JP4142955B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP4142955B2
JP4142955B2 JP2003005226A JP2003005226A JP4142955B2 JP 4142955 B2 JP4142955 B2 JP 4142955B2 JP 2003005226 A JP2003005226 A JP 2003005226A JP 2003005226 A JP2003005226 A JP 2003005226A JP 4142955 B2 JP4142955 B2 JP 4142955B2
Authority
JP
Japan
Prior art keywords
layer
ticn layer
flank
rake face
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003005226A
Other languages
Japanese (ja)
Other versions
JP2004216488A (en
Inventor
俊彦 荻野
恵司 宇佐美
栄仁 谷渕
真 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003005226A priority Critical patent/JP4142955B2/en
Publication of JP2004216488A publication Critical patent/JP2004216488A/en
Application granted granted Critical
Publication of JP4142955B2 publication Critical patent/JP4142955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐チッピング性および耐摩耗性を有する硬質被覆層を表面に被着形成した表面被覆切削工具に関し、特に鋳鉄の断続切削等の大きな衝撃が切刃にかかるような切削に際しても、優れた耐欠損性および切削特性を有する表面被覆切削工具に関する。
【0002】
【従来の技術】
従来より、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の母材の表面に、TiC層、TiN層、Al23層およびTiCN層等の硬質被覆層を単層または複数層被着形成した表面被覆切削工具が多用されている。
【0003】
上記硬質被覆層として、後述の特許文献1乃至3には、TiCN層中のTiCN粒子を母材表面に対して垂直に成長した柱状とし、かつこの結晶粒径を微細化することが記載され、工具の耐欠損性および耐摩耗性を高めることができることが記載されている。
【0004】
一方、鋳鉄の断続切削等の大きな衝撃が切刃にかかるような切削においては、従来の工具では硬質被覆層が大きな衝撃に耐えきれずすくい面においてチッピングや硬質被覆層の剥離から切刃の欠損や急激な摩耗の進行が起こることにより工具寿命が延びないという問題があった。
【0005】
【特許文献1】
特開平7−285001号公報
【特許文献2】
特開平10−109206号公報
【特許文献3】
特開2002−192404号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1乃至3に記載されたTiCN層の構成によっても鋳鉄の断続切削等の大きな衝撃がかかるような切削においてはチッピングや硬質被覆層の剥離を防止することができず、特にすくい面側においてTiCN層付近で硬質被覆層の剥離が発生しやすいという問題があった。また、この硬質被覆層のチッピングや硬質被覆層の剥離を防止する目的で硬質被覆層の膜厚を薄くすると逃げ面摩耗が著しくなって、やはり工具寿命を延ばすことができなかった。
【0007】
したがって、本発明は、上記課題を解決するためになされたもので、その目的は、特に鋳鉄の断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、すくい面における硬質被覆層でのTiCN層付近でチッピングや硬質被覆層の剥離が発生することなく硬質被覆層の密着性を高めることができるとともに、優れた耐欠損性および耐摩耗性を有する長寿命の切削工具を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記課題に対し、工具の耐欠損性を高める方法について検討した結果、前記表面被覆切削工具のTiCN層を化学気相蒸着法によって母材に対して垂直な方向に成長した筋状結晶にて形成するとともに、工具のすくい面表面に位置する前記筋状結晶を前記逃げ面表面に位置する前記筋状結晶よりも細くする、つまりすくい面表面に位置する前記筋状結晶の平均幅を前記逃げ面表面に位置する前記筋状結晶の平均幅よりも狭くすることによって、特に鋳鉄の断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、すくい面側でのTiCN層付近のチッピングや層剥離が発生することなく硬質被覆層の強固な密着性を維持できるとともに、逃げ面においてはTiCN層が耐摩耗性に優れた組織に制御することができることから、過酷な切削条件においても優れた耐摩耗性および耐欠損性を有する切削工具が得られることを知見した。
【0009】
すなわち本発明の表面被覆切削工具は、超硬合金、サーメットまたはセラミックスからなる母材の表面に、少なくとも化学気相蒸着法によって成膜されたTiCN層を1層具備する硬質被覆層を被着形成し、すくい面と逃げ面の交差稜を切刃として用いる表面被覆切削工具であって、前記表面被覆切削工具の前記TiCN層を含む断面における走査型顕微鏡写真において、前記すくい面における前記TiCN層の膜厚が5μmから9μm、前記逃げ面における前記TiCN層の膜厚が6μmから10μmであり、前記TiCN層が前記母材に対して垂直な方向に成長した筋状結晶からなるとともに、前記TiCN層の結晶成長状態を制御することで、前記すくい面表面に位置する前記筋状結晶の平均幅が、前記逃げ面表面に位置する前記筋状結晶の平均幅よりも狭くなっていることを特徴とするものである
た、前記すくい面表面に位置する前記TiCN層中の前記筋状結晶の平均幅w1と前記逃げ面表面に位置する前記TiCN層中の前記筋状結晶の平均幅w2との比(w2/w1)が0.46から0.60であることを特徴とする。
さらに、前記すくい面における前記TiCN層の膜厚t1と前記逃げ面における前記TiCN層の膜厚t2との比(t2/t1)が8/7から10/9であることを特徴とする。
【0010】
ここで、前記TiCN層の表面にAl23層を形成することによって、硬質被覆層の耐摩耗性をさらに高めることができるとともに、TiCN層とAl23層間の剥離を防止することができる。
【0011】
また、前記すくい面に位置するTiCN層の厚みが、前記逃げ面に位置するTiCN層の厚みより薄いこと、または前記すくい面のAl層の厚みが前記逃げ面のAl層の厚みより薄いことによって、硬質被覆層の耐欠損性および耐摩耗性をさらに高めることができる
【0012】
【発明の実施の形態】
本発明の表面被覆切削工具とスローアウェイチップについて、その一例についての模式図である図1を基に説明する。
【0013】
図1によれば、表面被覆切削工具(以下、単に工具と略す。)1は、炭化タングステン(WC)と、所望により周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄属金属から成る結合相にて結合させた超硬合金や、炭化チタン(TiC)や炭窒化チタン(TiCN)を主体として周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄属金属から成る結合相にて結合させたサーメット等の硬質合金からなる所定形状の母材2の表面に複数の硬質被覆層3を被着形成し、すくい面4と逃げ面5の交差稜を切刃6として用いたものからなる。
【0014】
本発明によれば、図1のTiCN層7の要部拡大図である図2((a)すくい面におけるTiCN層7の結晶性状、(b)逃げ面におけるTiCN層7の結晶性状)に示すように、母材2の表面に形成される硬質被覆層3が、少なくともTiCN層7を1層具備するとともに、工具1のTiCN層7を含む断面における走査型顕微鏡写真において、TiCN層7が母材2に対して垂直な方向に成長した筋状結晶からなるとともに、すくい面4表面に位置する前記筋状結晶の平均幅w1が、逃げ面5表面に位置する前記筋状結晶の平均幅w2よりも狭い(小さい)ことが大きな特徴であり、これによって、特に鋳鉄の断続切削等の工具1切刃に強い衝撃がかかるような過酷な切削条件においても、すくい面4側でのTiCN層7付近のチッピングや層剥離が発生することなく硬質被覆層3の強固な密着性を維持できるとともに、逃げ面5においてはTiCN層7が耐摩耗性に優れた組織に制御することができることから、耐摩耗性および耐欠損性を有する工具1が得られる。
【0015】
すなわち、すくい面4表面に位置するTiCN層7中の前記筋状結晶の平均幅w1が、逃げ面5表面に位置するTiCN層7中の前記筋状結晶の平均幅w2と同じか、または広い(大きい)と、工具1切刃に強い衝撃がかかるような過酷な切削条件において、すくい面4側でのTiCN層7付近のチッピングや層剥離が発生するか、または、逃げ面5においてTiCN層7の耐摩耗性が低下して工具全体の寿命が短くなってしまう。
【0016】
なお、本発明において、すくい面4表面に位置する前記筋状結晶の平均幅w1、および逃げ面5表面に位置する前記筋状結晶の平均幅w2は、工具1のTiCN層7を含む破断面または鏡面における走査型顕微鏡写真において、TiCN層7の層方向(筋状結晶を横切る方向)で厚み30%、50%、70%の位置に引いた3本の直線L1、L2、L3の長さを横切る粒界の数で除した値の平均値を指す(図2参照)。
【0017】
ここで、すくい面4表面に位置するTiCN層7中の前記筋状結晶の平均幅w1と逃げ面5表面に位置するTiCN層7中の前記筋状結晶の平均幅w2との比(w/w)が0.4〜0.9、特に0.5〜0.85、さらには0.55〜0.8であることが耐チッピング性および耐摩耗性のバランスを最適化する上で望ましい。
【0018】
また、本発明によれば、硬質被覆層3の耐摩耗性を高めるために、TiCN層7の表面にAl23層9を形成することが望ましく、また、本発明における上記TiCN層7の構成によれば、すくい面4および逃げ面5のAl23層9いずれについても層間剥離することなく良好な付着力を得ることができる。
【0020】
なお、本発明におけるクラック密度とは工具1の表面を20mmφの超硬合金製ボールに平均粒径1μmのダイヤ砥粒を塗布して硬質被覆層3の表面を研磨して、TiCN層7部分を金属顕微鏡写真にて観察した際TiCN層7部分に生成するクラックによって囲まれる部分の平均面積を算出することによって求めることができ、平均面積が大きいとクラック密度が低く、平均面積が小さいとクラック密度が高くなることを指す。
【0021】
さらに、本発明によれば、すくい面4側でのTiCN層7付近のチッピングや層剥離が発生することなく硬質被覆層3の強固な密着性を維持するとともに、逃げ面5においてTiCN層7が耐摩耗性に優れた組織に制御するために、すくい面4に位置するTiCN層7の厚みt1が、逃げ面5に位置するTiCN層7の厚みt2より薄いこと、またはすくい面の被覆層の総厚みT1が逃げ面の被覆層の総厚みT2より薄いことが望ましい。また、硬質被覆層3の各層の膜厚は、硬質被覆層3の耐チッピング性および耐摩耗性を向上させる点で、すくい面4におけるTiCN層7の膜厚:5〜9μm、逃げ面5におけるTiCN層7の膜厚:6〜10μmであることが望ましい。なお、すくい面4におけるAl23層9は1〜4μm、逃げ面5におけるAl23層9は3〜6μmであることが切刃の耐欠損性および耐摩耗性を高める点で望ましい。
【0022】
また、すくい面4の切刃6における硬質被覆層6の剥離によるチッピングの発生を防止するために、予め、切刃6のすくい面4側のみAl23層9を除去し、逃げ面5側のみAl23層9を形成したものであっても良い。
【0023】
さらに、本発明によれば、TiCN層7と母材2との間に母材2から硬質被覆層3中への炭素の拡散、すなわち、脱炭を防止し、さらに母材2表面における脆化相、いわゆる、迹鰍フ形成を抑制するために、下層11としてTiN層、TiCN層、TiCO層、TiCNO層、TiNO層、TiC層から選ばれる少なくとも1層を介装してもよく、また、硬質被覆層3の表面に切削時における被削材との耐溶着性を向上させ、かつ、使用コーナーの識別を明確にするために、上層12としてTiN層、TiCN層、TiCO層、TiCNO層、TiNO層、TiC層から選ばれる少なくとも1層を積層してもよい。
【0024】
また、本発明によれば、切削工具として、図4に示すような略平板状をなし多角形状をなす2つの主面21,22がすくい面21と着座面22を、側面が逃げ面23をなし、両主面21,22と逃げ面23の交差稜線に切刃24を有した両面使用可能なスローアウェイチップ20を用いる場合には、特に鋳鉄切削において優れた耐チッピング性を実現するために、図4に示すような形状、すなわち、両主面21,22の周縁部にランド面25を、ランド面25から内側にブレーカ部26をはさんで中央面(すわり面)27を設けるとともに、中央面27とランド面25とを同じ高さとすることが望ましく、これによってチップのすわりの安定性が高くなるので加工時にチップ自体が微振動して硬質被覆層3がより強い衝撃を受けて硬質被覆層3が剥離することを防止できる。なお、図4によれば、スローアウェイチップ20の中央部にはスローアウェイチップ20をチップホルダ(図示せず)にクランプするためのクランプ穴28を設けているが、本発明はこれに限定されるものではなく、クランプ穴28を設けずクランプオン方式でチップ20を固定するものであっても良い。
【0025】
また、この場合、硬質被覆層3の耐チッピング性を高めるために、図1に示すように、切刃24にRホーニング29をつけること、さらにRホーニング部29の硬質被覆層3表面を微小研磨して(微小研磨部30)硬質被覆層3内に内在する残留応力を低減することが望ましい。
【0026】
(製造方法)
また、上述した表面被覆切削工具を製造するには、まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金母材2を作製する。
【0027】
次に、本発明によれば、硬質合金母材2のすくい面4表面について、前記結合金属の含有比率が少ない領域が除去されるように研磨加工を施すことによって、母材2のすくい面4表面に存在する焼肌面を除去するとともにすくい面の平滑性を高めた後に、硬質合金母材2を1〜20Paの真空中、1000〜1300℃にて0.5〜2時間熱処理することにより、硬質合金母材2表面の結合金属成分を蒸発、揮散させて、硬質合金母材2表面に結合金属の含有比率が少ない領域を形成せしめることが重要であり、これによって、後述するTiCN層7を成膜する際に、すくい面4側および逃げ面5側のTiCN層7の結晶成長状態を制御することができる。
【0028】
その後、上記母材2の表面に化学気相蒸着法によって硬質被覆層3を成膜する。TiCN層の成膜条件は、例えば、反応ガス組成として、体積%でTiCl4ガスを0.1〜10体積%、N2ガスを0〜60体積%、CH4ガスを0〜0.1体積%、CH3CNガスを0.01〜1体積%、残りがH2ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaにて成膜する。
【0029】
ここで、上記成膜条件のうち、CH3CNガスの流量が0.01体積%より少ないとTiCN層7を筋状結晶に成長させることができず、逆にCH3CNガスの流量が1体積%を超えるとTiCN層7の筋状結晶の平均幅を制御することができない。
【0030】
また、本発明によれば、引き続き、AlCl3ガスを3〜20体積%、HClガスを0.5〜3.5体積%、CO2ガスを0.01〜5.0体積%、H2Sガスを0〜0.01体積%、残りがH2ガスからなる混合ガスを用い、900〜1100℃、5〜10kPaの条件でAl23層6を被覆することが望ましい。
【0031】
なお、上記硬質被覆層に、下層を成膜する場合、例えば下層としてTiN層を成膜するには、反応ガス組成としてTiCl4ガスを0.1〜10体積%、N2ガスを0〜60体積%、残りがH2ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。また、上層を成膜する場合、例えば上層としてTiN層を成膜するには、反応ガス組成としてTiCl4ガスを0.1〜10体積%、N2ガスを0〜60体積%、残りがH2ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。
【0032】
【実施例】
平均粒径1.5μmの炭化タングステン(WC)粉末、平均粒径1.2μmの金属コバルト(Co)粉末および平均粒径2.0μmの表1に示す金属元素(M)の無機化合物粉末を表1に示す比率で添加、混合して、プレス成形により切削工具形状(CNMG120408)に成形した後、脱バインダ処理を施し、さらに、1000℃以上を3℃/分の速度で昇温して、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。
【0033】
そして、上記超硬合金に対して、表1に示すようにすくい面表面に研磨加工を施した後、表1に示す条件で熱処理を施した。なお、熱処理の真空度は20Pa以下とした。その後、CVD法により表2に示す条件で各種の硬質被覆層を形成して表1の切削工具を作製した。
【0034】
そして、この切削工具を用いて下記の条件によりダクタイル鋳鉄の切削を5分間行い、切削工具の切刃の観察を行うとともに逃げ面のフランク摩耗量および先端摩耗量を測定した。結果は表2に示した。
【0035】
(摩耗試験)
被削材 :ダクタイル鋳鉄(FCD450)
工具形状:CNMA120412
切削速度:450m/分
送り速度:0.5mm/rev
切り込み:2mm
その他 :水溶性切削液使用
また、上記工具の表面をカロテスターにより20mmφの超硬合金製ボールに平均粒径1μmのダイヤ砥粒を塗布して硬質被覆層の表面を研磨して、TiCN層7部分を金属顕微鏡写真にて観察した際TiCN層7部分に生成するクラックによって囲まれる部分の平均面積を算出することによってすくい面および逃げ面のクラック密度を算出し比較した。
【0036】
【表1】

Figure 0004142955
【0037】
【表2】
Figure 0004142955
【0038】
表2の結果より、すくい面と逃げ面のTiCN結晶平均幅比が同じか、またはすくい面側が広い試料No.5〜9では、すくい面側にチッピングが生じやすく、または逃げ面摩耗が発生しやすいものであった。
【0039】
これに対して、本発明に従い、逃げ面のTiCN結晶の平均幅が広い試料No.1〜4では、いずれも硬質被覆層の剥離が発生せず優れた切削性能を有するものであった。
【0040】
【発明の効果】
以上詳述したとおり、本発明の表面被覆切削工具によれば、TiCN層を母材に対して垂直な方向に成長した筋状結晶にて形成するとともに、工具のすくい面表面に位置する前記筋状結晶の平均幅を逃げ面表面に位置する前記筋状結晶の平均幅よりも狭くすることによって、特に鋳鉄の断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、すくい面側でのTiCN層付近のチッピングや層剥離が発生することなく硬質被覆層の強固な密着性を維持できるとともに、逃げ面においてはTiCN層が耐摩耗性に優れた組織に制御することができ、過酷な切削条件においても優れた耐摩耗性および耐欠損性を有する切削工具が得られる。
【図面の簡単な説明】
【図1】本発明の表面被覆切削工具の概略断面図である。
【図2】図1の表面被覆切削工具の硬質被覆層部分についての要部拡大図である。
【図3】本発明の表面被覆切削工具のクラック密度の測定データの一例である。
【図4】図1の表面被覆切削工具の一例であるスローアウェイチップの好適な形状を説明するための概略断面図である。
【符号の説明】
1 表面被覆切削工具
2 母材
3 硬質被覆層
4 すくい面
5 逃げ面
6 切刃
7 TiCN層
9 Al23
10 上層(硬質被覆層の最外層をなすTiN層)
12 下層(硬質被覆層の最内層をなすTiN層)
21 すくい面(着座面)
22 着座面(すくい面)
23 逃げ面
24 切刃
25 ランド面
26 ブレーカ部
27 中央面(すわり面)
28 クランプ穴
29 ホーニングR部
30 微小研磨部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-coated cutting tool in which a hard coating layer having excellent chipping resistance and wear resistance is formed on the surface thereof, and in particular, even in cutting where a large impact such as intermittent cutting of cast iron is applied to the cutting blade. The present invention relates to a surface-coated cutting tool having excellent fracture resistance and cutting characteristics.
[0002]
[Prior art]
Conventionally, cutting tools widely used for metal cutting are hard coatings such as TiC layer, TiN layer, Al 2 O 3 layer and TiCN layer on the surface of the base material such as cemented carbide, cermet, ceramics, etc. A surface-coated cutting tool in which a single layer or a plurality of layers is formed is often used.
[0003]
As the hard coating layer, Patent Documents 1 to 3 to be described later describe that the TiCN particles in the TiCN layer have a columnar shape grown perpendicularly to the surface of the base material, and the crystal grain size is refined. It is described that the fracture resistance and wear resistance of a tool can be improved.
[0004]
On the other hand, in cutting where a large impact is applied to the cutting blade, such as interrupted cutting of cast iron, the hard coating layer cannot withstand the large impact with conventional tools, and chipping or chipping of the cutting blade from the peeling of the hard coating layer on the rake surface In addition, there is a problem that the tool life is not extended due to the rapid progress of wear.
[0005]
[Patent Document 1]
JP 7-285001 A [Patent Document 2]
Japanese Patent Laid-Open No. 10-109206 [Patent Document 3]
JP-A-2002-192404 [0006]
[Problems to be solved by the invention]
However, even with the structure of the TiCN layer described in Patent Documents 1 to 3, it is impossible to prevent chipping and peeling of the hard coating layer in cutting where a large impact such as intermittent cutting of cast iron is applied. There was a problem that the hard coating layer was easily peeled near the TiCN layer on the surface side. Further, if the thickness of the hard coating layer is reduced for the purpose of preventing chipping of the hard coating layer or peeling of the hard coating layer, the flank wear becomes remarkable, and the tool life cannot be extended.
[0007]
Therefore, the present invention has been made to solve the above-mentioned problems, and its object is to provide a hard surface on the rake face even under severe cutting conditions such as intermittent cutting of cast iron, etc. where a strong impact is applied to the tool cutting edge. A long-life cutting tool that can improve the adhesion of the hard coating layer without causing chipping or peeling of the hard coating layer in the vicinity of the TiCN layer in the coating layer, and has excellent fracture resistance and wear resistance. It is to provide.
[0008]
[Means for Solving the Problems]
As a result of studying a method for increasing the fracture resistance of the tool, the present inventor has studied the method of growing the TiCN layer of the surface-coated cutting tool in a direction perpendicular to the base material by chemical vapor deposition. The streak crystal formed on the rake face surface of the tool is made thinner than the streak crystal located on the flank surface, that is, the average of the streak crystal located on the rake face surface. By making the width narrower than the average width of the streaky crystals located on the flank surface, the rake face side, even under severe cutting conditions, such as interrupting cutting of cast iron, that is subject to strong impact It is possible to maintain the tight adhesion of the hard coating layer without causing chipping or delamination in the vicinity of the TiCN layer, and to control the structure of the TiCN layer with excellent wear resistance on the flank surface. Since that can was found that the cutting tool can be obtained with excellent wear resistance and fracture resistance under severe cutting conditions.
[0009]
That is, the surface-coated cutting tool of the present invention forms a hard coating layer having at least one TiCN layer formed by chemical vapor deposition on the surface of a base material made of cemented carbide, cermet or ceramics. And a surface-coated cutting tool using a cross edge of the rake face and the flank face as a cutting blade, wherein the TiCN layer on the rake face is a scanning micrograph in a cross-section including the TiCN layer of the surface-coated cutting tool. The film thickness is 5 μm to 9 μm, the film thickness of the TiCN layer on the flank is 6 μm to 10 μm, the TiCN layer is made of streak crystals grown in a direction perpendicular to the base material, and the TiCN layer By controlling the crystal growth state, the streak crystal located on the rake face surface has an average width of the stripe connection located on the flank face surface. And it is characterized in that narrower than the average width.
Also, the ratio of the streak average width w2 of the crystals of the TiCN layer positioned in the muscle-like average width w1 and the flank surface of the crystals of the TiCN layer located on the rake face surface (w2 / w1) is 0.46 to 0.60.
Further, the ratio (t2 / t1) between the thickness t1 of the TiCN layer on the rake face and the thickness t2 of the TiCN layer on the flank is from 8/7 to 10/9.
[0010]
Here, by forming the Al 2 O 3 layer on the surface of the TiCN layer, the wear resistance of the hard coating layer can be further increased, and peeling between the TiCN layer and the Al 2 O 3 layer can be prevented. it can.
[0011]
The thickness of the TiCN layer located on the rake face, the thinner than the thickness of the TiCN layer positioned flank, or Al 2 O 3 layer of the thickness of the Al 2 O 3 layer of the rake face the flank By being thinner than the thickness, the chipping resistance and wear resistance of the hard coating layer can be further enhanced .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The surface-coated cutting tool and the throw-away tip of the present invention will be described with reference to FIG. 1 which is a schematic diagram of an example thereof.
[0013]
According to FIG. 1, a surface-coated cutting tool (hereinafter simply referred to as a tool) 1 includes tungsten carbide (WC) and, optionally, carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table. A cemented carbide in which a hard phase composed of at least one selected from the group of materials is bonded with a binder phase composed of an iron group metal of cobalt (Co) and / or nickel (Ni), titanium carbide (TiC), and charcoal A hard phase composed mainly of titanium nitride (TiCN) and selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table is made of cobalt (Co) and / or nickel ( A plurality of hard coating layers 3 are deposited on the surface of a base material 2 of a predetermined shape made of a hard alloy such as cermet bonded with a binder phase made of a ferrous metal of Ni), and a rake face 4 and a flank face 5 Cutting edge of crossing ridge Consisting of those used as.
[0014]
According to the present invention, FIG. 2 ((a) the crystalline properties of the TiCN layer 7 on the rake face, (b) the crystalline properties of the TiCN layer 7 on the flank face) is an enlarged view of the main part of the TiCN layer 7 of FIG. As described above, the hard coating layer 3 formed on the surface of the base material 2 includes at least one TiCN layer 7, and in the scanning micrograph in the cross section including the TiCN layer 7 of the tool 1, the TiCN layer 7 is the base material. The average width w 1 of the streak crystal located on the surface of the rake face 4 is the average width of the streak crystal located on the surface of the flank 5. The feature is that it is narrower (smaller) than w 2 , and this makes TiCN on the rake face 4 side even under severe cutting conditions in which a strong impact is applied to the cutting edge of the tool 1 such as intermittent cutting of cast iron. Chipping near layer 7, Since the strong adhesion of the hard coating layer 3 can be maintained without causing peeling, and the TiCN layer 7 can be controlled to a structure having excellent wear resistance on the flank 5, wear resistance and defect resistance A tool 1 having the properties can be obtained.
[0015]
That is, the average width w 1 of the streaks in the TiCN layer 7 located on the surface of the rake face 4 is the same as the average width w 2 of the streaks in the TiCN layer 7 located on the surface of the flank 5, Or, if it is wide (large), chipping or delamination near the TiCN layer 7 on the rake face 4 side may occur under severe cutting conditions in which a strong impact is applied to the cutting edge of the tool 1 or on the flank 5 The wear resistance of the TiCN layer 7 is reduced and the life of the entire tool is shortened.
[0016]
In the present invention, the average width w 1 of the streaky crystals located on the surface of the rake face 4 and the average width w 2 of the streaks located on the surface of the flank 5 include the TiCN layer 7 of the tool 1. In the scanning micrograph at the fractured surface or mirror surface, three straight lines L 1 , L 2 drawn at 30%, 50%, and 70% thickness in the layer direction of the TiCN layer 7 (direction crossing the streak crystal), The average value of the values divided by the number of grain boundaries crossing the length of L 3 is indicated (see FIG. 2).
[0017]
Here, the ratio (w 1) between the average width w1 of the streaky crystal in the TiCN layer 7 located on the surface of the rake face 4 and the average width w2 of the streaky crystal in the TiCN layer 7 located on the surface of the flank 5 / W 2 ) is 0.4 to 0.9, particularly 0.5 to 0.85, more preferably 0.55 to 0.8, in order to optimize the balance between chipping resistance and wear resistance. desirable.
[0018]
In addition, according to the present invention, it is desirable to form the Al 2 O 3 layer 9 on the surface of the TiCN layer 7 in order to increase the wear resistance of the hard coating layer 3. According to the configuration, good adhesion can be obtained without delamination on both the rake face 4 and the flank 5 Al 2 O 3 layer 9.
[0020]
In the present invention, the crack density means that the surface of the tool 1 is coated with 20 mmφ cemented carbide balls with diamond abrasive grains having an average particle diameter of 1 μm to polish the surface of the hard coating layer 3, and the TiCN layer 7 portion is formed. It can be obtained by calculating the average area of the portion surrounded by cracks generated in the TiCN layer 7 when observed with a metallurgical micrograph. The crack density is low when the average area is large, and the crack density when the average area is small. Points to a higher price.
[0021]
Further, according to the present invention, the strong adhesion of the hard coating layer 3 is maintained without occurrence of chipping or delamination near the TiCN layer 7 on the rake face 4 side, and the TiCN layer 7 is formed on the flank 5. In order to control the structure with excellent wear resistance, the thickness t 1 of the TiCN layer 7 located on the rake face 4 is smaller than the thickness t 2 of the TiCN layer 7 located on the flank face 5 or the rake face is covered. It is desirable that the total thickness T 1 of the layer is smaller than the total thickness T 2 of the covering layer on the flank face. Moreover, the film thickness of each layer of the hard coating layer 3 is the point which improves the chipping resistance and abrasion resistance of the hard coating layer 3, and the film thickness of the TiCN layer 7 in the rake face 4: 5-9 micrometers, in the flank 5 The thickness of the TiCN layer 7 is preferably 6 to 10 μm. Incidentally, Al 2 O 3 layer 9 on the rake face 4 1~4μm, Al 2 O 3 layer 9 on the flank face 5 is desirable in that to increase the fracture resistance and wear resistance of the cutting edge is 3~6μm .
[0022]
Further, in order to prevent the occurrence of chipping due to the peeling of the hard coating layer 6 on the cutting edge 6 of the rake face 4, the Al 2 O 3 layer 9 is removed in advance only on the rake face 4 side of the cutting edge 6 and the flank face 5 is removed. The Al 2 O 3 layer 9 may be formed only on the side.
[0023]
Furthermore, according to the present invention, carbon diffusion from the base material 2 into the hard coating layer 3 between the TiCN layer 7 and the base material 2, that is, decarburization is prevented, and embrittlement on the surface of the base material 2 is further achieved. In order to suppress so-called soot formation, at least one layer selected from a TiN layer, a TiCN layer, a TiCO layer, a TiCNO layer, a TiNO layer, and a TiC layer may be interposed as the lower layer 11, In order to improve the welding resistance with the work material at the time of cutting on the surface of the hard coating layer 3 and to clarify the use corner, the upper layer 12 includes a TiN layer, a TiCN layer, a TiCO layer, a TiCNO layer, You may laminate | stack at least 1 layer chosen from a TiNO layer and a TiC layer.
[0024]
Further, according to the present invention, as a cutting tool, two main surfaces 21 and 22 having a substantially flat plate shape as shown in FIG. 4 and having a polygonal shape have a rake surface 21 and a seating surface 22, and a side surface has a clearance surface 23. None, when using a throw-away tip 20 that can be used on both sides having a cutting edge 24 at the intersection ridgeline of both main surfaces 21 and 22 and the flank 23, in order to achieve excellent chipping resistance particularly in cast iron cutting 4, that is, a land surface 25 is provided on the periphery of both main surfaces 21 and 22, and a center surface (sitting surface) 27 is provided on the inner side from the land surface 25 with the breaker portion 26 interposed therebetween. It is desirable that the center surface 27 and the land surface 25 have the same height, which increases the stability of the sitting of the chip, so that the chip itself slightly vibrates during processing and the hard coating layer 3 receives a stronger impact and is harder. Coating layer There can be prevented delamination. According to FIG. 4, a clamp hole 28 for clamping the throw-away tip 20 to a tip holder (not shown) is provided at the center of the throw-away tip 20, but the present invention is not limited to this. The chip 20 may be fixed by a clamp-on method without providing the clamp hole 28.
[0025]
Further, in this case, in order to improve the chipping resistance of the hard coating layer 3, as shown in FIG. 1, an R honing 29 is attached to the cutting edge 24, and the surface of the hard coating layer 3 of the R honing portion 29 is finely polished. Thus, it is desirable to reduce the residual stress inherent in the hard coating layer 3 (the micro-polished portion 30).
[0026]
(Production method)
In order to manufacture the above-mentioned surface-coated cutting tool, first, an inorganic powder such as a metal carbide, nitride, carbonitride, oxide, etc. that can form the above-mentioned hard alloy by firing, metal powder, carbon powder, etc. Are added and mixed as appropriate, and then molded into a predetermined tool shape by a known molding method such as press molding, cast molding, extrusion molding, or cold isostatic pressing, and then fired in a vacuum or non-oxidizing atmosphere. By doing this, the hard alloy base material 2 described above is produced.
[0027]
Next, according to the present invention, the surface of the rake face 4 of the hard alloy base material 2 is subjected to polishing so that the region having a low content of the binding metal is removed. By removing the burnt surface existing on the surface and increasing the smoothness of the rake face, the hard alloy base material 2 is heat-treated at 1000 to 1300 ° C. in a vacuum of 1 to 20 Pa for 0.5 to 2 hours. It is important to evaporate and volatilize the bonding metal component on the surface of the hard alloy base material 2 to form a region having a low content of the binding metal on the surface of the hard alloy base material 2. When the film is formed, the crystal growth state of the TiCN layer 7 on the rake face 4 side and the flank face 5 side can be controlled.
[0028]
Thereafter, the hard coating layer 3 is formed on the surface of the base material 2 by chemical vapor deposition. The film forming conditions of the TiCN layer are, for example, as a reaction gas composition, 0.1% by volume to 10% by volume of TiCl 4 gas, 0 to 60% by volume of N 2 gas, and 0 to 0.1% by volume of CH 4 gas. %, CH 3 CN gas is 0.01 to 1% by volume, and the remaining gas mixture is H 2 gas, and the mixture is introduced into the reaction chamber, and the inside of the chamber is formed at 800 to 1100 ° C. and 5 to 85 kPa. To do.
[0029]
Here, among the above film forming conditions, if the flow rate of the CH 3 CN gas is less than 0.01% by volume, the TiCN layer 7 cannot be grown into a streak crystal, and conversely, the flow rate of the CH 3 CN gas is 1. When the volume% is exceeded, the average width of the streaky crystals of the TiCN layer 7 cannot be controlled.
[0030]
In addition, according to the present invention, 3 to 20% by volume of AlCl 3 gas, 0.5 to 3.5% by volume of HCl gas, 0.01 to 5.0% by volume of CO 2 gas, and H 2 S are continued. It is desirable to coat the Al 2 O 3 layer 6 under the conditions of 900 to 1100 ° C. and 5 to 10 kPa using a mixed gas composed of 0 to 0.01% by volume of gas and the remainder of H 2 gas.
[0031]
When forming a lower layer on the hard coating layer, for example, to form a TiN layer as the lower layer, the reactive gas composition is 0.1 to 10% by volume of TiCl 4 gas and 0 to 60% of N 2 gas. A mixed gas consisting of volume% and the remaining H 2 gas is sequentially adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa. When forming the upper layer, for example, to form a TiN layer as the upper layer, the reactive gas composition is 0.1 to 10% by volume of TiCl 4 gas, 0 to 60% by volume of N 2 gas, and the rest is H A mixed gas composed of two gases may be sequentially adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa.
[0032]
【Example】
Tungsten carbide (WC) powder with an average particle size of 1.5 μm, metallic cobalt (Co) powder with an average particle size of 1.2 μm, and inorganic compound powder of the metal element (M) shown in Table 1 with an average particle size of 2.0 μm After adding and mixing at a ratio shown in 1 and forming into a cutting tool shape (CNMG120408) by press molding, a binder removal treatment was performed, and the temperature was increased to 1000 ° C. or more at a rate of 3 ° C./min. A cemented carbide was produced by firing at 1500 ° C. for 1 hour in a vacuum of 0.01 Pa.
[0033]
Then, the cemented carbide alloy was subjected to a polishing process on the surface of the rake face as shown in Table 1, and then subjected to heat treatment under the conditions shown in Table 1. The degree of vacuum of the heat treatment was 20 Pa or less. Thereafter, various hard coating layers were formed by the CVD method under the conditions shown in Table 2 to produce the cutting tools shown in Table 1.
[0034]
Then, using this cutting tool, the ductile cast iron was cut for 5 minutes under the following conditions, the cutting edge of the cutting tool was observed, and the flank wear amount and tip wear amount of the flank were measured. The results are shown in Table 2.
[0035]
(Abrasion test)
Work material: Ductile cast iron (FCD450)
Tool shape: CNMA120204
Cutting speed: 450 m / min Feed speed: 0.5 mm / rev
Cutting depth: 2mm
Others: Use of water-soluble cutting fluid Also, the surface of the above tool is coated with 20 mmφ cemented carbide balls with diamond abrasive grains having an average particle diameter of 1 μm by a carotester to polish the surface of the hard coating layer, and the TiCN layer 7 The crack density of the rake face and the flank face was calculated and compared by calculating the average area of the part surrounded by the cracks generated in the TiCN layer 7 part when the part was observed with a metal micrograph.
[0036]
[Table 1]
Figure 0004142955
[0037]
[Table 2]
Figure 0004142955
[0038]
From the results shown in Table 2, the sample No. 1 has the same TiCN crystal width ratio between the rake face and the flank face or a wider rake face side. In Nos. 5 to 9, chipping was likely to occur on the rake face side, or flank wear was likely to occur.
[0039]
On the other hand, according to the present invention, sample No. In Nos. 1 to 4, the hard coating layer did not peel off and had excellent cutting performance.
[0040]
【The invention's effect】
As described above in detail, according to the surface-coated cutting tool of the present invention, the TiCN layer is formed of the streak crystals grown in the direction perpendicular to the base material, and the streak located on the rake face surface of the tool By making the average width of the crystal-like crystals narrower than the average width of the streak-like crystals located on the flank surface, even under severe cutting conditions where a strong impact is applied to the tool cutting edge such as intermittent cutting of cast iron, The tight adhesion of the hard coating layer can be maintained without causing chipping or delamination near the TiCN layer on the rake face side, and the TiCN layer can be controlled to a structure with excellent wear resistance on the flank face. And a cutting tool having excellent wear resistance and fracture resistance even under severe cutting conditions.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a surface-coated cutting tool of the present invention.
FIG. 2 is an enlarged view of a main part of a hard coating layer portion of the surface-coated cutting tool of FIG.
FIG. 3 is an example of measurement data of crack density of the surface-coated cutting tool of the present invention.
4 is a schematic cross-sectional view for explaining a preferred shape of a throw-away tip that is an example of the surface-coated cutting tool of FIG. 1. FIG.
[Explanation of symbols]
1 surface-coated cutting tool 2 base material 3 hard layer 4 rake face 5 flank 6 cutting edge 7 TiCN layer 9 Al 2 O 3 layer 10 upper (TiN layer constituting the outermost layer of the hard coating layer)
12 Lower layer (TiN layer forming the innermost layer of hard coating layer)
21 Rake face (sitting surface)
22 Seating surface (rake face)
23 Flank 24 Cutting edge 25 Land surface 26 Breaker 27 Central surface (sitting surface)
28 Clamping hole 29 Honing R part 30 Minute grinding part

Claims (6)

超硬合金、サーメットまたはセラミックスからなる母材の表面に、少なくとも化学気相蒸着法によって成膜されたTiCN層を1層具備する硬質被覆層を被着形成し、すくい面と逃げ面の交差稜を切刃として用いる表面被覆切削工具であって、
前記表面被覆切削工具の前記TiCN層を含む断面における走査型顕微鏡写真において、前記すくい面における前記TiCN層の膜厚が5μmから9μm、前記逃げ面における前記TiCN層の膜厚が6μmから10μmであり、前記TiCN層が前記母材に対して垂直な方向に成長した筋状結晶からなるとともに、前記TiCN層の結晶成長状態を制御することで、前記すくい面表面に位置する前記筋状結晶の平均幅が、前記逃げ面表面に位置する前記筋状結晶の平均幅よりも狭くなっていることを特徴とする表面被覆切削工具。
A hard coating layer comprising at least one TiCN layer formed by chemical vapor deposition is deposited on the surface of a base material made of cemented carbide, cermet or ceramics, and the ridges of the rake face and flank face are crossed. A surface-coated cutting tool using as a cutting blade,
In the scanning micrograph in the cross section including the TiCN layer of the surface-coated cutting tool, the thickness of the TiCN layer on the rake face is 5 μm to 9 μm, and the thickness of the TiCN layer on the flank is 6 μm to 10 μm. The TiCN layer is composed of streak crystals grown in a direction perpendicular to the base material, and the crystal growth state of the TiCN layer is controlled to obtain an average of the streak crystals located on the rake face surface. A surface-coated cutting tool characterized in that the width is narrower than the average width of the streaky crystals located on the flank surface.
前記すくい面表面に位置する前記TiCN層中の前記筋状結晶の平均幅w1と前記逃げ面表面に位置する前記TiCN層中の前記筋状結晶の平均幅w2との比(w2/w1)が0.46から0.60であることを特徴とする請求項1記載の表面被覆切削工具。  The ratio (w2 / w1) between the average width w1 of the streaky crystals in the TiCN layer located on the rake face surface and the average width w2 of the streaks in the TiCN layer located on the flank face surface is The surface-coated cutting tool according to claim 1, which is 0.46 to 0.60. 前記すくい面における前記TiCN層の膜厚t1と前記逃げ面における前記TiCN層の膜厚t2との比(t2/t1)が8/7から10/9であることを特徴とする請求項2記載の表面被覆切削工具。  The ratio (t2 / t1) between the film thickness t1 of the TiCN layer on the rake face and the film thickness t2 of the TiCN layer on the flank is 8/7 to 10/9. Surface coated cutting tool. 前記TiCN層の表面にAl層を形成することを特徴とする請求項1乃至のいずれかに記載の表面被覆切削工具。The surface-coated cutting tool according to any one of claims 1 to 3, characterized in that to form Al 2 O 3 layer on the surface of the TiCN layer. 前記すくい面に位置するTiCN層の厚みが、前記逃げ面に位置するTiCN層の厚みより薄いことを特徴とする請求項1乃至のいずれか記載の表面被覆切削工具。The surface-coated cutting tool according to any one of claims 1 to 4 , wherein a thickness of the TiCN layer located on the rake face is thinner than a thickness of the TiCN layer located on the flank face. 前記すくい面のAl層の厚みが前記逃げ面のAl層の厚みより薄いことを特徴とする請求項1乃至のいずれか記載の表面被覆切削工具。The surface-coated cutting tool according to any one of claims 1 to 5 , wherein the Al 2 O 3 layer on the rake face is thinner than the Al 2 O 3 layer on the flank face.
JP2003005226A 2003-01-14 2003-01-14 Surface coated cutting tool Expired - Fee Related JP4142955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005226A JP4142955B2 (en) 2003-01-14 2003-01-14 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005226A JP4142955B2 (en) 2003-01-14 2003-01-14 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2004216488A JP2004216488A (en) 2004-08-05
JP4142955B2 true JP4142955B2 (en) 2008-09-03

Family

ID=32895941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005226A Expired - Fee Related JP4142955B2 (en) 2003-01-14 2003-01-14 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP4142955B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092990A (en) * 2005-10-21 2007-09-14 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Indexable insert
JP2007136631A (en) * 2005-11-21 2007-06-07 Sumitomo Electric Hardmetal Corp Cutting tip with replaceable edge
JP4783153B2 (en) * 2006-01-06 2011-09-28 住友電工ハードメタル株式会社 Replaceable cutting edge
EP2058068B1 (en) 2006-08-31 2018-05-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JPWO2008026433A1 (en) * 2006-08-31 2010-01-21 住友電工ハードメタル株式会社 Surface coated cutting tool
JP4960149B2 (en) * 2007-05-29 2012-06-27 京セラ株式会社 Surface coated cutting tool
JP5682217B2 (en) * 2010-07-09 2015-03-11 三菱マテリアル株式会社 Surface coated drill with excellent wear resistance and chip evacuation
JP5597469B2 (en) * 2010-07-29 2014-10-01 京セラ株式会社 Cutting tools
JP2012030359A (en) * 2011-09-21 2012-02-16 Sumitomo Electric Hardmetal Corp Cutting edge replaceable cutting tip
WO2017204141A1 (en) * 2016-05-24 2017-11-30 株式会社タンガロイ Coated cutting tool
CN109070233B (en) * 2016-06-29 2020-12-22 住友电工硬质合金株式会社 Cutting tool
WO2020239718A1 (en) * 2019-05-27 2020-12-03 Ab Sandvik Coromant A coated cutting tool

Also Published As

Publication number Publication date
JP2004216488A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4994367B2 (en) CUTTING TOOL, MANUFACTURING METHOD THEREOF, AND CUTTING METHOD
JP4711714B2 (en) Surface coated cutting tool
JP2001502246A (en) Cutting tools
WO2005092608A1 (en) Surface coating member and cutting tool
JP5710008B2 (en) Cutting tools
WO2008026700A1 (en) Cutting tool, process for producing the same, and method of cutting
JP4142955B2 (en) Surface coated cutting tool
JP5383259B2 (en) Cutting tools
JP2007229821A (en) Surface-coated cutting tool
EP1253124B2 (en) Highly adhesive surface-coated cemented carbide and method for producing the same
JP2004100004A (en) Coated cemented carbide and production method therefor
JP2006281361A (en) Surface coated member and surface coated cutting tool
JP2012144766A (en) Coated member
JP3962300B2 (en) Aluminum oxide coated tool
JP6556246B2 (en) Coated tool
JP5597469B2 (en) Cutting tools
JP4351521B2 (en) Surface coated cutting tool
JP7301969B2 (en) Coated tool and cutting tool with the same
JP4936742B2 (en) Surface coating tools and cutting tools
JPH0818163B2 (en) Alumina coating tool and manufacturing method thereof
JP4284144B2 (en) Surface coated cutting tool
JP4845490B2 (en) Surface coated cutting tool
JP4663248B2 (en) Surface coated cutting tool
CN114144272B (en) Coated cutting tool and cutting tool provided with same
JP7301970B2 (en) Coated tool and cutting tool with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4142955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees