが0.005未満では、硬質被覆層の耐熱性向上効果は少なく、一方、Siの含有割合Yが0.08を超えると、相対的にCrの含有割合が低下し、高温強度が低下傾向を示すようになることから、CrとAlとの合量に占めるSiの含有割合Y(原子比)は、0.005≦Y≦0.08を満足することが望ましい。
(A) Composition of the hard coating layer The hard coating layer made of the (Cr, Al, Si) N layer has its crystal structure changed from cubic to hexagonal with an increase in the Al content, and the film hardness decreases. Therefore, in order to maintain at least a predetermined film hardness, the crystal structure needs to be cubic, and for that purpose, the composition of the hard coating layer is
Composition formula: (Cr 1-XY Al X Si Y ) N
It is desirable to determine the Al content ratio so that X is 0.70 or less (where X is an atomic ratio). However, when X is less than 0.40, the crystal structure remains in a cubic structure, but due to the relative increase in the Cr content, the high temperature hardness of the (Cr, Al, Si) N layer itself rapidly increases. Therefore, it is difficult to ensure the minimum wear resistance required in high-speed cutting, so the combination of Cr and Si in the (Cr, Al, Si) N layer that constitutes the hard coating layer. It is desirable that the Al content ratio X (atomic ratio) in the amount satisfies 0.40 ≦ X ≦ 0.70.
In the above composition formula, when the Si content ratio Y is less than 0.005, the effect of improving the heat resistance of the hard coating layer is small. On the other hand, when the Si content ratio Y exceeds 0.08, the relative Cr Since the content ratio decreases and the high temperature strength tends to decrease, the Si content ratio Y (atomic ratio) in the total amount of Cr and Al satisfies 0.005 ≦ Y ≦ 0.08. It is desirable to do.

(b)薄層A
薄層Aは、粒状晶組織の(Cr,Al,Si)Nからなり、すぐれた皮膜硬さを有し硬質被覆層の耐摩耗性を向上させる。ただ、上記粒状晶組織の平均結晶粒径が30nmを超えると、皮膜の硬さ向上効果が少なくなることから、粒状晶組織の平均結晶粒径は30nm以下とする。
なお、この発明でいう「平均結晶粒径」とは、層厚方向に直交する面(言い換えれば、基体表面と平行な面)において、透過型電子顕微鏡(TEM)観察写真によって測定し算出される結晶粒径の平均値をいい、層厚方向に沿った結晶粒の長さはこの発明では「平均結晶粒径」とは呼ばない。
また、薄層Aの層厚は、0.05μm未満では耐摩耗性向上効果が少なく、一方、層厚が2μmを超えるようになると、切刃に高負荷が作用する高硬度鋼の高速切削で、チッピング、欠損を発生しやすくなるため、薄層Aの層厚は0.05〜2μmと定めた。
(B) Thin layer A
The thin layer A is made of (Cr, Al, Si) N having a granular crystal structure, has an excellent film hardness, and improves the wear resistance of the hard coating layer. However, if the average crystal grain size of the granular crystal structure exceeds 30 nm, the effect of improving the hardness of the film is reduced, so the average crystal grain size of the granular crystal structure is set to 30 nm or less.
The “average crystal grain size” as used in the present invention is measured and calculated by a transmission electron microscope (TEM) observation photograph on a plane orthogonal to the layer thickness direction (in other words, a plane parallel to the substrate surface). The average value of the crystal grain size is referred to, and the length of the crystal grain along the layer thickness direction is not called “average crystal grain size” in the present invention.
Also, if the layer thickness of the thin layer A is less than 0.05 μm, the effect of improving the wear resistance is small. On the other hand, if the layer thickness exceeds 2 μm, high-speed cutting of high-hardness steel in which a high load acts on the cutting edge. In order to easily cause chipping and defects, the layer thickness of the thin layer A is set to 0.05 to 2 μm.

(c)薄層B
柱状晶組織の(Cr,Al,Si)Nからなる薄層Bは、すぐれた高温強度、靭性を示すが、薄層Bを構成する柱状晶組織の(Cr,Al,Si)Nの平均結晶粒径が500nmを超えると結晶粒の粗大化による耐摩耗性の低下がみられ、一方、平均結晶粒径が50nm未満では、耐チッピング性、耐欠損性向上効果がみられないことから、薄層Bを構成する柱状晶組織の(Cr,Al,Si)Nの平均結晶粒径は50〜500nmと定めた。
また、薄層Bの層厚が0.05μm未満では、耐チッピング性、耐欠損性向上効果が少なく、一方、層厚が2μmを超えると耐摩耗性の低下が顕著になることから、薄層Bの層厚を0.05〜2μmと定めた。
(C) Thin layer B
The thin layer B composed of (Cr, Al, Si) N having a columnar crystal structure exhibits excellent high-temperature strength and toughness, but the average crystal of (Cr, Al, Si) N having a columnar crystal structure constituting the thin layer B. When the particle size exceeds 500 nm, the wear resistance is reduced due to the coarsening of crystal grains. On the other hand, when the average crystal particle size is less than 50 nm, the effect of improving chipping resistance and fracture resistance is not observed. The average crystal grain size of (Cr, Al, Si) N having a columnar crystal structure constituting the layer B was determined to be 50 to 500 nm.
Further, if the layer thickness of the thin layer B is less than 0.05 μm, the effect of improving chipping resistance and fracture resistance is small. On the other hand, if the layer thickness exceeds 2 μm, the wear resistance is significantly reduced. The layer thickness of B was set to 0.05 to 2 μm.

(d)薄層Aと薄層Bの交互積層
薄層Aと薄層Bの交互積層からなるこの発明の硬質被覆層は、薄層Aが粒状晶組織、一方、薄層Bが柱状晶組織であって、その結晶粒形態が異なるものの、同一成分系、同一結晶構造(立方晶)の硬質被覆層として構成されているため、異成分系の薄層Aと薄層Bとの交互積層に比して、薄層Aと薄層B間の密着強度が大であり、硬質被覆層全体としての高温強度向上に寄与するばかりか、層間剥離等が生じる恐れもないため、高熱発生を伴い、しかも、切刃に高負荷が作用する高速切削においてもすぐれた耐剥離性を発揮する。
ただ、薄層Aと薄層Bの交互積層からなる硬質被覆層の合計層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮することができないため工具寿命短命化の原因となり、一方、その合計層厚が5.0μmを越えると、チッピング、欠損が発生し易くなるため、その合計層厚は0.8〜5.0μmと定めた。
(D) Alternating lamination of thin layer A and thin layer B The hard coating layer of the present invention consisting of alternating lamination of thin layer A and thin layer B has the thin layer A having a granular crystal structure, while the thin layer B has a columnar crystal structure. However, although the crystal grain forms are different, since it is configured as a hard coating layer having the same component system and the same crystal structure (cubic crystal), it is possible to alternately stack thin layers A and B of different component systems. In comparison, the adhesion strength between the thin layer A and the thin layer B is large, and not only contributes to the high temperature strength improvement as the entire hard coating layer, but also there is no risk of delamination, etc., accompanied by high heat generation, In addition, it exhibits excellent peeling resistance even in high-speed cutting in which a high load acts on the cutting edge.
However, if the total thickness of the hard coating layer composed of the alternating layers of the thin layer A and the thin layer B is less than 0.8 μm, the excellent wear resistance of the hard coating layer cannot be exhibited over a long period of time, so that the tool life is short-lived. On the other hand, if the total layer thickness exceeds 5.0 μm, chipping and defects are likely to occur. Therefore, the total layer thickness is set to 0.8 to 5.0 μm.

この発明の被覆工具は、硬質被覆層が、すぐれた皮膜硬さ、耐熱性を有する粒状晶組織の(Cr,Al,Si)N層からなる薄層Aと、すぐれた高温強度、靭性、耐熱性を示す柱状晶組織の(Cr,Al,Si)N層からなる薄層Bの交互積層構造として構成されているので、硬質被覆層全体としてすぐれた高温硬さ、高温強度、耐熱性を有しており、その結果、高熱発生を伴い、切刃に高負荷が作用する合金工具鋼の焼入れ材等の高硬度鋼の高速切削においても、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性を備えるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するものである。   The coated tool of the present invention comprises a thin layer A composed of a (Cr, Al, Si) N layer having a granular crystal structure with excellent coating hardness and heat resistance, and excellent high-temperature strength, toughness and heat resistance. Since it is configured as an alternating layered structure of thin layers B consisting of (Cr, Al, Si) N layers with a columnar crystal structure that exhibits excellent properties, the hard coating layer as a whole has excellent high-temperature hardness, high-temperature strength, and heat resistance. As a result, chipping resistance and chipping resistance with excellent hard coating layer even in high-speed cutting of hardened steel such as hardened alloy tool steel with high heat generation and high load acting on the cutting edge. In addition to having peel resistance, it exhibits excellent wear resistance over a long period of use.

表面被覆切削工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises a surface coating cutting tool is shown, (a) is a schematic plan view, (b) is a schematic front view.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. Tool bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.

(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、カソード電極(蒸発源)として、所定成分組成のCr−Al−Si合金を、例えば、前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ一方のCr−Al−Si合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)ついで装置内に導入する反応ガスとしての窒素ガスの圧力を表3に示す如く5〜7Paの範囲内の条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す如く−100〜−300Vの範囲内の直流バイアス電圧を印加した状態で、前記Cr−Al−Si合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の粒状晶組織の(Cr,Al,Si)N層からなる薄層Aを蒸着形成し、
(d)ついで、窒素ガスの圧力を表3に示す如く2〜4Paの範囲内の条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す如く−20〜−90Vの範囲内の直流バイアス電圧を印加した状態で、前記Cr−Al−Si合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記薄層Aの表面に所定層厚の柱状晶組織の(Cr,Al,Si)N層からなる薄層Bを形成し、
(e)前記薄層Aの形成と薄層B形成を交互に繰り返し行い、もって前記工具基体の表面に、表4、表5に示す薄層Aと薄層Bの交互積層構造からなる所定組成、所定結晶粒組織および所定層厚の硬質被覆層を蒸着形成することにより、本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, a Cr—Al—Si alloy having a predetermined component composition as a cathode electrode (evaporation source), for example, Arranged opposite the rotary table,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 100 A is passed between the cathode electrode and the anode electrode made of one of the Cr—Al—Si alloys to generate an arc discharge.
(C) Next, the pressure of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a condition within the range of 5 to 7 Pa as shown in Table 3, and the same as the tool base rotating while rotating on the rotary table. As shown in Table 3, with a DC bias voltage in the range of −100 to −300 V being applied, a predetermined current in the range of 50 to 100 A is provided between the cathode electrode and the anode electrode of the Cr—Al—Si alloy. To generate an arc discharge, and deposit a thin layer A composed of a (Cr, Al, Si) N layer having a granular crystal structure of a predetermined layer thickness on the surface of the tool base,
(D) Next, the pressure of the nitrogen gas is adjusted to a condition in the range of 2 to 4 Pa as shown in Table 3, and the tool base that rotates while rotating on the rotary table is also set to -20 to 20 as shown in Table 3. With a DC bias voltage in the range of −90 V applied, a predetermined current in the range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the Cr—Al—Si alloy to generate arc discharge. A thin layer B composed of a (Cr, Al, Si) N layer having a columnar crystal structure having a predetermined layer thickness is formed on the surface of the thin layer A;
(E) The formation of the thin layer A and the formation of the thin layer B are alternately repeated, so that the predetermined composition comprising the laminated structure of the thin layers A and B shown in Tables 4 and 5 on the surface of the tool base. The surface coated carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 of the present invention were produced by vapor-depositing a hard coating layer having a predetermined crystal grain structure and a predetermined layer thickness, respectively.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、所定組成のCr−Al−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して表3に示す圧力条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す直流バイアス電圧を印加した状態で、前記Cr−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表6、表7に示される組成、結晶粒組織および層厚の(Cr,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。   For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. The device is charged and a Cr—Al—Si alloy having a predetermined composition is attached as a cathode electrode (evaporation source). First, the inside of the device is evacuated and kept at a vacuum of 0.1 Pa or less by using a heater. Is heated to 500 ° C., a DC bias voltage of −1000 V is applied to the tool base, and an arc discharge is generated by passing a current of 100 A between the Cr—Al—Si alloy of the cathode electrode and the anode electrode. Thus, the surface of the tool base is bombarded and then nitrogen gas is introduced as a reaction gas into the apparatus to adjust the pressure conditions shown in Table 3 and rotate while rotating on the rotary table. In the state where the DC bias voltage shown in Table 3 is applied to the tool base, arc discharge is generated between the cathode electrode and the anode electrode of the Cr-Al-Si alloy, and the tool bases A-1 to A- 10 and B-1 to B-6 are vapor-deposited with a hard coating layer composed of a (Cr, Al, Si) N layer having the composition, crystal grain structure and layer thickness shown in Tables 6 and 7. Thus, comparative surface coated carbide throw-away tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 were produced.

つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:JIS・SKD61の焼入れ材(HRC52)の丸棒、
切削速度: 65 m/min.、
切り込み: 0.20 mm、
送り: 0.10 mm/rev.、
切削時間: 3 分、
の条件(切削条件A)での合金鋼の乾式高速切削加工試験(通常の切削速度は、30m/min.)、
被削材:JIS・SKD11の焼入れ材(HRC60)の丸棒、
切削速度: 60 m/min.、
切り込み: 0.25 mm、
送り: 0.10 mm/rev.、
切削時間: 2 分、
の条件(切削条件B)での合金鋼の乾式高速切削加工試験(通常の切削速度は、25m/min.)、
被削材:JIS・SUJ2焼入れ材(HRC60)の丸棒、
切削速度: 55 m/min.、
切り込み: 0.3 mm、
送り: 0.15 mm/rev.、
切削時間: 3 分、
の条件(切削条件C)での軸受鋼の乾式高速切削加工試験(通常の切削速度は、30m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the comparative coated carbide chip 1 are compared with the above-mentioned various coated carbide chips, all of which are screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS · SKD61 hardened material (HRC52) round bar,
Cutting speed: 65 m / min. ,
Cutting depth: 0.20 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 3 minutes,
Dry high-speed cutting test of alloy steel under the conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: JIS · SKD11 hardened material (HRC60) round bar,
Cutting speed: 60 m / min. ,
Cutting depth: 0.25 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 2 minutes,
Dry high-speed cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed is 25 m / min.),
Work material: JIS / SUJ2 hardened material (HRC60) round bar,
Cutting speed: 55 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 3 minutes,
The dry high speed cutting test (normal cutting speed is 30 m / min.) Of the bearing steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が6.5mm、10.5mm、および20.5mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 9, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide forming round bar sintered bodies having diameters of 6.5 mm, 10.5 mm, and 20.5 mm were formed, and further, the above three types of round bar sintered bodies were ground by grinding. In the combinations shown in Table 9, the diameter × length of the cutting edge portion was 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each had a four-blade square shape with a twist angle of 30 degrees. WC base cemented carbide tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される組成、結晶粒組織および層厚の薄層A、薄層Bを交互に蒸着形成し、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造からなる硬質被覆層を備える本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8を製造した。   Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. A thin layer A having a granular crystal structure was formed by alternately depositing thin layers A and B having the composition, crystal grain structure and layer thickness shown in Table 10 along the layer thickness direction under the same conditions as in Example 1. And surface-coated carbide end mills (hereinafter referred to as the present invention-coated carbide end mills) 1 to 8 each having a hard coating layer composed of an alternately laminated structure of a thin layer B having a columnar crystal structure.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される組成、結晶粒組織および層厚の(Cr,Al,Si)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8を製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, a hard coating layer composed of a (Cr, Al, Si) N layer having the composition, crystal grain structure, and layer thickness shown in Table 11 was also deposited. Coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 were produced.

つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、
本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD61(焼入れ材(HRC52))の板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 0.5 mm、
テーブル送り: 200 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD11(焼入れ材(HRC60))の板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 1.2 mm、
テーブル送り: 250 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬エンドミル7、8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SUJ2(焼入れ材(HRC60))の板材、
切削速度: 30 m/min.、
溝深さ(切り込み): 2 mm、
テーブル送り: 150 mm/分、
の条件での軸受鋼の乾式高速溝切削加工試験(通常の切削速度は、25m/min.)を行い、
上記のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記の測定結果を表10、表11にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8,
About this invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 (hardened material (HRC52)) plate material,
Cutting speed: 55 m / min. ,
Groove depth (cut): 0.5 mm,
Table feed: 200 mm / min,
A dry high-speed grooving test of the alloy steel under the conditions (normal cutting speed is 30 m / min.)
For the coated carbide end mills 4-6 of the present invention and the comparative coated carbide end mills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS SKD11 (hardened material (HRC60)) plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 1.2 mm,
Table feed: 250 mm / min,
A dry high-speed grooving test of the alloy steel under the conditions (normal cutting speed is 30 m / min.)
For the coated carbide end mills 7 and 8 of the present invention and the comparative coated carbide end mills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardened material (HRC60)) plate material,
Cutting speed: 30 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 150 mm / min,
A dry high-speed grooving test of the bearing steel under the conditions (normal cutting speed is 25 m / min.),
In any of the above groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Table 10 and Table 11, respectively.

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

上記の実施例2で製造した直径が6.5mm(超硬基体C−1〜C−3形成用)、10.5mm(超硬基体C−4〜C−6形成用)、および20.5m(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 6.5 mm (for forming carbide substrates C-1 to C-3), 10.5 mm (for forming carbide substrates C-4 to C-6), and 20.5 m. Using three types of round bar sintered bodies (for forming carbide substrates C-7 and C-8), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion was obtained by grinding. 4 mm × 13 mm (Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), respectively. And WC-based cemented carbide tool bases (drills) D-1 to D-8 each having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される組成、結晶粒組織および層厚の薄層A、薄層Bを交互に蒸着形成し、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造からなる硬質被覆層を備える本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8を製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, thin layers A and B having the composition, crystal grain structure and layer thickness shown in Table 12 were alternately deposited, and the thin layer A having a granular crystal structure and Surface-coated carbide drills of the present invention (hereinafter referred to as the present invention-coated carbide drills) 1 to 8 having a hard coating layer composed of an alternately laminated structure with a thin layer B having a columnar crystal structure were manufactured.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−3、D−4〜D−6、D−7、D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表13に示される組成、結晶粒組織および層厚の(Cr,Al,Si)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8を製造した。   For comparison purposes, honing is applied to the surfaces of the tool bases (drills) D-1 to D-3, D-4 to D-6, D-7, and D-8, and ultrasonic waves are obtained in acetone. In the washed and dried state, the same was inserted into the arc ion plating apparatus shown in FIG. 1 and the composition, crystal grain structure and layer thickness shown in Table 13 were also obtained under the same conditions as in Example 1 above ( Comparative surface-coated carbide drills (hereinafter referred to as comparative coated carbide drills) 1 to 8 were manufactured by vapor-depositing a hard coating layer composed of a Cr, Al, Si) N layer.

つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、
本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD61(焼入れ材(HRC52))の板材、
切削速度: 50 m/min.、
送り: 0.12 mm/rev、
穴深さ: 6 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、20m/min.)を行い、
本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD11(焼入れ材(HRC60))の板材、
切削速度: 55 m/min.、
送り: 0.15 mm/rev、
穴深さ: 10 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、25m/min.)を行い、
本発明被覆超硬ドリル7、8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SUJ2(焼入れ材(HRC60))の板材、
切削速度: 50 m/min.、
送り: 0.2 mm/rev、
穴深さ: 32 mm、
の条件での軸受鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、30m/min.)を行い、
上記いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12、表13にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8,
About this invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 (hardened material (HRC52)) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 6 mm,
Wet high-speed drilling cutting test of alloy steel under the conditions (normal cutting speed is 20 m / min.),
About this invention coated carbide drills 4-6 and comparative coated carbide drills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS SKD11 (hardened material (HRC60)) plate material,
Cutting speed: 55 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 10 mm,
Wet high-speed drilling test of alloy steel under the conditions (normal cutting speed is 25 m / min.)
About the coated carbide drills 7 and 8 of the present invention and the comparative coated carbide drills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardened material (HRC60)) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 32 mm,
A wet high-speed drilling test of the bearing steel under the conditions (normal cutting speed is 30 m / min.),
In any of the above wet high-speed drilling tests (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 12 and 13, respectively.

Figure 0005429693
Figure 0005429693

Figure 0005429693
Figure 0005429693

この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆超硬ドリル1〜8、および、比較表面被覆切削工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、比較被覆超硬ドリル1〜8の硬質被覆層の組成を、透過型電子顕微鏡を用いたエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の各硬質被覆層の平均層厚を透過型電子顕微鏡により断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
The present invention coated carbide tips 1 to 16, the present invention coated carbide end mills 1 to 8, the present invention coated carbide drills 1 to 8, and the comparative surface coated cutting tool as the surface coated cutting tool of the present invention obtained as a result. The composition of hard coating layers of comparative coated carbide tips 1-16, comparative coated carbide end mills 1-8, comparative coated carbide drills 1-8 as energy dispersive X-ray analysis using a transmission electron microscope As a result of measurement, each showed substantially the same composition as the target composition.
Moreover, when the average layer thickness of each said hard coating layer was cross-sectional measured with the transmission electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

さらに、本発明表面被覆切削工具の薄層A、薄層Bを構成する(Cr,Al,Si)N層および比較表面被覆切削工具の硬質被覆層を構成する(Cr,Al,Si)N層について、各層の結晶粒組織を透過型電子顕微鏡により求め、その結果を表4〜7、10〜13に示した。   Furthermore, the (Cr, Al, Si) N layer constituting the thin layer A and the thin layer B of the surface-coated cutting tool of the present invention and the (Cr, Al, Si) N layer constituting the hard coating layer of the comparative surface-coated cutting tool. The crystal grain structure of each layer was determined by a transmission electron microscope, and the results are shown in Tables 4-7 and 10-13.

表8、10〜13に示される結果から、本発明表面被覆切削工具は、硬質被覆層がすぐれた耐摩耗性を示す薄層Aと、すぐれた耐チッピング性、耐欠損性を示す薄層Bとの交互積層構造からなり、さらに、耐熱性を有し、層間密着強度も大であるので、その結果、高熱発生を伴い、切刃に対し高負荷が作用する高硬度鋼の高速切削加工でも、すぐれた耐チッピング性、耐欠損性とともにすぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が粒状晶のみあるいは柱状晶のみからなる単一結晶粒組織の(Cr,Al,Si)N層からなる被覆工具は、耐チッピング性、耐欠損性あるいは耐摩耗性のいずれかが劣るため、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 8 and 10-13, the surface-coated cutting tool of the present invention has a thin layer A that exhibits excellent wear resistance and a thin layer B that exhibits excellent chipping resistance and fracture resistance. In addition, it has high heat resistance and high interlayer adhesion strength. As a result, it is accompanied by high heat generation, and high-speed cutting of high-hardness steel with high load acting on the cutting edge. In contrast to excellent chipping and chipping resistance and excellent wear resistance over a long period of time, the hard coating layer has a single crystal grain structure consisting of only granular crystals or columnar crystals (Cr, It is apparent that a coated tool made of an Al, Si) N layer has a poor service life in a relatively short time because of any inferior chipping resistance, chipping resistance or wear resistance.

上述のように、この発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴い切刃に対して高負荷が作用する高硬度鋼の高速切削加工でも、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the surface-coated cutting tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel and cast iron, but is particularly high in which a high load acts on the cutting blade with high heat generation. Even in high-speed cutting of hardened steel, it exhibits excellent wear resistance over a long period of time, so we are fully satisfied with the high performance of the cutting machine, labor saving and energy saving of cutting, and cost reduction It can cope with.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、0.8〜5.0μmの層厚のCrとAlとSiの複合窒化物からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
該硬質被覆層は、CrとAlとSiの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、薄層Aおよび薄層Bはそれぞれ0.05〜2μmの層厚を有し、さらに、上記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、上記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具。
A hard coating layer composed of a composite nitride of Cr, Al, and Si having a layer thickness of 0.8 to 5.0 μm is formed on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. In the surface-coated cutting tool made,
The hard coating layer is configured as an alternately laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Cr, Al, and Si and a thin layer B composed of a columnar crystal structure, and the thin layer A and the thin layer B are Each having a layer thickness of 0.05 to 2 μm, the average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal grain size of the columnar crystals constituting the thin layer B is A surface-coated cutting tool having a thickness of 50 to 500 nm.
上記CrとAlとSiの複合窒化物は、
組成式:(Cr1−X−YAlSi)N
で表した場合に、0.40≦X≦0.70、0.005≦Y≦0.08(但し、X、Yはいずれも原子比)を満足することを特徴とする請求項1記載の表面被覆切削工具。
The composite nitride of Cr, Al and Si is
Composition formula: (Cr 1-XY Al X Si Y ) N
2, wherein 0.40 ≦ X ≦ 0.70 and 0.005 ≦ Y ≦ 0.08 (wherein X and Y are atomic ratios) are satisfied. Surface coated cutting tool.
JP2010093319A 2010-04-14 2010-04-14 Surface coated cutting tool with excellent wear resistance due to hard coating layer Expired - Fee Related JP5429693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093319A JP5429693B2 (en) 2010-04-14 2010-04-14 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093319A JP5429693B2 (en) 2010-04-14 2010-04-14 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011218530A JP2011218530A (en) 2011-11-04
JP5429693B2 true JP5429693B2 (en) 2014-02-26

Family

ID=45036144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093319A Expired - Fee Related JP5429693B2 (en) 2010-04-14 2010-04-14 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5429693B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090063B2 (en) * 2012-08-28 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool
KR102186966B1 (en) * 2013-03-22 2020-12-04 미츠비시 마테리알 가부시키가이샤 Surface-coated cutting tool
JP6090034B2 (en) * 2013-03-22 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool
JP6102653B2 (en) * 2013-09-19 2017-03-29 三菱マテリアル株式会社 Surface coated cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963354B2 (en) * 2001-07-13 2007-08-22 日立ツール株式会社 Coated cutting tool
JP4687965B2 (en) * 2005-09-05 2011-05-25 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
WO2007111301A1 (en) * 2006-03-28 2007-10-04 Kyocera Corporation Surface-coated tool
US8080312B2 (en) * 2006-06-22 2011-12-20 Kennametal Inc. CVD coating scheme including alumina and/or titanium-containing materials and method of making the same
JP5043908B2 (en) * 2009-09-04 2012-10-10 株式会社神戸製鋼所 Method for forming fine crystal hard coating

Also Published As

Publication number Publication date
JP2011218530A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594577B2 (en) Surface coated cutting tool
JP5440345B2 (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP5440353B2 (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP2009101474A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP5445847B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP5594569B2 (en) Surface coated cutting tool
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP5459618B2 (en) Surface coated cutting tool
JP2009101475A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP5454787B2 (en) Surface coated cutting tool
JP5035527B2 (en) Surface coated cutting tool
JP5454788B2 (en) Surface coated cutting tool
JP5440350B2 (en) Surface coated cutting tool
JP5440352B2 (en) Surface coated cutting tool
JP5440351B2 (en) Surface coated cutting tool
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2011189436A (en) Surface coated cutting tool
JP2006289537A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131124

LAPS Cancellation because of no payment of annual fees