JP5440346B2 - Surface coated cutting tool - Google Patents
Surface coated cutting tool Download PDFInfo
- Publication number
- JP5440346B2 JP5440346B2 JP2010093937A JP2010093937A JP5440346B2 JP 5440346 B2 JP5440346 B2 JP 5440346B2 JP 2010093937 A JP2010093937 A JP 2010093937A JP 2010093937 A JP2010093937 A JP 2010093937A JP 5440346 B2 JP5440346 B2 JP 5440346B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- layer
- thin layer
- hard coating
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
この発明は、例えば、合金工具鋼の焼入れ材等の高硬度鋼を、高熱発生を伴うとともに、切れ刃に対して、断続的・衝撃的な高負荷が作用する高速断続切削条件下で切削加工を行なった場合でも、硬質被覆層がすぐれた高温硬さ、高温強度、耐熱性を備えることによって、すぐれた耐チッピング性、耐欠損性、耐剥離性を示し、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention, for example, cuts high hardness steel, such as a hardened material of alloy tool steel, under high-speed intermittent cutting conditions that are accompanied by high heat generation and an intermittent and impactful high load acts on the cutting edge. Even when the hard coating layer is used, the hard coating layer has excellent high-temperature hardness, high-temperature strength, and heat resistance, so that it exhibits excellent chipping resistance, chipping resistance, and peeling resistance. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance.
一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, surface-coated cutting tools include a throw-away tip that is detachably attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
従来、表面被覆切削工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、CrとAlとTiとBの複合窒化物層を形成した被覆工具が知られており、この従来被覆工具は、すぐれた耐摩耗性を長期の使用にわたって発揮することが知られている(例えば、特許文献1、2参照)。 Conventionally, as one of surface-coated cutting tools, a substrate (hereinafter collectively referred to as tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet). A coated tool in which a composite nitride layer of Cr, Al, Ti, and B is formed as a hard coating layer on the surface of a tool base) is known, and this conventional coated tool has excellent wear resistance for a long time. It is known to exhibit over use (for example, refer to Patent Documents 1 and 2).
さらに、前記従来被覆工具は、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に工具基体を装入し、装置内を加熱した状態で、硬質被覆層の組成に対応した組成を有するカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、前記工具基体表面に、所望の層厚、組成の(Cr,Al,Ti,B)N層からなる硬質被覆層を蒸着することによって製造される。 Further, the conventional coated tool is, for example, a state in which a tool base is inserted into an arc ion plating (AIP) apparatus which is one type of physical vapor deposition apparatus shown in FIG. An arc discharge is generated between the cathode electrode (evaporation source) having a composition corresponding to the composition of the hard coating layer and the anode electrode, and simultaneously nitrogen gas is introduced into the apparatus as a reaction gas. It is manufactured by vapor-depositing a hard coating layer composed of a (Cr, Al, Ti, B) N layer having a desired layer thickness and composition.
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はより高速化を目指す傾向にあるが、前記従来被覆工具においては、これを特に高熱発生を伴い、かつ、切刃部に断続的・衝撃的な負荷が作用する高硬度鋼の高速断続切削条件で用いた場合には、硬質被覆層にチッピング、欠損、剥離等が発生しやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to aim for higher speed. In conventional coated tools, when this is used under high-speed intermittent cutting conditions of high-hardness steel that is accompanied by particularly high heat generation and where intermittent and impact loads are applied to the cutting edge, chipping is applied to the hard coating layer. As a result, defects, peeling, etc. are likely to occur, and as a result, the service life is reached in a relatively short time.
そこで、本発明者らは、前述のような観点から、硬質被覆層がすぐれた高温硬さとともに、一段とすぐれた高温強度を備えることにより、特に合金工具鋼の焼入れ材等の高硬度鋼を、高熱発生を伴うとともに、切刃部に断続的・衝撃的負荷が作用する高速断続切削条件で切削加工を行なった場合にも、チッピング、欠損、剥離等を発生することなく長期の使用に亘って、すぐれた耐摩耗性を発揮する被覆工具を開発すべく、硬質被覆層を構成する(Cr,Al,Ti,B)N層の結晶粒組織構造に着目し、研究を行った結果、以下の知見を得た。 Therefore, from the viewpoints described above, the present inventors provide a high hardness steel such as a hardened material of an alloy tool steel, in particular, by providing a hard coating layer with excellent high temperature hardness and further excellent high temperature strength. Even when cutting is performed under high-speed intermittent cutting conditions that cause high heat generation and intermittent / impact loads on the cutting edge, it can be used for a long time without chipping, chipping, peeling, etc. In order to develop a coated tool exhibiting excellent wear resistance, the results of researches focusing on the crystal grain structure of the (Cr, Al, Ti, B) N layer constituting the hard coating layer are as follows. Obtained knowledge.
前記従来被覆工具の硬質被覆層を構成する(Cr,Al,Ti,B)N層の構成成分であるCr成分には高温強度を向上させると共に、CrとAlが共存含有した状態で高温耐酸化性を向上させる作用があり、また、Ti成分は一段と高温強度を向上させる作用があり、さらに、B成分には高温硬さを向上させる作用があり、そして、硬質被覆層は、これら各成分を含有することによって、所定の耐チッピング性、耐酸化性、耐熱性および耐摩耗性等を発揮する。
ところで、前記従来被覆工具においては、形成される(Cr,Al,Ti,B)Nからなる硬質被覆層の結晶粒組織(粒径、形態)については特に注目されておらず、実際、前記特許文献1、2でも、結晶粒組織構造については何らの言及もなく、結晶粒組織構造と成膜条件(例えば、アークイオンプレーティング条件)との関連については何ら明らかにされていない。
The Cr component, which is a component of the (Cr, Al, Ti, B) N layer that constitutes the hard coating layer of the conventional coated tool, improves the high temperature strength and is resistant to high temperature oxidation in the state where Cr and Al coexist. The Ti component has the effect of further improving the high temperature strength, the B component has the effect of improving the high temperature hardness, and the hard coating layer contains these components. By containing, predetermined chipping resistance, oxidation resistance, heat resistance, wear resistance and the like are exhibited.
By the way, in the conventional coated tool, no particular attention is paid to the crystal grain structure (grain size, form) of the hard coating layer formed of (Cr, Al, Ti, B) N. In References 1 and 2, there is no mention of the crystal grain structure, and the relation between the crystal grain structure and the film forming conditions (for example, arc ion plating conditions) is not clarified.
そこで本発明者らは、結晶粒組織構造と成膜条件との関連について鋭意検討したところ、成膜過程における成膜条件(例えば、アークイオンプレーティング条件)を制御することによって、結晶粒組織構造を調整することが可能であり、例えば、具体的には、微細な粒径の(Cr,Al,Ti,B)N粒状晶組織からなる薄層Aと、相対的に大粒径の(Cr,Al,Ti,B)N柱状晶組織からなる薄層Bとの交互積層構造によって硬質被覆層を形成することができることを見出したのである。
加えて、前記粒状晶組織からなる薄層Aは耐摩耗性、耐熱性に優れ、柱状晶組織からなる薄層Bは耐チッピング性、耐欠損性、耐熱性に優れること、さらに、薄層Aと薄層Bは同一成分組成、同一結晶構造であるため各薄層間の密着強度も大であって層間剥離の生じる恐れもないことから、薄層Aと薄層Bの交互積層構造からなる硬質被覆層は、高熱発生を伴い、切刃部に対して断続的・衝撃的負荷が作用する高硬度鋼の高速断続切削においても、チッピング、欠損、剥離等を発生することなく、長期の使用にわたってすぐれた耐摩耗性を発揮することを見出したのである。
Therefore, the present inventors diligently studied the relationship between the crystal grain structure and the film formation conditions, and by controlling the film formation conditions (for example, arc ion plating conditions) in the film formation process, For example, specifically, a thin layer A composed of a fine grain size (Cr, Al, Ti, B) N granular crystal structure and a relatively large grain size (Cr , Al, Ti, B) It has been found that a hard coating layer can be formed by an alternately laminated structure with a thin layer B composed of an N columnar crystal structure.
In addition, the thin layer A composed of the granular crystal structure is excellent in wear resistance and heat resistance, and the thin layer B composed of a columnar crystal structure is excellent in chipping resistance, chipping resistance, and heat resistance. And thin layer B have the same component composition and the same crystal structure, so that the adhesion strength between the thin layers is large and there is no risk of delamination. The hard coating layer is used for a long time without causing chipping, chipping, peeling, etc. even in high-speed intermittent cutting of high-hardness steel that generates intermittent heat on the cutting edge with high heat generation. They have found that they have excellent wear resistance.
本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、0.8〜5.0μmの層厚のCrとAlとTiとBの複合窒化物からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
該硬質被覆層は、CrとAlとTiとBの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、薄層Aおよび薄層Bはそれぞれ0.05〜2μmの層厚を有し、さらに、上記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、上記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具。
(2) 上記CrとAlとTiとBの複合窒化物は、
組成式:(Cr1−X−Y−ZAlXTiYBZ)N
で表した場合に、0.40≦X≦0.65、0.01≦Y≦0.20、0.005≦Z≦0.08(但し、X、Y、Zはいずれも原子比)を満足することを特徴とする(1)記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) The surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet is composed of a composite nitride of Cr, Al, Ti, and B having a layer thickness of 0.8 to 5.0 μm. In surface-coated cutting tools in which a hard coating layer is formed by vapor deposition,
The hard coating layer is configured as an alternate laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Cr, Al, Ti, and B and a thin layer B composed of a columnar crystal structure. B has a layer thickness of 0.05 to 2 μm, the average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal grain of the columnar crystals constituting the thin layer B A surface-coated cutting tool having a diameter of 50 to 500 nm.
(2) The composite nitride of Cr, Al, Ti and B is
Composition formula: (Cr 1-X-Y -Z Al X Ti Y B Z) N
In this case, 0.40 ≦ X ≦ 0.65, 0.01 ≦ Y ≦ 0.20, 0.005 ≦ Z ≦ 0.08 (where X, Y, and Z are atomic ratios) The surface-coated cutting tool according to (1), wherein the surface-coated cutting tool is satisfied. "
It has the characteristics.
つぎに、本発明の被覆工具の硬質被覆層に関し、より詳細に説明する。 Next, the hard coating layer of the coated tool of the present invention will be described in more detail.
(a)硬質被覆層の組成
(Cr,Al,Ti,B)N層からなる硬質被覆層は、Alの含有割合の増加によって、結晶構造が立方晶から六方晶へ変化し、皮膜硬さが低下するので、少なくとも所定の皮膜硬さを保持するためには、その結晶構造を立方晶とする必要があり、そのためには、硬質被覆層の組成を、
組成式:(Cr1−X−Y−ZAlXTiYBZ)N
で表した場合に、Xが0.65以下(但し、Xは原子比)となるようにAlの含有割合を定めることが望ましい。ただ、Xが0.40未満になると、結晶構造は立方晶を維持したままではあるが、相対的なCr含有割合の増加により、(Cr,Al,Ti,B)N層自体の高温硬さが急激に低下し、最小限必要とされる耐摩耗性を確保することが困難になることから、硬質被覆層を構成する(Cr,Al,Ti,B)N層におけるCrとTiとBとの合量に占めるAlの含有割合X(原子比)は、0.40≦X≦0.65を満足することが望ましい。
また、前記組成式において、Tiの含有割合Yが0.01未満では、硬質被覆層の高温強度の向上を期待できず、一方、Tiの含有割合Yが0.20を超えると、相対的にCrの含有割合が低下し、CrとAlの共存による高温耐酸化性の向上効果が低下することから、CrとAlとBとの合量に占めるTiの含有割合Y(原子比)は、0.01≦Y≦0.20を満足することが望ましい。
さらに、Bの含有割合Zが0.005未満であると、硬質被覆層の耐熱性向上効果は少なく、一方、Bの含有割合Zが0.08を超えると、相対的にCrとTiの含有割合が低下し、高温強度が低下傾向を示すようになることから、CrとAlとTiとの合量に占めるBの含有割合Z(原子比)は、0.005≦Y≦0.08を満足することが望ましい。
(A) Composition of the hard coating layer The hard coating layer made of the (Cr, Al, Ti, B) N layer has its crystal structure changed from cubic to hexagonal with an increase in Al content, and the film hardness is reduced. In order to maintain at least a predetermined film hardness, the crystal structure needs to be cubic, and for that purpose, the composition of the hard coating layer is
Composition formula: (Cr 1-X-Y -Z Al X Ti Y B Z) N
It is desirable to determine the Al content ratio so that X is 0.65 or less (where X is an atomic ratio). However, when X is less than 0.40, the crystal structure remains in a cubic structure, but due to the increase in the relative Cr content, the high temperature hardness of the (Cr, Al, Ti, B) N layer itself. Of the Cr, Ti, and B in the (Cr, Al, Ti, B) N layer constituting the hard coating layer, since it is difficult to ensure the minimum required wear resistance. It is preferable that the Al content ratio X (atomic ratio) in the total amount of the above satisfies 0.40 ≦ X ≦ 0.65.
In the composition formula, when the Ti content ratio Y is less than 0.01, improvement in the high temperature strength of the hard coating layer cannot be expected. On the other hand, when the Ti content ratio Y exceeds 0.20, Since the Cr content ratio decreases and the effect of improving high-temperature oxidation resistance due to the coexistence of Cr and Al decreases, the Ti content ratio Y (atomic ratio) in the total amount of Cr, Al and B is 0. It is desirable to satisfy .01 ≦ Y ≦ 0.20.
Further, when the B content ratio Z is less than 0.005, the effect of improving the heat resistance of the hard coating layer is small. On the other hand, when the B content ratio Z exceeds 0.08, the content of Cr and Ti is relatively small. Since the ratio decreases and the high temperature strength tends to decrease, the content ratio Z (atomic ratio) of B in the total amount of Cr, Al, and Ti satisfies 0.005 ≦ Y ≦ 0.08. It is desirable to be satisfied.
(b)薄層A
薄層Aは、粒状晶組織の(Cr,Al,Ti,B)Nからなり、すぐれた皮膜硬さ、耐熱性を有し硬質被覆層の耐摩耗性を向上させる。ただ、前記粒状晶組織の平均結晶粒径が30nmを超えると、 皮膜の硬さ向上効果が少なくなることから、粒状晶組織の平均結晶粒径は30nm以下とする。
なお、本発明でいう「平均結晶粒径」とは、層厚方向に直交する面(言い換えれば、基体表面と平行な面)において、透過型電子顕微鏡(TEM)観察写真によって測定し算出される結晶粒径の平均値をいい、層厚方向に沿った結晶粒の長さはこの発明では「平均結晶粒径」とは呼ばない。
また、薄層Aの層厚は、0.05μm未満では耐摩耗性向上効果が少なく、一方、層厚が2μmを超えるようになると、切刃に断続的・衝撃的高負荷が作用する高硬度鋼の高速断続切削で、チッピング、欠損を発生しやすくなるため、薄層Aの層厚は0.05〜2μmと定めた。
(B) Thin layer A
The thin layer A is made of (Cr, Al, Ti, B) N having a granular crystal structure, has excellent film hardness and heat resistance, and improves the wear resistance of the hard coating layer. However, if the average crystal grain size of the granular crystal structure exceeds 30 nm, the effect of improving the hardness of the film decreases, so the average crystal grain size of the granular crystal structure is set to 30 nm or less.
The “average crystal grain size” in the present invention is calculated by measuring with a transmission electron microscope (TEM) observation photograph on a plane orthogonal to the layer thickness direction (in other words, a plane parallel to the substrate surface). The average value of the crystal grain size is referred to, and the length of the crystal grain along the layer thickness direction is not called “average crystal grain size” in the present invention.
Further, if the layer thickness of the thin layer A is less than 0.05 μm, the effect of improving the wear resistance is small. On the other hand, if the layer thickness exceeds 2 μm, the cutting blade has a high hardness that causes intermittent and high impact loads. In order to easily generate chipping and chipping by high-speed intermittent cutting of steel, the layer thickness of the thin layer A is set to 0.05 to 2 μm.
(c)薄層B
柱状晶組織の(Cr,Al,Ti,B)Nからなる薄層Bは、すぐれた高温強度、靭性、耐熱性を示すが、薄層Bを構成する柱状晶組織の(Cr,Al,Ti,B)Nの平均結晶粒径が500nmを超えると結晶粒の粗大化による耐摩耗性の低下がみられ、一方、平均結晶粒径が50nm未満では、耐チッピング性、耐欠損性向上効果がみられないことから、薄層Bを構成する柱状晶組織の(Cr,Al,Ti,B)Nの平均結晶粒径は50〜500nmと定めた。
また、薄層Bの層厚が0.05μm未満では、耐チッピング性、耐欠損性向上効果が少なく、一方、層厚が2μmを超えると耐摩耗性の低下が顕著になることから、薄層Bの層厚を0.05〜2μmと定めた。
(C) Thin layer B
The thin layer B composed of (Cr, Al, Ti, B) N having a columnar crystal structure exhibits excellent high-temperature strength, toughness, and heat resistance, but the columnar crystal structure (Cr, Al, Ti) constituting the thin layer B , B) When the average crystal grain size of N exceeds 500 nm, the wear resistance is reduced due to the coarsening of the crystal grains. On the other hand, when the average crystal grain size is less than 50 nm, the chipping resistance and chipping resistance are improved. Since it was not observed, the average crystal grain size of (Cr, Al, Ti, B) N having a columnar crystal structure constituting the thin layer B was determined to be 50 to 500 nm.
Further, if the layer thickness of the thin layer B is less than 0.05 μm, the effect of improving chipping resistance and fracture resistance is small. On the other hand, if the layer thickness exceeds 2 μm, the wear resistance is significantly reduced. The layer thickness of B was set to 0.05 to 2 μm.
(d)薄層Aと薄層Bの交互積層
薄層Aと薄層Bの交互積層からなるこの発明の硬質被覆層は、薄層Aが粒状晶組織、一方、薄層Bが柱状晶組織であって、その結晶粒形態が異なるものの、同一成分系、同一結晶構造(立方晶)の硬質被覆層として構成されているため、異成分系の薄層Aと薄層Bとの交互積層に比して、薄層Aと薄層B間の密着強度が大であり、硬質被覆層全体としての高温強度向上に寄与するばかりか、層間剥離等が生じる恐れもないため、高熱発生を伴い、しかも、切刃に断続的・衝撃的負荷が作用する高速断続切削においてもすぐれた耐チッピング性、耐摩耗性を発揮する。
ただ、薄層Aと薄層Bの交互積層からなる硬質被覆層の合計層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮することができないため工具寿命短命化の原因となり、一方、その合計層厚が5.0μmを越えると、チッピング、欠損が発生し易くなるため、その合計層厚は0.8〜5.0μmと定めた。
(D) Alternating lamination of thin layer A and thin layer B The hard coating layer of the present invention consisting of alternating lamination of thin layer A and thin layer B has the thin layer A having a granular crystal structure, while the thin layer B has a columnar crystal structure. However, although the crystal grain forms are different, since it is configured as a hard coating layer having the same component system and the same crystal structure (cubic crystal), it is possible to alternately stack thin layers A and B of different component systems. In comparison, the adhesion strength between the thin layer A and the thin layer B is large, and not only contributes to the high temperature strength improvement as the entire hard coating layer, but also there is no risk of delamination, etc., accompanied by high heat generation, In addition, it exhibits excellent chipping resistance and wear resistance even in high-speed intermittent cutting in which intermittent and impact loads are applied to the cutting edge.
However, if the total thickness of the hard coating layer composed of the alternating layers of the thin layer A and the thin layer B is less than 0.8 μm, the excellent wear resistance of the hard coating layer cannot be exhibited over a long period of time, so that the tool life is short-lived. On the other hand, if the total layer thickness exceeds 5.0 μm, chipping and defects are likely to occur. Therefore, the total layer thickness is set to 0.8 to 5.0 μm.
本発明の被覆工具は、硬質被覆層が、すぐれた皮膜硬さ、耐熱性を有する粒状晶組織の(Cr,Al,Ti,B)N層からなる薄層Aと、すぐれた高温強度、靭性、耐熱性を示す柱状晶組織の(Cr,Al,Ti,B)N層からなる薄層Bの交互積層構造として構成されているので、硬質被覆層全体としてすぐれた高温硬さ、耐熱性、および、一段とすぐれた高温強度を有しており、その結果、合金工具鋼の焼入れ材等の高硬度鋼の高熱発生を伴い、かつ、切れ刃に断続的・衝撃的な負荷が作用する高速断続切削においても、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性を備えるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するものである。 The coated tool of the present invention comprises a thin layer A composed of a granular crystal structure (Cr, Al, Ti, B) N layer having excellent coating hardness and heat resistance, and excellent high-temperature strength and toughness. Since it is configured as an alternating layered structure of thin layers B composed of (Cr, Al, Ti, B) N layers having a columnar crystal structure exhibiting heat resistance, the entire hard coating layer has excellent high-temperature hardness, heat resistance, In addition, it has excellent high-temperature strength, and as a result, it generates high heat from hardened steel such as hardened material of alloy tool steel, and high-speed intermittent operation that causes intermittent and impact loads on the cutting edge. Also in cutting, the hard coating layer has excellent chipping resistance, chipping resistance, and peel resistance, and also exhibits excellent wear resistance over a long period of use.
つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. Tool bases B-1 to B-6 made of TiCN-based cermet having the following chip shape were formed.
(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、カソード電極(蒸発源)として、所定成分組成のCr−Al−Ti−B合金を、例えば、前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ一方のCr−Al−Ti−B合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)ついで装置内に導入する反応ガスとしての窒素ガスの圧力を表3に示す如く5〜7Paの範囲内の条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す如く−100〜−300Vの範囲内の直流バイアス電圧を印加した状態で、前記Cr−Al−Ti−B合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の粒状晶組織の(Cr,Al,Ti,B)N層からなる薄層Aを蒸着形成し、
(d)ついで、窒素ガスの圧力を表3に示す如く2〜4Paの範囲内の条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す如く−20〜−90Vの範囲内の直流バイアス電圧を印加した状態で、前記Cr−Al−Ti−B合金のカソード電極とアノード電極との間に50〜100Aの範囲内の所定の電流を流してアーク放電を発生させて、前記薄層Aの表面に所定層厚の柱状晶組織の(Cr,Al,Ti,B)N層からなる薄層Bを形成し、
(e)前記薄層Aの形成と薄層B形成を交互に繰り返し行い、もって前記工具基体の表面に、表4、表5に示す薄層Aと薄層Bの交互積層構造からなる所定組成、所定結晶粒組織および所定層厚の硬質被覆層を蒸着形成することにより、本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, a Cr—Al—Ti—B alloy having a predetermined component composition as a cathode electrode (evaporation source), for example, , Facing each other across the rotary table,
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 100 A is passed between a cathode electrode and an anode electrode made of one Cr—Al—Ti—B alloy to generate an arc discharge.
(C) Next, the pressure of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to a condition within the range of 5 to 7 Pa as shown in Table 3, and the same as the tool base rotating while rotating on the rotary table. As shown in Table 3, with a DC bias voltage in the range of −100 to −300 V applied, a predetermined value in the range of 50 to 100 A is provided between the cathode electrode and the anode electrode of the Cr—Al—Ti—B alloy. To generate an arc discharge to deposit a thin layer A composed of (Cr, Al, Ti, B) N layers having a granular crystal structure on the surface of the tool base,
(D) Next, the pressure of the nitrogen gas is adjusted to a condition in the range of 2 to 4 Pa as shown in Table 3, and the tool base that rotates while rotating on the rotary table is also set to -20 to 20 as shown in Table 3. With a DC bias voltage in the range of −90 V applied, a predetermined current in the range of 50 to 100 A is passed between the cathode electrode and the anode electrode of the Cr—Al—Ti—B alloy to cause arc discharge. And forming a thin layer B composed of (Cr, Al, Ti, B) N layers having a columnar crystal structure of a predetermined layer thickness on the surface of the thin layer A,
(E) The formation of the thin layer A and the formation of the thin layer B are alternately repeated, so that the predetermined composition comprising the laminated structure of the thin layers A and B shown in Tables 4 and 5 on the surface of the tool base. The surface coated carbide throwaway tips (hereinafter referred to as the present invention coated carbide tips) 1 to 16 of the present invention were produced by vapor-depositing a hard coating layer having a predetermined crystal grain structure and a predetermined layer thickness, respectively.
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、所定組成のCr−Al−Ti−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−Ti−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して表3に示す圧力条件に調整すると共に、前記回転テーブル上で自転しながら回転する工具基体に同じく表3に示す直流バイアス電圧を印加した状態で、前記Cr−Al−Ti−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表6、表7に示される組成、結晶粒組織および層厚の(Cr,Al,Ti,B)N層からなる硬質被覆層を蒸着形成することにより、比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. Insert the Cr-Al-Ti-B alloy of a predetermined composition as a cathode electrode (evaporation source), and first evacuate the apparatus and keep it at a vacuum of 0.1 Pa or less with a heater. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was passed between the Cr—Al—Ti—B alloy of the cathode electrode and the anode electrode. Arc discharge is generated, the tool substrate surface is bombarded, nitrogen gas is introduced into the apparatus as the reaction gas, and the pressure conditions shown in Table 3 are adjusted, and the tool rotates on the rotary table. Arc power is generated between the cathode electrode and the anode electrode of the Cr-Al-Ti-B alloy in the state where the DC bias voltage shown in Table 3 is applied to the rotating tool substrate, and the tool substrate A- Hard surfaces comprising (Cr, Al, Ti, B) N layers having compositions, crystal grain structures and layer thicknesses shown in Tables 6 and 7 on the respective surfaces of 1 to A-10 and B-1 to B-6 Comparative surface-coated cemented carbide throwaway chips (hereinafter referred to as comparative coated cemented carbide chips) 1 to 16 were produced by depositing a coating layer, respectively.
つぎに、前記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:JIS・SKD61の焼入れ材(HRC55)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 55 m/min.、
切り込み: 0.25 mm、
送り: 0.2 mm/rev.、
切削時間: 6 分、
の条件(切削条件A)での合金鋼の乾式高速切削加工試験(通常の切削速度は、30m/min.)、
被削材:JIS・SKD11の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 60 m/min.、
切り込み: 0.25 mm、
送り: 0.2 mm/rev.、
切削時間: 4 分、
の条件(切削条件B)での合金鋼の乾式高速切削加工試験(通常の切削速度は、25m/min.)、
被削材:JIS・SUJ2焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 50 m/min.、
切り込み: 0.2 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での軸受鋼の乾式高速切削加工試験(通常の切削速度は、30m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the comparative coated carbide chip 1 are compared with the above-mentioned various coated carbide chips, all screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS · SKD61 quenching material (HRC55) lengthwise equidistant four round grooved round bars,
Cutting speed: 55 m / min. ,
Cutting depth: 0.25 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 6 minutes,
Dry high-speed cutting test of alloy steel under the conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: JIS · SKD11 quenching material (HRC60) in the longitudinal direction, four equally spaced round bars,
Cutting speed: 60 m / min. ,
Cutting depth: 0.25 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 4 minutes,
Dry high-speed cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed is 25 m / min.),
Work material: JIS / SUJ2 hardened material (HRC60), 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 50 m / min. ,
Cutting depth: 0.2 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
The dry high speed cutting test (normal cutting speed is 30 m / min.) Of the bearing steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が6.5mm、10.5mm、および20.5mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 9, and then added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide forming round bar sintered bodies having diameters of 6.5 mm, 10.5 mm, and 20.5 mm were formed, and further, the above three types of round bar sintered bodies were ground by grinding. In the combinations shown in Table 9, the diameter × length of the cutting edge portion was 6 mm × 13 mm, 10 mm × 22 mm, and 20 mm × 45 mm, respectively, and each had a four-blade square shape with a twist angle of 30 degrees. WC base cemented carbide tool bases (end mills) C-1 to C-8 were produced.
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、層厚方向に沿って表10に示される組成、結晶粒組織および層厚の薄層A、薄層Bを交互に蒸着形成し、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造からなる硬質被覆層を備える本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8を製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, thin layer A and thin layer B having the composition, crystal grain structure and layer thickness shown in Table 10 along the layer thickness direction were alternately deposited to form thin layer A having a granular crystal structure and Surface-coated carbide end mills of the present invention (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 having a hard coating layer composed of an alternating laminated structure with a thin layer B having a columnar crystal structure were produced.
また、比較の目的で、前記工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、同じく表11に示される組成、結晶粒組織および層厚の(Cr,Al,Ti,B)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8を製造した。 For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, a comparative coating surface was obtained by vapor-depositing a hard coating layer consisting of a (Cr, Al, Ti, B) N layer having the composition, crystal grain structure and layer thickness shown in Table 11 as well. Coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 were produced.
つぎに、本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、
本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD61(焼入れ材(HRC55))の板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 0.5 mm、
テーブル送り: 200 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD11(焼入れ材(HRC60))の板材、
切削速度: 45 m/min.、
溝深さ(切り込み): 0.8 mm、
テーブル送り: 180 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)を行い、
本発明被覆超硬エンドミル7、8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SUJ2(焼入れ材(HRC60))の板材、
切削速度: 40 m/min.、
溝深さ(切り込み): 2.5 mm、
テーブル送り: 250 mm/分、
の条件での軸受鋼の乾式高速溝切削加工試験(通常の切削速度は、25m/min.)を行い、
前記のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
この測定結果を表10、表11にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8,
About this invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm plate of JIS SKD61 (hardened material (HRC55)),
Cutting speed: 55 m / min. ,
Groove depth (cut): 0.5 mm,
Table feed: 200 mm / min,
A dry high-speed grooving test of the alloy steel under the conditions (normal cutting speed is 30 m / min.)
For the coated carbide end mills 4-6 of the present invention and the comparative coated carbide end mills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS SKD11 (hardened material (HRC60)) plate material,
Cutting speed: 45 m / min. ,
Groove depth (cut): 0.8 mm,
Table feed: 180 mm / min,
A dry high-speed grooving test of the alloy steel under the conditions (normal cutting speed is 30 m / min.)
For the coated carbide end mills 7 and 8 of the present invention and the comparative coated carbide end mills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardened material (HRC60)) plate material,
Cutting speed: 40 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 250 mm / min,
A dry high-speed grooving test of the bearing steel under the conditions (normal cutting speed is 25 m / min.),
In any of the above groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Table 10 and Table 11, respectively.
実施例2で製造した直径が6.5mm(超硬基体C−1〜C−3形成用)、10.5mm(超硬基体C−4〜C−6形成用)、および20.5mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 were 6.5 mm (for forming carbide substrates C-1 to C-3), 10.5 mm (for forming carbide substrates C-4 to C-6), and 20.5 mm (ultraviolet). 3 types of round bar sintered bodies (for forming hard base bodies C-7 and C-8) are used, and from these 3 types of round bar sintered bodies, the diameter x length of the groove forming portion is determined by grinding. Dimensions of 4 mm × 13 mm (Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8) In addition, WC-based cemented carbide tool bases (drills) D-1 to D-8 each having a two-blade shape with a twist angle of 30 degrees were manufactured.
ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表12に示される組成、結晶粒組織および層厚の薄層A、薄層Bを交互に蒸着形成し、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造からなる硬質被覆層を備える本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8を製造した。 Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, thin layer A and thin layer B having the composition, crystal grain structure and layer thickness shown in Table 12 were alternately deposited to form thin layer A and columnar structure of granular crystal structure. Surface-coated carbide drills of the present invention (hereinafter referred to as the present invention coated carbide drills) 1 to 8 having a hard coating layer composed of an alternating laminated structure with a thin layer B having a crystal structure were manufactured.
また、比較の目的で、前記工具基体(ドリル)D−1〜D−3、D−4〜D−6、D−7、D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、同じく表13に示される組成、結晶粒組織および層厚の(Cr,Al,Ti,B)N層からなる硬質被覆層を蒸着することにより、比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8を製造した。 For comparison purposes, honing is performed on the surfaces of the tool bases (drills) D-1 to D-3, D-4 to D-6, D-7, and D-8, and ultrasonic cleaning is performed in acetone. Then, in the dry state, the same was charged into the arc ion plating apparatus shown in FIG. 1, and under the same conditions as in Example 1, the composition, crystal grain structure and layer thickness (Cr, Comparative surface-coated carbide drills (hereinafter referred to as comparative coated carbide drills) 1 to 8 were manufactured by vapor-depositing a hard coating layer composed of an Al, Ti, B) N layer.
つぎに、本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、
本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD61(焼入れ材(HRC55))の板材、
切削速度: 50 m/min.、
送り: 0.12 mm/rev、
穴深さ: 10 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、20m/min.)を行い、
本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SKD11(焼入れ材(HRC60))の板材、
切削速度: 55 m/min.、
送り: 0.18 mm/rev、
穴深さ: 20 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、25m/min.)を行い、
本発明被覆超硬ドリル7、8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・SUJ2(焼入れ材(HRC60))の板材、
切削速度: 65 m/min.、
送り: 0.12 mm/rev、
穴深さ: 30 mm、
の条件での軸受鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、30m/min.)を行い、
前記いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12、表13にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8,
About this invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm plate of JIS SKD61 (hardened material (HRC55)),
Cutting speed: 50 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 10 mm,
Wet high-speed drilling cutting test of alloy steel under the conditions (normal cutting speed is 20 m / min.),
About this invention coated carbide drills 4-6 and comparative coated carbide drills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS SKD11 (hardened material (HRC60)) plate material,
Cutting speed: 55 m / min. ,
Feed: 0.18 mm / rev,
Hole depth: 20 mm,
Wet high-speed drilling test of alloy steel under the conditions (normal cutting speed is 25 m / min.)
About the coated carbide drills 7 and 8 of the present invention and the comparative coated carbide drills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUJ2 (hardened material (HRC60)) plate material,
Cutting speed: 65 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 30 mm,
A wet high-speed drilling test of the bearing steel under the conditions (normal cutting speed is 30 m / min.),
In any of the wet high-speed drilling tests (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 12 and 13, respectively.
この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆超硬ドリル1〜8、および、比較表面被覆切削工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、比較被覆超硬ドリル1〜8の硬質被覆層の組成を、透過型電子顕微鏡を用いたエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、前記の各硬質被覆層の平均層厚を透過型電子顕微鏡により断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
The present invention coated carbide tips 1 to 16, the present invention coated carbide end mills 1 to 8, the present invention coated carbide drills 1 to 8, and the comparative surface coated cutting tool as the surface coated cutting tool of the present invention obtained as a result. The composition of hard coating layers of comparative coated carbide tips 1-16, comparative coated carbide end mills 1-8, comparative coated carbide drills 1-8 as energy dispersive X-ray analysis using a transmission electron microscope As a result of measurement, each showed substantially the same composition as the target composition.
Moreover, when the average layer thickness of each said hard coating layer was measured with the transmission electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.
さらに、本発明表面被覆切削工具の薄層A、薄層Bを構成する(Cr,Al,Ti,B)N層および比較表面被覆切削工具の硬質被覆層を構成する(Cr,Al,Ti,B)N層について、各層の結晶粒組織を透過型電子顕微鏡により求め、その結果を表4〜7、10〜13に示した。 Furthermore, the thin layer A and thin layer B of the present invention surface-coated cutting tool (Cr, Al, Ti, B) N layer and the comparative surface-coated cutting tool hard coating layer (Cr, Al, Ti, B) About N layer, the crystal grain structure of each layer was calculated | required with the transmission electron microscope, and the result was shown to Tables 4-7 and 10-13.
表8、10〜13に示される結果から、本発明表面被覆切削工具は、硬質被覆層がすぐれた耐摩耗性、耐熱性を示す薄層Aと、すぐれた耐チッピング性、耐熱性を示す薄層Bとの交互積層構造からなり、さらに、層間密着強度も大であるので、その結果、高熱発生を伴い、切刃に対し断続的・衝撃的負荷が作用する高硬度鋼の高速断続切削加工でも、すぐれた耐チッピング性、耐摩耗性を示すのに対して、硬質被覆層が粒状晶のみあるいは柱状晶のみからなる単一結晶粒組織の(Cr,Al,Ti,B)N層からなる被覆工具は、耐チッピング性、耐摩耗性が劣るため、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 8 and 10-13, the surface-coated cutting tool of the present invention is a thin layer A having a hard coating layer with excellent wear resistance and heat resistance, and a thin layer with excellent chipping resistance and heat resistance. High-speed intermittent cutting of high-hardness steel, which has an alternating layered structure with layer B and also has high interlayer adhesion strength, resulting in high heat generation and intermittent and impact loads on the cutting edge. However, while having excellent chipping resistance and wear resistance, the hard coating layer is composed of a single crystal grain structure (Cr, Al, Ti, B) N layer composed of only granular crystals or columnar crystals. It is apparent that the coated tool reaches the service life in a relatively short time because of its poor chipping resistance and wear resistance.
前述のように、本発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に、高熱発生を伴い、かつ、切刃に対して断続的・衝撃的な負荷が作用する高硬度鋼の高速断続切削加工でも、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the surface-coated cutting tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel and cast iron, but particularly accompanied by high heat generation and intermittent with respect to the cutting edge.・ Even in high-speed intermittent cutting of high-hardness steel that is subjected to shock loads, it exhibits excellent cutting performance over a long period of time. It is possible to cope with the reduction of cost and cost.
Claims (2)
該硬質被覆層は、CrとAlとTiとBの複合窒化物の粒状晶組織からなる薄層Aと柱状晶組織からなる薄層Bとの交互積層構造として構成され、薄層Aおよび薄層Bはそれぞれ0.05〜2μmの層厚を有し、さらに、上記薄層Aを構成する粒状晶の平均結晶粒径は30nm以下、また、上記薄層Bを構成する柱状晶の平均結晶粒径は50〜500nmであることを特徴とする表面被覆切削工具。 A hard coating layer made of a composite nitride of Cr, Al, Ti, and B having a layer thickness of 0.8 to 5.0 μm is formed on the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. In the surface-coated cutting tool formed by vapor deposition,
The hard coating layer is configured as an alternate laminated structure of a thin layer A composed of a granular crystal structure of a composite nitride of Cr, Al, Ti, and B and a thin layer B composed of a columnar crystal structure. B has a layer thickness of 0.05 to 2 μm, the average crystal grain size of the granular crystals constituting the thin layer A is 30 nm or less, and the average crystal grain of the columnar crystals constituting the thin layer B A surface-coated cutting tool having a diameter of 50 to 500 nm.
組成式:(Cr1−X−Y−ZAlXTiYBZ)N
で表した場合に、0.40≦X≦0.65、0.01≦Y≦0.20、0.005≦Z≦0.08(但し、X、Y、Zはいずれも原子比)を満足することを特徴とする請求項1記載の表面被覆切削工具。 The composite nitride of Cr, Al, Ti and B is
Composition formula: (Cr 1-X-Y -Z Al X Ti Y B Z) N
In this case, 0.40 ≦ X ≦ 0.65, 0.01 ≦ Y ≦ 0.20, 0.005 ≦ Z ≦ 0.08 (where X, Y, and Z are atomic ratios) The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010093937A JP5440346B2 (en) | 2010-04-15 | 2010-04-15 | Surface coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010093937A JP5440346B2 (en) | 2010-04-15 | 2010-04-15 | Surface coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011224671A JP2011224671A (en) | 2011-11-10 |
JP5440346B2 true JP5440346B2 (en) | 2014-03-12 |
Family
ID=45040689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010093937A Expired - Fee Related JP5440346B2 (en) | 2010-04-15 | 2010-04-15 | Surface coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5440346B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230145358A (en) * | 2021-02-19 | 2023-10-17 | 미쓰비시 마테리알 가부시키가이샤 | surface covering cutting tools |
EP4309835A1 (en) * | 2021-03-19 | 2024-01-24 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
CN118265586A (en) * | 2022-06-15 | 2024-06-28 | 住友电工硬质合金株式会社 | Cutting tool |
JP7338827B1 (en) * | 2022-06-15 | 2023-09-05 | 住友電工ハードメタル株式会社 | Cutting tools |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281361A (en) * | 2005-03-31 | 2006-10-19 | Kyocera Corp | Surface coated member and surface coated cutting tool |
JP2007152457A (en) * | 2005-12-02 | 2007-06-21 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy |
WO2007111301A1 (en) * | 2006-03-28 | 2007-10-04 | Kyocera Corporation | Surface-coated tool |
JP4844879B2 (en) * | 2006-06-30 | 2011-12-28 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy |
JP2008155329A (en) * | 2006-12-25 | 2008-07-10 | Kyocera Corp | Surface-coated tool |
JP5043908B2 (en) * | 2009-09-04 | 2012-10-10 | 株式会社神戸製鋼所 | Method for forming fine crystal hard coating |
-
2010
- 2010-04-15 JP JP2010093937A patent/JP5440346B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011224671A (en) | 2011-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594575B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP4702520B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP5344129B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP5594577B2 (en) | Surface coated cutting tool | |
JP5594576B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP2007152456A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel | |
JP5440345B2 (en) | Surface coated cutting tool | |
JP5440346B2 (en) | Surface coated cutting tool | |
JP5440353B2 (en) | Surface coated cutting tool | |
JP5429693B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP5445847B2 (en) | A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer | |
JP2009101490A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP5594569B2 (en) | Surface coated cutting tool | |
JP2009101475A (en) | Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting | |
JP5035527B2 (en) | Surface coated cutting tool | |
JP5454788B2 (en) | Surface coated cutting tool | |
JP5459618B2 (en) | Surface coated cutting tool | |
JP4645820B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP5454787B2 (en) | Surface coated cutting tool | |
JP5499861B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP5234332B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting. | |
JP5440350B2 (en) | Surface coated cutting tool | |
JP5440351B2 (en) | Surface coated cutting tool | |
JP5440352B2 (en) | Surface coated cutting tool | |
JP4678582B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5440346 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |