JP2006281361A - Surface coated member and surface coated cutting tool - Google Patents

Surface coated member and surface coated cutting tool Download PDF

Info

Publication number
JP2006281361A
JP2006281361A JP2005104024A JP2005104024A JP2006281361A JP 2006281361 A JP2006281361 A JP 2006281361A JP 2005104024 A JP2005104024 A JP 2005104024A JP 2005104024 A JP2005104024 A JP 2005104024A JP 2006281361 A JP2006281361 A JP 2006281361A
Authority
JP
Japan
Prior art keywords
film
titanium nitride
titanium
hard coating
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104024A
Other languages
Japanese (ja)
Inventor
Sakahito Tanibuchi
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005104024A priority Critical patent/JP2006281361A/en
Publication of JP2006281361A publication Critical patent/JP2006281361A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool where a hard coating film including carbonitride titanium film made of a columnar carbonitride titanium is formed on the surface of base material, preventing the occurrence of separation between the base material and the hard coating film even if high-speed and high feed cutting, heavy cutting and intermittent cutting are performed, and lengthening the life. <P>SOLUTION: The titanium nitride film where titanium nitride coarse particles growing from the surface of the base material 2 toward the direction of film thickness are sprinkled in a crystal structure formed of titanium nitride fine particles 11 is formed between the base material 2 and the columnar carbonitride titanium film made of a columnar carbonitride titanium 9, thereby improving the adhesiveness between the base material 3 and the carbonitride titanium film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面被覆部材および表面被覆切削工具に関する。   The present invention relates to a surface covering member and a surface covering cutting tool.

従来から、鋳鉄、炭素鋼、ステンレス鋼などの金属の切削加工には、周期律表第4〜6族金属の少なくとも1種を含む化合物、特に炭化タングステン相を主成分としてこれを鉄族金属で結合した超硬合金、炭窒化チタン相を主成分としてこれを鉄族金属で結合した炭窒化チタン基サーメットなどからなる基材表面に、炭化チタン(TiC)膜、窒化チタン(TiN)膜、炭窒化チタン(TiCN)膜、アルミナ(Al)膜などの硬質被覆膜を1または2以上含む硬質被覆膜を被着形成してなる表面被覆切削工具が広く用いられる。 Conventionally, for machining of metals such as cast iron, carbon steel, stainless steel, etc., a compound containing at least one group 4 to 6 metal in the periodic table, particularly a tungsten carbide phase as a main component, is used as an iron group metal. A titanium carbide (TiC) film, a titanium nitride (TiN) film, a charcoal is formed on the surface of a substrate composed of a cemented cemented carbide, a titanium carbonitride-based cermet having a titanium carbonitride phase as a main component and an iron group metal. A surface-coated cutting tool formed by depositing a hard coating film including one or more hard coating films such as a titanium nitride (TiCN) film and an alumina (Al 2 O 3 ) film is widely used.

これらのうち、炭化チタン膜、窒化チタン膜、炭窒化チタン膜などのチタン系硬質膜は機械的強度、靭性などに優れることから、基材表面にチタン系硬質膜を形成してなる表面被覆切削工具が特に汎用される。   Of these, titanium-based hard films such as titanium carbide film, titanium nitride film, and titanium carbonitride film are excellent in mechanical strength, toughness, etc., so surface-coated cutting formed by forming a titanium-based hard film on the substrate surface Tools are particularly popular.

しかしながら、従来の表面被覆切削工具は、硬質被覆膜と基材との密着性が不充分であるため、チタン系硬質被覆膜と基材との剥離が発生して、切削工具としての耐摩耗性が低下するという問題を有する。このような問題に鑑み、チタン系硬質被覆膜と基材との密着性を向上させるために、種々の提案がなされている。   However, the conventional surface-coated cutting tool has insufficient adhesion between the hard coating film and the base material. There is a problem that wear resistance is lowered. In view of such problems, various proposals have been made to improve the adhesion between the titanium-based hard coating film and the substrate.

たとえば、超硬合金基材表面に、結晶粒が粒状の組織を有する厚さ5〜50nmの窒化チタン膜と、結晶粒が柱状の組織を有する厚さ1〜8μmの炭窒化チタン膜とが順次積層されてなる表面被覆切削工具(特許文献1参照)、超硬合金基材表面に、結晶粒が粒状の組織を有する厚さ5〜50nmの炭窒化チタン膜と、結晶粒が柱状の組織を有する厚さ1〜8μmの炭窒化チタン膜とが順次積層されてなる表面被覆切削工具(特許文献2参照)などが提案される。   For example, a titanium nitride film having a thickness of 5 to 50 nm in which crystal grains have a grain structure and a titanium carbonitride film having a thickness of 1 to 8 μm in which crystal grains have a columnar structure are sequentially formed on the surface of the cemented carbide substrate. A surface-coated cutting tool that is laminated (see Patent Document 1), a cemented carbide base material surface, a titanium carbonitride film having a thickness of 5 to 50 nm having crystal grain structure, and a columnar structure of crystal grains. A surface-coated cutting tool (see Patent Document 2) in which a titanium carbonitride film having a thickness of 1 to 8 μm is sequentially laminated is proposed.

すなわち、特許文献1においては、炭窒化チタン膜と基材との密着性を向上させるために、炭窒化チタン膜と基材との間に、粒状結晶からなる窒化チタン膜および柱状結晶からなる炭窒化チタン膜を形成する。また、特許文献2においては、基材表面に粒状結晶からなる炭窒化チタン膜および柱状結晶からなる炭窒化チタン膜を順次積層することが記載されている。   That is, in Patent Document 1, in order to improve the adhesion between the titanium carbonitride film and the base material, the titanium nitride film made of granular crystals and the carbon made of columnar crystals are interposed between the titanium carbonitride film and the base material. A titanium nitride film is formed. Patent Document 2 describes that a titanium carbonitride film made of granular crystals and a titanium carbonitride film made of columnar crystals are sequentially laminated on the surface of a substrate.

しかしながら、基材表面に特許文献1および2に記載される粒状結晶または柱状結晶の均一な組織からなる硬質被覆膜を形成すると、確かにチタン系硬質被覆膜と基材との密着性は幾分向上するものの、高速・高送りフライス切削などの、突発的に大きな衝撃がかかるような断続切削加工においては、硬質被覆膜が衝撃に耐え切れず、切刃およびその周辺の硬質被覆膜が剥離して工具寿命が短くなり易い。さらに、柱状結晶のみの均一な組織からなる炭窒化チタン膜では、クラックが発生した場合、そのクラックが伸展しやすくチッピングや欠損に至る場合が多かった。   However, when a hard coating film composed of a uniform structure of granular crystals or columnar crystals described in Patent Documents 1 and 2 is formed on the surface of the base material, the adhesion between the titanium-based hard coating film and the base material is surely Although it is somewhat improved, the hard coating film cannot withstand the impact in intermittent cutting such as high-speed / high-feed milling that suddenly gives a large impact, and the hard coating around the cutting edge and its surroundings. The film is peeled off and the tool life is likely to be shortened. Furthermore, in a titanium carbonitride film having a uniform structure consisting only of columnar crystals, when a crack occurs, the crack tends to extend and often leads to chipping or defects.

また、炭化タングステン基硬質合金基材等の表面に、X線回折における(311)面に最高ピーク強度を示す炭窒化チタン結晶粒子からなる炭窒化チタン膜と、炭化チタン膜、窒化チタン膜、炭窒化チタン膜、炭窒酸化チタン膜およびアルミナ膜等とが順次積層された硬質被覆膜を形成することが提案されている(たとえば、特許文献3参照)。この文献3のように、基材に接する炭窒化チタン膜として(311)面がX線回折における最高ピーク強度を示すものを用いた場合でも、強断続切削加工のように瞬間的に大きな衝撃がかかる切削の際にはやはり密着性が不充分になり、突発的な膜剥離が発生することがしばしばである。   In addition, a titanium carbonitride film made of titanium carbonitride crystal particles having the highest peak intensity on the (311) plane in X-ray diffraction, a titanium carbide film, a titanium nitride film, and carbon It has been proposed to form a hard coating film in which a titanium nitride film, a titanium carbonitride oxide film, an alumina film, and the like are sequentially laminated (see, for example, Patent Document 3). Even when the titanium carbonitride film in contact with the base material as shown in Reference 3 has a (311) plane exhibiting the highest peak intensity in X-ray diffraction, a large impact is instantaneously generated as in the case of strongly interrupted cutting. In such cutting, the adhesiveness is still insufficient, and sudden film peeling often occurs.

すなわち、特許文献1〜3のような従来技術では、窒化チタン膜や炭窒化チタン膜の組織形状や結晶配向性を制御することによってチタン系硬質被覆膜と基材との密着性がある程度向上するものの、均一な組織であるために断続切削には充分満足できる結果が得られないことが明白である。   That is, in the conventional techniques such as Patent Documents 1 to 3, the adhesion between the titanium-based hard coating film and the substrate is improved to some extent by controlling the structure and crystal orientation of the titanium nitride film and the titanium carbonitride film. However, it is clear that a sufficiently satisfactory result cannot be obtained for intermittent cutting because of the uniform structure.

特開平6−108254号公報JP-A-6-108254 特開平6−106402号公報JP-A-6-106402 特開平5−269606号公報Japanese Patent Laid-Open No. 5-269606

本発明の目的は、過酷な加工などを施しても基材と硬質被覆膜との剥離を抑制して、長期間にわたって加工できる表面被覆部材および表面被覆切削工具を提供することである。   An object of the present invention is to provide a surface-coated member and a surface-coated cutting tool that can be processed over a long period of time while suppressing peeling between a base material and a hard coating film even when subjected to severe processing.

本発明は、基材の表面に硬質被覆膜を被覆した表面被覆部材であって、前記硬質被覆膜のうちの最下層として、膜厚方向に垂直な方向の粒子幅が平均で10nm以下の窒化チタン微細粒子からなる窒化チタン膜を具備するとともに、該窒化チタン膜中に、膜厚方向に垂直な方向の粒子幅が20〜80nm(20nm以上、80nm以下)の窒化チタン粗大粒子が分散することを特徴とする表面被覆部材である。   The present invention is a surface coating member in which the surface of a substrate is coated with a hard coating film, and the average particle width in the direction perpendicular to the film thickness direction is 10 nm or less as the lowermost layer of the hard coating film In addition, a titanium nitride coarse particle having a particle width of 20 to 80 nm (20 nm or more and 80 nm or less) in the direction perpendicular to the film thickness is dispersed in the titanium nitride film. This is a surface covering member.

ここで、本発明の表面被覆部材における第2の特徴は、前記窒化チタン粗大粒子が膜厚方向に縦長の縦長粒状結晶であって、膜厚方向の長軸長と膜厚方向に垂直な方向の短軸長とのアスペクト比(長軸長/短軸長)が1.5〜3.0(1.5以上、3.0以下)であることである。   Here, the second feature of the surface covering member of the present invention is that the titanium nitride coarse particles are vertically long granular crystals that are vertically long in the film thickness direction, and the direction of the long axis length in the film thickness direction is perpendicular to the film thickness direction. The aspect ratio (major axis length / minor axis length) to the minor axis length is 1.5 to 3.0 (1.5 or more and 3.0 or less).

さらに、本発明の表面被覆部材における第3の特徴は、前記窒化チタン粗大粒子の膜厚方向の平均長が25〜100nm(25nm以上、100nm以下)であることである。   Furthermore, the 3rd characteristic in the surface coating member of this invention is that the average length of the film thickness direction of the said titanium nitride coarse particle is 25-100 nm (25 nm or more and 100 nm or less).

さらに、本発明の表面被覆部材における第4の特徴は、前記硬質被覆膜が、前記窒化チタン膜の他に、該窒化チタン膜の直上に形成され、膜厚方向の平均結晶幅が膜厚方向に垂直な方向の平均結晶幅よりも大きい炭窒化チタン柱状結晶からなる炭窒化チタン膜を含むことである。   Furthermore, the fourth feature of the surface coating member of the present invention is that the hard coating film is formed directly on the titanium nitride film in addition to the titanium nitride film, and the average crystal width in the film thickness direction is the film thickness. A titanium carbonitride film comprising a titanium carbonitride columnar crystal that is larger than the average crystal width in the direction perpendicular to the direction.

さらに、本発明の表面被覆部材における第5の特徴は、前記炭窒化チタン柱状結晶の膜厚方向に垂直な方向の平均結晶幅が100〜1000nm(100nm以上、1000nm以下)であることである。   Furthermore, the 5th characteristic in the surface coating member of this invention is that the average crystal width of the direction perpendicular | vertical to the film thickness direction of the said titanium carbonitride columnar crystal is 100-1000 nm (100 nm or more and 1000 nm or less).

さらに、本発明の表面被覆部材における第6の特徴は、前記硬質被覆膜が、前記窒化チタン膜および前記炭窒化チタン膜の他に、さらに、Al、Zr、HfおよびTiから選ばれる1種以上の元素の炭化物、窒化物、炭窒化物、酸化物、酸窒化物、炭酸化物、および炭酸窒化物から選ばれる被覆膜の1または2以上を含むことである。   Further, a sixth feature of the surface covering member of the present invention is that the hard coating film is one kind selected from Al, Zr, Hf and Ti in addition to the titanium nitride film and the titanium carbonitride film. It includes one or more coating films selected from carbides, nitrides, carbonitrides, oxides, oxynitrides, carbonates, and carbonitrides of the above elements.

さらに、本発明の表面被覆部材における第7の特徴は、前記基材と前記硬質被覆膜とのスクラッチ試験における付着力が100N以上であることである。   Furthermore, the seventh feature of the surface covering member of the present invention is that the adhesive force in the scratch test between the base material and the hard coating film is 100 N or more.

また本発明は、すくい面と逃げ面との交差稜線部に形成された切刃を被切削物に当てて切削加工するための切削工具であって、該切削工具が前述のいずれか1つの表面被覆部材からなることを特徴とする表面被覆切削工具である。   Further, the present invention is a cutting tool for performing a cutting process by applying a cutting edge formed at an intersecting ridge line portion between a rake face and a flank face to a workpiece, and the cutting tool is any one of the aforementioned surfaces. A surface-coated cutting tool comprising a covering member.

本発明によれば、基材表面に硬質被覆膜が被着形成されてなる表面被覆部材が提供される。この硬質被覆膜は基材表面直上に被着形成される窒化チタン膜を含み、該窒化チタン膜は、膜厚方向に垂直な方向の平均粒子幅が10nm以下の窒化チタン微細結晶粒子を基本構成単位とする膜中に、膜厚方向に垂直な方向の粒子幅が20〜80nmである窒化チタン粗大粒子が分散する結晶構造を有し、基材との密着性に顕著に優れる。   According to the present invention, there is provided a surface covering member in which a hard coating film is deposited on the surface of a substrate. This hard coating film includes a titanium nitride film deposited directly on the substrate surface, and the titanium nitride film is basically composed of titanium nitride fine crystal grains having an average grain width in the direction perpendicular to the film thickness direction of 10 nm or less. The film as the structural unit has a crystal structure in which coarse titanium nitride particles having a particle width in the direction perpendicular to the film thickness direction of 20 to 80 nm are dispersed, and is remarkably excellent in adhesion to the substrate.

すなわち、この窒化チタン膜を基材表面に形成したとき、窒化チタン膜の基本構成をなす微細結晶粒子は耐衝撃性に優れてクラック等が発生することなく、かつ窒化チタン膜中に分散している窒化チタン粗大粒子がアンカー効果を発揮し、基材と窒化チタン膜との密着性を高めることができる。また、窒化チタン膜の表面に他の硬質膜を形成する場合でも、この他の硬質膜との密着性を高めることができる。   That is, when this titanium nitride film is formed on the substrate surface, the fine crystal particles constituting the basic structure of the titanium nitride film are excellent in impact resistance, are not cracked, and are dispersed in the titanium nitride film. The coarse titanium nitride particles exhibit an anchor effect, and can improve the adhesion between the substrate and the titanium nitride film. Further, even when another hard film is formed on the surface of the titanium nitride film, adhesion with the other hard film can be improved.

本発明によれば、前記窒化チタン膜において、前記窒化チタン粗大粒子が膜厚方向に縦長の粒状結晶であって、膜厚方向の長軸長と膜厚方向に垂直な方向の短軸長とのアスペクト比(長軸長/短軸長)が1.5〜3.0の範囲になるように形成することによって、窒化チタン粗大粒子のアンカー効果がさらに高まり、該窒化チタン膜と他の材料との密着性が一層向上する。   According to the present invention, in the titanium nitride film, the coarse titanium nitride particles are vertically long granular crystals in the film thickness direction, and the major axis length in the film thickness direction and the minor axis length in the direction perpendicular to the film thickness direction are By forming so that the aspect ratio (major axis length / minor axis length) is in the range of 1.5 to 3.0, the anchor effect of the titanium nitride coarse particles is further enhanced, and the titanium nitride film and other materials Adhesion with is further improved.

本発明によれば、前記窒化チタン膜における前記窒化チタン粗大粒子の膜厚方向の平均長を25〜100nmとすることによって、特に、窒化チタン膜と基材および他の硬質膜との密着性がさらに一層向上する。   According to the present invention, by setting the average length in the film thickness direction of the titanium nitride coarse particles in the titanium nitride film to 25 to 100 nm, in particular, the adhesion between the titanium nitride film and the base material and other hard films is improved. Further improvement.

本発明によれば、前記窒化チタン膜の他に、該窒化チタン膜の直上に、膜厚方向の平均長が膜厚方向に垂直な方向の平均結晶幅よりも大きい炭窒化チタン柱状結晶が並んでなる炭窒化チタン膜を含むことによって、前記窒化チタン膜との密着性が高く、かつ高い耐摩耗性、耐欠損性を併せ持つ硬質被覆膜が得られる。   According to the present invention, in addition to the titanium nitride film, a titanium carbonitride columnar crystal whose average length in the film thickness direction is larger than the average crystal width in the direction perpendicular to the film thickness direction is arranged immediately above the titanium nitride film. By including the titanium carbonitride film, the hard coating film having high adhesion with the titanium nitride film and having both high wear resistance and chipping resistance can be obtained.

本発明によれば、前記炭窒化チタン柱状結晶の膜厚方向に垂直な方向の平均結晶幅を100〜1000nmとすることによって、窒化チタン膜と炭窒化チタン膜との密着性がより一層向上する。   According to the present invention, the adhesiveness between the titanium nitride film and the titanium carbonitride film is further improved by setting the average crystal width in the direction perpendicular to the film thickness direction of the titanium carbonitride columnar crystal to 100 to 1000 nm. .

本発明によれば、前記硬質被覆膜が、前記窒化チタン膜と前記炭窒化チタン膜の他に、Al、Zr、HfおよびTiから選ばれる1種以上の元素の炭化物、窒化物、炭窒化物、酸化物、酸窒化物、炭酸化物および炭酸窒化物から選ばれる無機化合物からなる被覆膜の1または2以上を含むことによって、硬質被覆膜の硬度および靭性がさらに向上し、本発明の表面被覆部材を表面被覆切削工具として用いる場合に、該工具のさらなる高寿命化を図り得る。   According to the present invention, the hard coating film includes a carbide, nitride, carbonitride of one or more elements selected from Al, Zr, Hf and Ti in addition to the titanium nitride film and the titanium carbonitride film. The hardness and toughness of the hard coating film are further improved by including one or more of the coating film made of an inorganic compound selected from the group consisting of oxides, oxides, oxynitrides, carbonates and carbonitrides. When the surface coating member is used as a surface coating cutting tool, the tool can have a longer life.

本発明によれば、前記基材と前記硬質被覆膜とのスクラッチ試験における付着力が100N以上であることによって、前記基材と前記硬質被覆膜との高い密着性を有する表面被覆部材を得ることができる。   According to the present invention, there is provided a surface covering member having high adhesion between the base material and the hard coating film by having an adhesive force in a scratch test between the base material and the hard coating film of 100 N or more. Obtainable.

また、本発明の切削工具によれば、すくい面と逃げ面との交差稜線部に形成された切刃を被切削物に当てて切削加工するための切削工具が、前述のいずれか1つの表面被覆部材からなることにより得られる表面被覆切削工具が提供される。該表面被覆切削工具は、各種金属の切削加工などに好適に使用でき、高速・高送り切削加工、重切削加工、断続切削加工などの過酷な切削加工を実行しても、硬質被覆膜を構成する膜同士の剥離、硬質被覆膜と基材との剥離などが発生することがほとんどなく、しかも被削材と接する表面が高い機械的強度を有し研削性能に優れ、長期にわたって極めて好適に使用できる。   In addition, according to the cutting tool of the present invention, the cutting tool for applying the cutting edge formed at the intersecting ridge line portion between the rake face and the flank face to the work piece is any one of the aforementioned surfaces. A surface-coated cutting tool obtained by comprising a covering member is provided. The surface-coated cutting tool can be suitably used for various metal cutting processes, and even if a severe cutting process such as a high-speed / high-feed cutting process, a heavy cutting process, or an intermittent cutting process is performed, a hard coating film is formed. Peeling between constituent films and peeling between hard coating film and substrate hardly occur, and the surface in contact with the work material has high mechanical strength, excellent grinding performance, and extremely suitable for a long time Can be used for

本発明の表面被覆部材は、基材と、基材表面の直上に形成された特定の窒化チタン膜を含む硬質被覆膜とからなる。   The surface covering member of the present invention includes a base material and a hard coating film including a specific titanium nitride film formed immediately above the base material surface.

窒化チタン膜を構成する窒化チタン粒子は、窒化チタン膜の膜厚方向に垂直な方向(おおむね膜表面に平行な方向、以後特に断らない限り単に「膜表面方向」という)の平均粒子幅が10nm以下、好ましくは5〜10nmの微細粒子を基本構成単位として具備する。平均粒子幅が10nmを越えると、窒化チタン膜の上に形成される他の被覆膜との密着性が損なわれてしまう。また、窒化チタン微細粒子の膜厚方向の平均粒子幅(平均長軸長)は、好ましくは10〜200nmである。   The titanium nitride particles constituting the titanium nitride film have an average particle width of 10 nm in a direction perpendicular to the film thickness direction of the titanium nitride film (generally a direction parallel to the film surface, hereinafter simply referred to as “film surface direction” unless otherwise specified). In the following, preferably 5 to 10 nm fine particles are provided as a basic structural unit. When the average particle width exceeds 10 nm, adhesion with other coating films formed on the titanium nitride film is impaired. Moreover, the average particle width (average major axis length) of the titanium nitride fine particles in the film thickness direction is preferably 10 to 200 nm.

該窒化チタン膜の膜中には、基本構成単位である窒化チタン微細粒子の他に、膜表面方向の平均粒子幅である平均短軸長が20〜80nmの窒化チタン粗大粒子が分散する。窒化チタン粗大粒子は、基材と窒化チタン膜との界面から窒化チタン膜の膜厚方向に成長した縦長の粒状結晶である。なお、本発明において、窒化チタン粗大粒子が窒化チタン微細粒子中に分散した状態とは、図2,3に示すような窒化チタン粗大粒子が窒化チタン微細粒子中に独立して散在した状態を指す。   In the titanium nitride film, coarse titanium nitride particles having an average minor axis length of 20 to 80 nm, which is an average particle width in the film surface direction, are dispersed in addition to the fine titanium nitride particles as the basic structural unit. The titanium nitride coarse particles are vertically long granular crystals grown in the film thickness direction of the titanium nitride film from the interface between the base material and the titanium nitride film. In the present invention, the state in which the titanium nitride coarse particles are dispersed in the titanium nitride fine particles refers to a state in which the titanium nitride coarse particles as shown in FIGS. 2 and 3 are independently scattered in the titanium nitride fine particles. .

窒化チタン粗大粒子の平均短軸長が20nm未満では、窒化チタン粗大粒子が充分なアンカー効果が発揮されず、基材との密着性が低下する可能性がある。一方、平均短軸長が80nmを超えると、窒化チタン膜とその上に形成される膜(以後単に「上膜」という)との間に欠陥が発生しやすく付着力が低下するおそれがある。   When the average minor axis length of the titanium nitride coarse particles is less than 20 nm, the titanium nitride coarse particles do not exhibit a sufficient anchor effect, and the adhesion to the substrate may be lowered. On the other hand, if the average minor axis length exceeds 80 nm, defects are likely to occur between the titanium nitride film and a film formed thereon (hereinafter simply referred to as “upper film”), and the adhesion may be reduced.

さらに、窒化チタン粗大粒子は膜厚方向に縦長の縦長粒状結晶であることが望ましい。特に、窒化チタン粗大粒子のアスペクト比(平均長軸長/平均短軸長)は特に制限されないが、好ましくは1.5〜3.0である。アスペクト比がこの範囲にあることによって、窒化チタン粗大粒子のアンカー効果が一層高まり、窒化チタン膜と基材または上膜との密着性がさらに向上する。   Furthermore, it is desirable that the titanium nitride coarse particles are vertically long granular crystals that are vertically long in the film thickness direction. In particular, the aspect ratio (average major axis length / average minor axis length) of the titanium nitride coarse particles is not particularly limited, but is preferably 1.5 to 3.0. When the aspect ratio is within this range, the anchor effect of the titanium nitride coarse particles is further enhanced, and the adhesion between the titanium nitride film and the base material or the upper film is further improved.

また、窒化チタン粗大粒子が縦長粒状結晶であるとき、膜厚方向の平均粒子幅である平均長軸長は特に制限されないが、好ましくは25〜100nmである。この範囲であれば、窒化チタン膜の靭性が低下することなく、かつ窒化チタン膜の基材および上膜との高い密着性を維持できる。   Moreover, when the titanium nitride coarse particles are vertically long granular crystals, the average major axis length, which is the average particle width in the film thickness direction, is not particularly limited, but is preferably 25 to 100 nm. Within this range, the toughness of the titanium nitride film can be maintained and high adhesion to the substrate and upper film of the titanium nitride film can be maintained.

本発明の表面被覆部材における窒化チタン膜の膜厚は特に制限されず、窒化チタン膜を形成する基材の材質、用途などに応じて広い範囲から適宜選択できるが、たとえば、基材および上膜との密着性を考慮すると、好ましくは30nm〜200nm、さらに好ましくは40nm〜100nmである。   The film thickness of the titanium nitride film in the surface covering member of the present invention is not particularly limited and can be appropriately selected from a wide range depending on the material and use of the base material on which the titanium nitride film is formed. Is preferably 30 nm to 200 nm, and more preferably 40 nm to 100 nm.

このような構成を有する窒化チタン膜は、各種無機材料と強固に密着するという特性を有するので、この特性を利用して、各種無機材料からなる任意形状の基材表面に、この窒化チタン膜を介して種々の構成を有する被覆膜を形成できる。窒化チタン膜との密着性が高い基材としては、炭窒化チタン基サーメット、アルミナ、炭化タングステン基超硬合金、酸化ジルコニウム、炭化ジルコニウム、炭窒化ジルコニウム、窒化珪素、炭化珪素、立方晶窒化硼素(cBN)、多結晶ダイヤモンド(PCD)などが挙げられる。中でも、硬質被覆膜との密着性の点で炭化タングステン相を主体とする超硬合金からなることが望ましい。   Since the titanium nitride film having such a structure has a characteristic that it is firmly adhered to various inorganic materials, the titanium nitride film is applied to the surface of an arbitrary shape made of various inorganic materials by utilizing this characteristic. Thus, coating films having various configurations can be formed. Base materials having high adhesion to the titanium nitride film include titanium carbonitride-based cermet, alumina, tungsten carbide-based cemented carbide, zirconium oxide, zirconium carbide, zirconium carbonitride, silicon nitride, silicon carbide, cubic boron nitride ( cBN) and polycrystalline diamond (PCD). Among these, it is desirable that the cemented carbide is mainly composed of a tungsten carbide phase in terms of adhesion to the hard coating film.

本発明の表面被覆部材における硬質被覆膜は、上記窒化チタン膜の他に、窒化チタン膜の表面に形成され、膜厚方向に長い炭窒化チタン柱状結晶が筋状に並んだ構成からなる炭窒化チタン膜を含んでもよい。   In addition to the titanium nitride film, the hard coating film in the surface coating member of the present invention is formed on the surface of the titanium nitride film, and has a structure in which titanium carbonitride columnar crystals that are long in the film thickness direction are arranged in a line. A titanium nitride film may be included.

炭窒化チタン膜において、炭窒化チタン柱状結晶の膜表面方向の平均粒子幅である平均短軸長は、好ましくは100〜1000nmである。炭窒化チタン柱状結晶の平均短軸長さがこの範囲にあれば、窒化チタン層との密着性が低下することなく、かつ、炭窒化チタン粒子が粗大化して硬度が低下し耐摩耗性が低下することを防止できる。したがって、硬度と破壊靭性の両面でバランスが優れているのが上記範囲である。   In the titanium carbonitride film, the average minor axis length, which is the average particle width in the film surface direction of the titanium carbonitride columnar crystal, is preferably 100 to 1000 nm. If the average minor axis length of the titanium carbonitride columnar crystals is within this range, the adhesion with the titanium nitride layer does not decrease, and the titanium carbonitride particles become coarse to reduce the hardness and wear resistance. Can be prevented. Therefore, the above range is excellent in balance between hardness and fracture toughness.

炭窒化チタン膜の膜厚は、積層する窒化チタン膜の膜厚、硬質膜を被覆する基材の材質、基材表面に硬質膜を被覆して得られる物品の用途などの各種条件に応じて広い範囲から適宜選択できるが、たとえば、優れた耐欠損性および耐摩耗性を併せ持つことを考慮すると、好ましくは2〜20μmである。   The thickness of the titanium carbonitride film depends on various conditions such as the thickness of the titanium nitride film to be laminated, the material of the base material that covers the hard film, and the use of the article obtained by coating the hard surface on the surface of the base material. Although it can be suitably selected from a wide range, it is preferably 2 to 20 μm in view of having both excellent fracture resistance and wear resistance, for example.

本発明の表面被覆部材における硬質被覆膜は、上記窒化チタン膜および炭窒化チタン膜のほかに、特に、Al、Zr、Hf、Crから選ばれる1種以上の元素の酸化物、酸窒化物および炭酸窒化物、ならびに、チタンの炭化物、窒化物、酸化物、炭酸化物、酸窒化物および炭酸窒化物から選ばれる無機化合物または金属化合物からなる被覆膜が耐摩耗性や耐欠損性等の機械的特性に優れるため望ましい。このような他の被覆膜の具体例としては、たとえば、他の窒化チタン膜、炭化チタン膜、他の炭酸窒化チタン膜、酸窒化チタン膜、酸化アルミニウム(アルミナ)膜などが挙げられる。なお、ここで言う他の窒化チタン膜とは、本発明の窒化チタン膜であっても構わないし、本発明の窒化チタン膜以外の一般的なものであっても構わない。   In addition to the above titanium nitride film and titanium carbonitride film, the hard coating film in the surface coating member of the present invention is particularly an oxide or oxynitride of one or more elements selected from Al, Zr, Hf, and Cr And a coating film made of an inorganic compound or a metal compound selected from titanium carbide, nitride, oxide, carbonate, oxynitride and carbonitride has wear resistance, fracture resistance, etc. Desirable because of its excellent mechanical properties. Specific examples of such other coating films include other titanium nitride films, titanium carbide films, other titanium carbonitride films, titanium oxynitride films, and aluminum oxide (alumina) films. The other titanium nitride film referred to here may be the titanium nitride film of the present invention, or may be a general film other than the titanium nitride film of the present invention.

本発明の表面被覆部材における基材は、公知の方法に従い、たとえば、原料混合物を所望の形状に成形して焼成することによって製造できる。   The base material in the surface covering member of the present invention can be produced by, for example, forming a raw material mixture into a desired shape and baking it according to a known method.

基材の原料には、前述した基材を焼成によって形成し得る金属炭化物、窒化物、炭窒化物、酸化物などの無機物粉末に、金属粉末、カーボン粉末などを適宜添加したものが好ましい。原料混合物にはさらに必要に応じてバインダが適量添加され、混合される。原料混合物の成形には、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形などの、無機粉末の一般的な成形方法をいずれも利用でき、所望の工具形状に成形される。この成形物を焼成することによって基材が得られる。基材の中でも、炭化タングステン基硬質合金、サーメット硬質合金、ダイヤモンド質焼結体、立方晶窒化硼素質焼結体などの硬質合金を含むものが好ましい。得られる基材の表面には、必要に応じて、研磨加工、切刃部のホーニング加工などが施される。さらに必要に応じて、基材の切れ刃およびすくい面の表面に凹部を付与するために、ブラスト、ラッピング、バフ、ポリッシュ、バレル、研削などの機械的加工、酸およびアルカリによるエッチングなどの化学的加工、機械的加工および化学的加工を組合せた加工などが施される。その際、すくい面における算術平均粗さ(Ra)が0.1〜1.5μm、逃げ面における算術平均粗さ(Ra)が0.5〜3.0μmとなるように加工を制御するのが好ましい。   The raw material of the base material is preferably a material obtained by appropriately adding metal powder, carbon powder or the like to an inorganic powder such as metal carbide, nitride, carbonitride, oxide or the like that can form the base material by firing. If necessary, an appropriate amount of a binder is further added to the raw material mixture and mixed. For forming the raw material mixture, any of general methods for forming inorganic powders such as press molding, cast molding, extrusion molding, and cold isostatic pressing can be used, and the raw material mixture is molded into a desired tool shape. A base material is obtained by baking this molded product. Among the substrates, those containing a hard alloy such as a tungsten carbide base hard alloy, a cermet hard alloy, a diamond sintered body, and a cubic boron nitride sintered body are preferable. The surface of the obtained base material is subjected to polishing processing, honing processing of the cutting edge portion, or the like as necessary. If necessary, chemical processing such as mechanical processing such as blasting, lapping, buffing, polishing, barreling, grinding, etching with acid and alkali, etc. to provide recesses on the surface of the cutting edge and rake face of the substrate Processing that combines processing, mechanical processing, and chemical processing is performed. At that time, the processing is controlled so that the arithmetic average roughness (Ra) on the rake face is 0.1 to 1.5 μm and the arithmetic average roughness (Ra) on the flank face is 0.5 to 3.0 μm. preferable.

基材の表面に硬質被覆膜を形成するに際しては、たとえば、物理的蒸着法、気相成長(CVD)法、プラズマCVD法、スパッタ法などの一般的な薄膜形成法を利用できる。   In forming the hard coating film on the surface of the substrate, for example, a general thin film forming method such as a physical vapor deposition method, a vapor deposition (CVD) method, a plasma CVD method, or a sputtering method can be used.

以下に、気相成長法を利用する本発明の硬質被覆膜の形成方法について、その一例を説明する。この形成方法は、前処理工程と、窒化チタン膜(下地膜)形成工程と、炭窒化チタン膜形成工程と、α−アルミナ膜形成工程と、表層形成工程とを含む。なお、これらの工程は、いずれも反応チャンバなどの原料ガス供給口を供える密閉反応容器にて実施される。   Hereinafter, an example of the method for forming the hard coating film of the present invention using the vapor phase growth method will be described. This forming method includes a pretreatment step, a titanium nitride film (underlying film) forming step, a titanium carbonitride film forming step, an α-alumina film forming step, and a surface layer forming step. These steps are all carried out in a sealed reaction vessel having a source gas supply port such as a reaction chamber.

本発明によれば、まず硬質膜を成膜する前に前処理を行う。具体的に前処理工程は、基材に、加熱および加圧下で、チタン源ガスおよび水素ガスを含む混合ガスを供給することにより行われる。この前処理によって、基材表面に凹部が形成され、本発明の窒化チタン膜を上述した構成に制御することができる。   According to the present invention, pretreatment is first performed before forming a hard film. Specifically, the pretreatment step is performed by supplying a mixed gas containing a titanium source gas and hydrogen gas to the substrate under heating and pressurization. By this pretreatment, a recess is formed on the surface of the substrate, and the titanium nitride film of the present invention can be controlled to the above-described configuration.

前処理工程に使用される混合ガスの組成の具体例としては、たとえば、塩化チタンガス0.5〜10体積%および残部が水素ガスという組成が挙げられる。混合ガスの供給量は、成膜装置の容量および処理する基材の表面積に応じて適宜決定すれば良く、下記の他の工程においても同様である。前処理工程は、800〜880℃の温度下および10〜30kPaの圧力下に実施され、20〜60分間程度で終了する。   Specific examples of the composition of the mixed gas used in the pretreatment step include, for example, a composition in which titanium chloride gas is 0.5 to 10% by volume and the balance is hydrogen gas. The supply amount of the mixed gas may be appropriately determined according to the capacity of the film forming apparatus and the surface area of the substrate to be processed, and the same applies to the other processes described below. The pretreatment step is performed at a temperature of 800 to 880 ° C. and a pressure of 10 to 30 kPa, and is completed in about 20 to 60 minutes.

混合ガスの組成の具体例としては、たとえば、塩化チタンガス0.5〜5体積%、窒素ガス15〜40体積%および残部が水素ガスという組成が挙げられる。窒化チタン膜形成工程は、たとえば、800〜880℃の温度下および10〜30kPaの圧力下に実施され、10〜20分間成膜する。上記前処理工程とこの成膜工程によって、窒化チタン微細粒子からなる結晶領域中に、窒化チタン粗大粒子が点在する窒化チタン膜が形成される。成膜条件が上記範囲から外れると窒化チタン膜の組成制御が難しくなる。   Specific examples of the composition of the mixed gas include a composition in which titanium chloride gas is 0.5 to 5% by volume, nitrogen gas is 15 to 40% by volume, and the balance is hydrogen gas. The titanium nitride film forming step is performed, for example, at a temperature of 800 to 880 ° C. and a pressure of 10 to 30 kPa, and is formed for 10 to 20 minutes. By the pretreatment process and the film forming process, a titanium nitride film in which coarse titanium nitride particles are scattered in a crystal region composed of fine titanium nitride particles is formed. If the film forming conditions are out of the above range, it becomes difficult to control the composition of the titanium nitride film.

炭窒化チタン膜形成工程は、上記窒化チタン膜の表面に、加熱下および加圧下で、チタン源ガス、窒素源ガス、炭素源ガスおよびキャリアガスを含む混合ガスを供給することにより行われる。炭素源ガスとしては、たとえば、アセトニトリルガス、メタンガス、二酸化炭素ガスなどが挙げられる。なお、アセトニトリルガスは窒素源ガスでもある。混合ガスの組成の具体例としては、たとえば、塩化チタンガス0.1〜10体積%、窒素ガス0〜60体積%、アセトニトリルガス0.1〜2.0体積%および残部が水素ガスである組成が挙げられる。この組成において、アセトニトリルガスの割合を0.1〜0.4体積%に調整するのが好ましい。これによって、炭窒化チタンの柱状結晶(筋状結晶)が確実に形成され、炭窒化チタン柱状結晶が膜厚方向に配向し、各種機械的強度に優れる炭窒化チタン膜が形成される。また、前記の混合ガス組成において、アセトニトリルガスの割合VAを0.3〜3体積%に調整し、さらにキャリアガスである水素ガスの割合Vとアセトニトリルガスの割合Vとの比(V/V)が0.03以下となるように制御することによって、微細な核生成が起こり炭窒化チタン膜の平均粒子幅を上述した所定範囲に制御することが可能となり、炭化チタン膜と炭窒化チタン膜との付着性を一層向上させ得る。前記組成の混合ガスを用いる場合、炭窒化チタン膜形成工程は、780〜880℃の温度下および5〜25kPaの圧力下に実施され、3〜20分間程度で終了する。なお、成膜温度および成膜圧力は、基材表面に供給する混合ガスの組成に応じて適宜変更可能である。 The titanium carbonitride film forming step is performed by supplying a mixed gas containing a titanium source gas, a nitrogen source gas, a carbon source gas, and a carrier gas to the surface of the titanium nitride film under heating and pressure. Examples of the carbon source gas include acetonitrile gas, methane gas, carbon dioxide gas, and the like. Acetonitrile gas is also a nitrogen source gas. Specific examples of the composition of the mixed gas include, for example, titanium chloride gas 0.1 to 10% by volume, nitrogen gas 0 to 60% by volume, acetonitrile gas 0.1 to 2.0% by volume, and the balance being hydrogen gas. Is mentioned. In this composition, the acetonitrile gas ratio is preferably adjusted to 0.1 to 0.4% by volume. As a result, columnar crystals (stripe crystals) of titanium carbonitride are reliably formed, the titanium carbonitride columnar crystals are oriented in the film thickness direction, and a titanium carbonitride film excellent in various mechanical strengths is formed. In the mixed gas composition described above, the acetonitrile gas ratio VA is adjusted to 0.3 to 3% by volume, and the ratio of the hydrogen gas ratio V H as the carrier gas to the acetonitrile gas ratio V A (V A / V H ) is controlled to be 0.03 or less, fine nucleation occurs and the average particle width of the titanium carbonitride film can be controlled within the predetermined range described above. Adhesion with the titanium nitride film can be further improved. When using the mixed gas of the said composition, a titanium carbonitride film formation process is implemented under the temperature of 780-880 degreeC, and the pressure of 5-25 kPa, and is complete | finished in about 3-20 minutes. The film formation temperature and the film formation pressure can be appropriately changed according to the composition of the mixed gas supplied to the substrate surface.

また、本工程では、上述した所定の粒子幅を有する柱状粒子からなる炭窒化チタン層を形成するために、成膜温度を前記の780〜880℃にするのが望ましい。   Moreover, in this process, in order to form the titanium carbonitride layer which consists of the columnar particle | grains which have the predetermined | prescribed particle width mentioned above, it is desirable to make film-forming temperature into said 780-880 degreeC.

また、上述した窒化チタンおよび炭窒化チタン膜上に他の硬質膜を成膜する場合、例えば、中間層として炭窒酸化チタン膜を形成する場合、成膜工程で使用可能な混合ガスの別の組成として、塩化チタンガス0.1〜3体積%、二酸化炭素ガス0.01〜5体積%、メタンガス0.1〜10体積%、窒素ガス1〜15体積%および残部が水素ガスという組成が挙げられる。この混合ガスを用いる場合は、炭窒酸化チタン膜形成工程は、950〜1100℃の温度下および5〜30kPaの加圧下に行われ、2〜30分程度で終了する。   In addition, when another hard film is formed on the titanium nitride and titanium carbonitride films described above, for example, when a titanium carbonitride oxide film is formed as an intermediate layer, another mixed gas that can be used in the film forming process is different. Examples of the composition include 0.1 to 3% by volume of titanium chloride gas, 0.01 to 5% by volume of carbon dioxide gas, 0.1 to 10% by volume of methane gas, 1 to 15% by volume of nitrogen gas, and hydrogen gas as the balance. It is done. When this mixed gas is used, the titanium carbonitride oxide film forming step is performed at a temperature of 950 to 1100 ° C. and under a pressure of 5 to 30 kPa, and is completed in about 2 to 30 minutes.

アルミナ膜形成工程は、たとえば、基材表面に前記窒化チタン膜、炭窒化チタン膜および炭窒酸化チタンの成膜に続いて行われ、加熱および加圧下で、塩化アルミニウムガス3〜20体積%、塩化水素ガス0.5〜3.5体積%、二酸化炭素ガス0.01〜5体積%、硫化水素ガス0〜0.01体積%および残部が水素ガスである混合ガスを供給する条件で実行される。アルミナ膜形成工程は、たとえば、950〜1100℃の温度下および5〜10kPaの加圧下に行われ、20〜800分程度で終了する。   The alumina film forming step is performed, for example, following the formation of the titanium nitride film, titanium carbonitride film and titanium carbonitride oxide on the surface of the base material. Hydrogen chloride gas 0.5 to 3.5% by volume, carbon dioxide gas 0.01 to 5% by volume, hydrogen sulfide gas 0 to 0.01% by volume, and a mixture gas with the balance being hydrogen gas are supplied. The The alumina film forming step is performed, for example, at a temperature of 950 to 1100 ° C. and a pressure of 5 to 10 kPa, and is completed in about 20 to 800 minutes.

さらに、所望により、硬質被覆膜の最表層として窒化チタン膜を成膜する。このような最表層窒化チタン膜は、後述する加熱温度、時間および加圧下で、塩化チタンガス0.1〜10体積%、窒素ガス3〜60体積%および残部が水素ガスである混合ガスを供給することによって形成できる。なお、最表層として成膜される窒化チタン膜は上述した微細粒子中に粗大粒子が点在した本発明の窒化チタン膜であっても良いし、従来から知られている均一な組織構造からなる窒化チタン膜であってもよい。窒化チタン膜の形成は、たとえば、800〜1100℃の温度下および50〜85kPaの加圧下に行われ、10〜100分程度で終了する。   Further, if desired, a titanium nitride film is formed as the outermost layer of the hard coating film. Such an outermost layer titanium nitride film supplies a mixed gas of 0.1 to 10% by volume of titanium chloride gas, 3 to 60% by volume of nitrogen gas, and the balance being hydrogen gas under the heating temperature, time and pressure described later. Can be formed. The titanium nitride film formed as the outermost layer may be the titanium nitride film of the present invention in which coarse particles are interspersed with the fine particles described above, or has a conventionally known uniform structure. A titanium nitride film may be used. The formation of the titanium nitride film is performed, for example, at a temperature of 800 to 1100 ° C. and a pressure of 50 to 85 kPa, and is completed in about 10 to 100 minutes.

このようにして、一例として、基材表面に、本発明の窒化チタン膜、炭窒化チタン膜、炭窒酸化チタン膜、アルミナ膜および本発明の窒化チタン膜または一般的な窒化チタン膜を含む硬質被覆膜が形成された本発明の表面被覆部材が得られる。   Thus, as an example, the substrate surface includes a hard material including a titanium nitride film, a titanium carbonitride film, a titanium carbonitride oxide film, an alumina film, and a titanium nitride film of the present invention or a general titanium nitride film. The surface covering member of the present invention in which the covering film is formed is obtained.

なお、本発明の表面被覆部材における硬質被覆膜の断面の観察には、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などの顕微鏡を使用できる。特に、透過型電子顕微鏡(TEM)によれば、微小な領域を正確かつ鮮明に観察できる。   In addition, microscopes, such as a scanning electron microscope (SEM) and a transmission electron microscope (TEM), can be used for observation of the cross section of the hard coating film in the surface coating member of the present invention. In particular, according to a transmission electron microscope (TEM), a minute region can be observed accurately and clearly.

本発明の表面被覆切削工具を製造するには、上述した表面被覆部材の製造において、基材として切削工具形状のものを使用し、上記同様の工程を経て製造すればよい。得られる表面被覆切削工具には、必要に応じて、その表面、少なくとも切刃部を研磨加工することによって、硬質被覆膜中に残存する残留応力が開放され、本発明表面被覆切削工具の耐欠損性をさらに向上させることができる。   In order to manufacture the surface-coated cutting tool of the present invention, in the manufacture of the surface-coated member described above, a substrate having a cutting tool shape may be used and manufactured through the same steps as described above. In the surface-coated cutting tool obtained, if necessary, the residual stress remaining in the hard coating film is released by polishing the surface, at least the cutting edge, and the resistance of the surface-coated cutting tool of the present invention is reduced. The deficiency can be further improved.

本発明の表面被覆切削工具においては、上述した構成を確実に制御して、基材と硬質被覆膜とのスクラッチ試験における付着力は100N以上であることが好ましい。この付着力に制御することによって、切削加工時の突発的な衝撃を受けることによる硬質被覆膜の剥離が一層防止される。   In the surface-coated cutting tool of the present invention, it is preferable that the above-described configuration is reliably controlled and the adhesion force in the scratch test between the base material and the hard coating film is 100 N or more. By controlling to this adhesion force, peeling of the hard coating film due to sudden impact during cutting is further prevented.

以下に実施例および比較例を挙げ、本発明を具体的に説明する。
(実施例1〜4および比較例1〜3)
平均粒径1.2μmの金属コバルト粉末8.0重量%、平均粒径2.0μmの炭化タンタル0.7重量%、炭化チタン0.6重量%、炭化ニオブ0.4重量%および残部が平均粒径1.5μmの炭化タングステンからなる混合粉末100重量部にバインダを2重量部加えてさらに混合し、これをプレス成形により切削工具形状(CNMG120412)に形成した後、脱バインダ処理を施した。このものを炉内圧力が0.01Paに保たれた焼成炉に入れ、1000℃以上での昇温速度を3℃/分に設定して1500℃まで昇温し、その温度を保持しながら1時間焼成を行い、炭化タングステン基硬質合金基材を作製した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Examples 1-4 and Comparative Examples 1-3)
Metal cobalt powder with an average particle size of 1.2 μm is 8.0% by weight, tantalum carbide with an average particle size of 2.0 μm is 0.7% by weight, titanium carbide is 0.6% by weight, niobium carbide is 0.4% by weight, and the balance is average 2 parts by weight of a binder was added to 100 parts by weight of a mixed powder made of tungsten carbide having a particle size of 1.5 μm, and further mixed. After this was formed into a cutting tool shape (CNMG12041) by press molding, a binder removal treatment was performed. This was put into a firing furnace where the pressure in the furnace was maintained at 0.01 Pa, the temperature rising rate at 1000 ° C. or higher was set to 3 ° C./min, the temperature was raised to 1500 ° C. Time firing was performed to produce a tungsten carbide based hard alloy substrate.

この炭化タングステン基硬質合金基材の表面に、表1に示す条件で化学気相蒸着を行い、表2に示す硬質被覆膜を形成し、実施例1〜4および比較例1〜3の表面被覆切削工具を製造した。なお、表2に示す硬質被覆膜は、第1層が窒化チタン膜からなる。第2層から第4層は窒化チタン膜からなる。また、第5層は、炭窒酸化チタン膜もしくは窒酸化チタン膜からなる。第6層はアルミナ膜からなる。第7層は最表層窒化チタン膜からなる。なお、表2、第1層における「粒子形状a/b」は窒化チタン粗大粒子のアスペクト比を示す。   The surface of Examples 1 to 4 and Comparative Examples 1 to 3 is formed on the surface of this tungsten carbide base hard alloy substrate by chemical vapor deposition under the conditions shown in Table 1 to form hard coating films shown in Table 2. A coated cutting tool was produced. In the hard coating film shown in Table 2, the first layer is made of a titanium nitride film. The second to fourth layers are made of a titanium nitride film. The fifth layer is made of a titanium carbonitride oxide film or a titanium nitride oxide film. The sixth layer is made of an alumina film. The seventh layer is made of an outermost titanium nitride film. In Table 2, “particle shape a / b” in the first layer indicates the aspect ratio of the titanium nitride coarse particles.

(硬質被覆膜の状態)
実施例1〜4および比較例1〜3の表面被覆切削工具からイオンミリング法によって基材の一部および硬質被覆膜を薄膜として切り出した。この試料薄膜について高分解能透過型電子顕微鏡(HR−TEM)により高角度環状暗視野を撮影し、基材−窒化チタン層−炭窒化チタン層の観察位置を決定し、10万倍から50万倍の倍率によって3ヶ所の観察を行った。図1〜図3に、本発明の表面被覆切削工具の表面に形成される硬質被覆膜の電子顕微鏡写真を示す。図1は、実施例1の表面切削工具における、基材2と硬質被覆膜3との境界断面の顕微鏡写真である。図2は、図1に示す境界断面を拡大して示す顕微鏡写真である。図3は、図2に示す境界断面のA部をさらに拡大して示す顕微鏡写真である。なお、図1〜3において、点線Lの方向が膜表面方向である。図1において、2つの対向する矢印の間の幅aは柱状炭窒化チタンの膜表面方向の粒子幅である。図3において、2つの対向する矢印の間の幅bは窒化チタン粗大粒子10の膜表面方向の粒子幅を示す。なお、前記幅bは炭窒化チタン粗大結晶の膜厚に対して垂直な方向に線を引いたときその線分が最大となる高さ位置に図3に示すような点線Lを引いて、その線分上にある前記幅bを窒化チタン粗大粒子の結晶幅とした。表中には写真の一視野内に窒化チタン粗大粒子が10個以上存在するように設定して各窒化チタン粗大粒子の結晶幅を算出し、それらの平均値として表記した。
(State of hard coating film)
A part of the base material and the hard coating film were cut out as thin films from the surface-coated cutting tools of Examples 1 to 4 and Comparative Examples 1 to 3 by an ion milling method. The sample thin film was photographed with a high-resolution transmission electron microscope (HR-TEM), and a high-angle annular dark field was photographed, and the observation position of the base material-titanium nitride layer-titanium carbonitride layer was determined. Observation was carried out at three places according to the magnification of. 1 to 3 show electron micrographs of a hard coating film formed on the surface of the surface-coated cutting tool of the present invention. FIG. 1 is a photomicrograph of the boundary cross section between the substrate 2 and the hard coating film 3 in the surface cutting tool of Example 1. FIG. 2 is an enlarged photomicrograph showing the boundary cross section shown in FIG. FIG. 3 is a photomicrograph showing a further enlarged portion A of the boundary cross section shown in FIG. Note that, in FIGS. 1-3, the direction of the dotted line L 1 ~ 3 is a membrane surface direction. In FIG. 1, a width a between two opposing arrows is a particle width in the film surface direction of columnar titanium carbonitride. In FIG. 3, a width b between two opposing arrows indicates a particle width in the film surface direction of the titanium nitride coarse particles 10. Incidentally, the width b is subtracted dotted L 3 as shown in FIG. 3 at a height position where the line segment is maximized when lined in a direction perpendicular to the film thickness of the titanium carbonitride coarse crystals, The width b on the line segment was defined as the crystal width of the titanium nitride coarse particles. In the table, the crystal width of each titanium nitride coarse particle was calculated by setting so that 10 or more titanium nitride coarse particles existed in one field of view of the photograph, and expressed as an average value thereof.

図1〜3から、基材2の表面に形成される硬質被覆膜3は、窒化チタン微細粒子11結晶構造中に、窒化チタン粗大粒子10が点在する窒化チタン膜4と、柱状炭窒化チタン粒子9がその膜厚方向に配向する柱状炭窒化チタン膜5と、アルミナ膜6とを含むことが判る。   1-3, the hard coating film 3 formed on the surface of the substrate 2 includes a titanium nitride film 4 in which the titanium nitride coarse particles 10 are scattered in the crystal structure of the titanium nitride fine particles 11, and a columnar carbonitriding. It can be seen that the titanium particles 9 include the columnar titanium carbonitride film 5 oriented in the film thickness direction and the alumina film 6.

また、図1〜3に基づけば、基材2表面に形成される窒化チタン膜が平均粒子幅10nm以下の窒化チタン微細粒子領域の中に基材2表面から膜厚方向に向けて成長した平均幅20〜100nmの等軸または縦長の窒化チタン粗大粒子10が点在する組織であることが判る。   Moreover, based on FIGS. 1-3, the titanium nitride film | membrane formed in the base material 2 surface grows in the film thickness direction from the base material 2 surface in the titanium nitride fine particle area | region with an average particle width of 10 nm or less. It can be seen that the structure is dotted with equiaxed or vertically elongated coarse titanium nitride particles 10 having a width of 20 to 100 nm.

ここで、平均結晶幅を図1に示すような断面写真において、柱状炭窒化チタン膜5の膜厚の中間部分における高さ位置に図1に示すような点線Lを引いて、それぞれの線分上を横切る粒界数を測定して炭窒化チタン粒子の結晶幅に換算した値を算出し、写真5ヶ所についてそれぞれ算出した結晶幅の平均値を平均結晶幅として算出した。結果を表2に示す。 Here, in the cross-sectional photograph as shown in FIG. 1, the average crystal width is obtained by drawing a dotted line L 1 as shown in FIG. 1 at the height position in the middle portion of the thickness of the columnar titanium carbonitride film 5. The number of grain boundaries crossing the minute was measured, and the value converted into the crystal width of the titanium carbonitride particles was calculated. The average value of the crystal widths calculated for each of the five photographs was calculated as the average crystal width. The results are shown in Table 2.

(スクラッチ強度)
得られた工具について、工具の逃げ面において下記条件でスクラッチ試験を行い、引っ掻き痕を観察して層間剥離状態および被覆膜が基材から剥離し始める荷重を測定した。
装置:ナノテック社製CSEM−REVETEST
[測定条件]
テーブルスピード:0.17mm/sec
荷重スピード:100N/min
引掻き距離:5mm
圧子:円錐形ダイヤモンド圧子(ダイヤモンド接触子、商品名:N2−1487、(株)東京ダイヤモンド工具製作所製)
曲率半径:0.2mm
稜線角度:120°
(Scratch strength)
The obtained tool was subjected to a scratch test under the following conditions on the flank of the tool, and scratches were observed to measure the delamination state and the load at which the coating film began to peel from the substrate.
Apparatus: CSEM-REVETEST manufactured by Nanotech
[Measurement condition]
Table speed: 0.17 mm / sec
Load speed: 100 N / min
Scratch distance: 5mm
Indenter: Conical diamond indenter (diamond contactor, trade name: N2-1487, manufactured by Tokyo Diamond Tool Mfg. Co., Ltd.)
Curvature radius: 0.2mm
Ridge angle: 120 °

(摩耗試験)
実施例1〜4および比較例1〜3の切削工具を用いて下記の条件によりFCD700(被削材)の切削を30分間行い、フランク摩耗量(mm)および先端摩耗量(mm)を測定した。
被削材 :FCD700
工具形状:CNMG120412
切削速度:200m/分
送り速度:0.3mm/rev
切り込み:2.0mm
その他: 水性切削液使用
(Abrasion test)
Using the cutting tools of Examples 1 to 4 and Comparative Examples 1 to 3, FCD700 (work material) was cut for 30 minutes under the following conditions, and the flank wear amount (mm) and the tip wear amount (mm) were measured. .
Work material: FCD700
Tool shape: CNMG12041
Cutting speed: 200 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 2.0mm
Others: Use aqueous cutting fluid

(断続試験)
さらに、溝付き鋼材を用いて下記切削条件により断続試験を、実施例1〜4および比較例1〜3の切削工具の各10個ずつについて行い、欠損時の衝撃回数の平均値を求めた。また、断続試験において衝撃回数が1000回に達した時点で切刃の状態を顕微鏡にて観察し、硬質被覆膜の剥離の有無を確認した。
被削材 :FCD700 4本溝付き
工具形状:CNMG120412
切削速度:450m/分
送り速度:0.45mm/rev
切り込み:2.0mm
その他: 水性切削液使用
結果を表1に示す。
(Intermittent test)
Furthermore, an intermittent test was conducted for each of the 10 cutting tools of Examples 1 to 4 and Comparative Examples 1 to 3 using a grooved steel material under the following cutting conditions, and the average value of the number of impacts at the time of chipping was determined. Further, when the number of impacts reached 1000 in the intermittent test, the state of the cutting edge was observed with a microscope to confirm the presence or absence of peeling of the hard coating film.
Work material: FCD700 with 4 grooves Tool shape: CNMG120212
Cutting speed: 450 m / min Feeding speed: 0.45 mm / rev
Cutting depth: 2.0mm
Other: Table 1 shows the results of using the aqueous cutting fluid.

表2から、本発明の表面切削工具が、基材と硬質被覆膜との密着性が非常に高く、耐摩耗性および耐欠損性に優れ、繰返し使用によっても硬質被覆膜の剥離がなく、高寿命の切削工具であることが明らかである。   From Table 2, the surface cutting tool of the present invention has very high adhesion between the base material and the hard coating film, excellent wear resistance and chipping resistance, and the hard coating film does not peel even after repeated use. It is clear that this is a long-life cutting tool.

本発明の表面被覆切削工具における基材と硬質被覆膜との境界断面の顕微鏡写真である。It is a microscope picture of the boundary cross section of the base material and hard coating film in the surface coating cutting tool of this invention. 本発明の表面被覆切削工具における基材と硬質被覆膜との境界断面を拡大して示す顕微鏡写真である。It is a microscope picture which expands and shows the boundary cross section of the base material and hard coating film in the surface coating cutting tool of this invention. 本発明の表面被覆切削工具における基材と硬質被覆膜との境界断面を示す図2におけるA部をさらに拡大して示す顕微鏡写真である。It is a microscope picture which further expands and shows the A section in FIG. 2 which shows the boundary cross section of the base material and hard coating film in the surface coating cutting tool of this invention.

符号の説明Explanation of symbols

1 工具
2 基材
3 硬質被覆膜
4 窒化チタン膜
5 柱状炭窒化チタン膜
6 アルミナ膜
9 柱状窒化チタン粒子
10 粒状窒化チタン粒子
11 柱状窒化チタン粒子
DESCRIPTION OF SYMBOLS 1 Tool 2 Base material 3 Hard coating film 4 Titanium nitride film 5 Columnar titanium carbonitride film 6 Alumina film 9 Columnar titanium nitride particle 10 Granular titanium nitride particle 11 Columnar titanium nitride particle

Claims (8)

基材の表面に硬質被覆膜を被覆した表面被覆部材であって、前記硬質被覆膜のうちの最下層として、膜厚方向に垂直な方向の粒子幅が平均で10nm以下の窒化チタン微細粒子からなる窒化チタン膜を具備するとともに、該窒化チタン膜中に、膜厚方向に垂直な方向の粒子幅が20〜80nmの窒化チタン粗大粒子が分散してなることを特徴とする表面被覆部材。   A surface covering member in which a hard coating film is coated on the surface of a substrate, and a titanium nitride fine particle having an average particle width of 10 nm or less in the direction perpendicular to the film thickness direction as the lowermost layer of the hard coating film A surface covering member comprising a titanium nitride film made of particles, and coarse titanium nitride particles having a particle width of 20 to 80 nm in a direction perpendicular to the film thickness direction dispersed in the titanium nitride film . 前記窒化チタン粗大粒子が膜厚方向に縦長の縦長粒状結晶であって、膜厚方向の長軸長と膜厚方向に垂直な方向の短軸長とのアスペクト比(長軸長/短軸長)が1.5〜3.0であることを特徴とする請求項1記載の表面被覆部材。   The coarse titanium nitride particles are vertically long granular crystals in the film thickness direction, and the aspect ratio (major axis length / minor axis length) of the major axis length in the film thickness direction and the minor axis length in the direction perpendicular to the film thickness direction. The surface covering member according to claim 1, wherein the surface covering member is 1.5 to 3.0. 前記窒化チタン粗大粒子の膜厚方向の平均長が25〜100nmであることを特徴とする請求項1または2記載の表面被覆部材。   The surface covering member according to claim 1 or 2, wherein an average length of the titanium nitride coarse particles in a film thickness direction is 25 to 100 nm. 前記硬質被覆膜が、前記窒化チタン膜の他に、該窒化チタン膜の直上に形成され、膜厚方向の平均長が膜厚方向に垂直な方向の平均結晶幅よりも大きい炭窒化チタン柱状結晶が並んでなる炭窒化チタン膜を含むことを特徴とする請求項1〜3のいずれか1つに記載の表面被覆部材。   In addition to the titanium nitride film, the hard coating film is formed directly on the titanium nitride film, and has a columnar shape of titanium carbonitride in which the average length in the film thickness direction is larger than the average crystal width in the direction perpendicular to the film thickness direction The surface covering member according to any one of claims 1 to 3, further comprising a titanium carbonitride film in which crystals are arranged. 前記炭窒化チタン柱状結晶の膜厚方向に垂直な方向の平均結晶幅が100〜1000nmであることを特徴とする請求項4記載の表面被覆部材。   The surface covering member according to claim 4, wherein an average crystal width in a direction perpendicular to the film thickness direction of the titanium carbonitride columnar crystal is 100 to 1000 nm. 前記硬質被覆膜が、前記窒化チタン膜および前記炭窒化チタン膜の他に、さらに、アルミニウム、ジルコニウム、ハフニウムおよびチタンから選ばれる1種以上の元素の炭化物、窒化物、炭窒化物、酸化物、酸窒化物、炭酸化物、および炭酸窒化物から選ばれる被覆膜の1または2以上を含むことを特徴とする請求項4または5記載の表面被覆部材。   In addition to the titanium nitride film and the titanium carbonitride film, the hard coating film further includes a carbide, nitride, carbonitride, oxide of one or more elements selected from aluminum, zirconium, hafnium, and titanium. The surface covering member according to claim 4, comprising one or more coating films selected from oxynitrides, carbonates, and carbonitrides. 前記基材と前記硬質被覆膜とのスクラッチ試験における付着力が100N以上であることを特徴とする請求項1〜6のいずれか記載の表面被覆部材。   The surface covering member according to claim 1, wherein an adhesion force in a scratch test between the base material and the hard coating film is 100 N or more. すくい面と逃げ面との交差稜線部に形成された切刃を被切削物に当てて切削加工するための切削工具であって、請求項1〜7のいずれか1つの表面被覆部材からなることを特徴とする表面被覆切削工具。
A cutting tool for performing cutting by applying a cutting edge formed at a crossing ridge line portion between a rake face and a flank to an object to be cut, comprising the surface covering member according to any one of claims 1 to 7. A surface-coated cutting tool characterized by
JP2005104024A 2005-03-31 2005-03-31 Surface coated member and surface coated cutting tool Pending JP2006281361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104024A JP2006281361A (en) 2005-03-31 2005-03-31 Surface coated member and surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104024A JP2006281361A (en) 2005-03-31 2005-03-31 Surface coated member and surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2006281361A true JP2006281361A (en) 2006-10-19

Family

ID=37403794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104024A Pending JP2006281361A (en) 2005-03-31 2005-03-31 Surface coated member and surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2006281361A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168419A (en) * 2006-12-14 2008-07-24 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP2010207919A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
JP2011224671A (en) * 2010-04-15 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool
JP2012016783A (en) * 2010-07-08 2012-01-26 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2012091312A (en) * 2010-09-27 2012-05-17 Mitsubishi Materials Corp Surface-coated cutting tool having hard coat layer exhibiting excellent chipping resistance and wear resistance
JP2015509858A (en) * 2012-03-14 2015-04-02 ベーレリト ゲーエムベーハー ウント コー. カーゲー. Coated body and method for coating a body
KR101792534B1 (en) 2016-05-30 2017-11-02 한국야금 주식회사 Cemented carbide cutting tools
WO2019181790A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187608A (en) * 1995-01-05 1996-07-23 Mitsubishi Materials Corp Cutting tool of surface coated wc based cemented carbide
JPH08318406A (en) * 1995-05-19 1996-12-03 Sumitomo Electric Ind Ltd Covering cutting tool
JPH1015707A (en) * 1996-07-02 1998-01-20 Sumitomo Electric Ind Ltd Silicon nitride coated tool
JPH1015711A (en) * 1996-07-05 1998-01-20 Hitachi Tool Eng Ltd Surface coating cemented carbide tool
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film-coated member
JP2002126913A (en) * 2000-10-25 2002-05-08 Toshiba Tungaloy Co Ltd High adhesion hard film-covered tool and its manufacturing method
WO2005000508A1 (en) * 2003-06-27 2005-01-06 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187608A (en) * 1995-01-05 1996-07-23 Mitsubishi Materials Corp Cutting tool of surface coated wc based cemented carbide
JPH08318406A (en) * 1995-05-19 1996-12-03 Sumitomo Electric Ind Ltd Covering cutting tool
JPH1015707A (en) * 1996-07-02 1998-01-20 Sumitomo Electric Ind Ltd Silicon nitride coated tool
JPH1015711A (en) * 1996-07-05 1998-01-20 Hitachi Tool Eng Ltd Surface coating cemented carbide tool
JP2000008155A (en) * 1998-06-25 2000-01-11 Sumitomo Electric Ind Ltd Hard carbon film-coated member
JP2002126913A (en) * 2000-10-25 2002-05-08 Toshiba Tungaloy Co Ltd High adhesion hard film-covered tool and its manufacturing method
WO2005000508A1 (en) * 2003-06-27 2005-01-06 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168419A (en) * 2006-12-14 2008-07-24 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP2010207919A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
JP2011224671A (en) * 2010-04-15 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool
JP2012016783A (en) * 2010-07-08 2012-01-26 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2012091312A (en) * 2010-09-27 2012-05-17 Mitsubishi Materials Corp Surface-coated cutting tool having hard coat layer exhibiting excellent chipping resistance and wear resistance
JP2015509858A (en) * 2012-03-14 2015-04-02 ベーレリト ゲーエムベーハー ウント コー. カーゲー. Coated body and method for coating a body
US9636750B2 (en) 2012-03-14 2017-05-02 Boehlerit Gmbh & Co.Kg. Coated body and method for coating a body
KR101792534B1 (en) 2016-05-30 2017-11-02 한국야금 주식회사 Cemented carbide cutting tools
WO2019181790A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
CN111886096A (en) * 2018-03-20 2020-11-03 京瓷株式会社 Insert and cutting tool provided with same
JPWO2019181790A1 (en) * 2018-03-20 2021-04-15 京セラ株式会社 Insert and cutting tool equipped with it
JP7092866B2 (en) 2018-03-20 2022-06-28 京セラ株式会社 Inserts and cutting tools equipped with them

Similar Documents

Publication Publication Date Title
RU2465098C2 (en) Hard metal tip
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP4854359B2 (en) Surface coated cutting tool
JP5872747B1 (en) Surface coated cutting tool
EP3085478B1 (en) Coated tool
JPWO2007122859A1 (en) CUTTING TOOL, MANUFACTURING METHOD THEREOF, AND CUTTING METHOD
WO1994028191A1 (en) Coated cutting tool and method for producing the same
JP5710008B2 (en) Cutting tools
JP2009519139A (en) Coated cutting tool insert
JP2006281363A (en) Surface coated member and surface coated cutting tool
JP2006281361A (en) Surface coated member and surface coated cutting tool
JP2006272515A (en) Surface coated cutting tool
JP5918457B1 (en) Coated tool
JP4711691B2 (en) Surface covering member and cutting tool
JP6507456B2 (en) Method of manufacturing surface coated cutting tool
EP1253124B2 (en) Highly adhesive surface-coated cemented carbide and method for producing the same
JP2012144766A (en) Coated member
JP4142955B2 (en) Surface coated cutting tool
CN102883840A (en) Surface coated cutting tool
JP2008238392A (en) Cutting tool
JP2006205300A (en) Surface-coated member and cutting tool
CN112839761B (en) cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JPH0818163B2 (en) Alumina coating tool and manufacturing method thereof
JP4845490B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Effective date: 20110516

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906