JP5597469B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5597469B2
JP5597469B2 JP2010170751A JP2010170751A JP5597469B2 JP 5597469 B2 JP5597469 B2 JP 5597469B2 JP 2010170751 A JP2010170751 A JP 2010170751A JP 2010170751 A JP2010170751 A JP 2010170751A JP 5597469 B2 JP5597469 B2 JP 5597469B2
Authority
JP
Japan
Prior art keywords
layer
ticn
gas
cutting
rake face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010170751A
Other languages
Japanese (ja)
Other versions
JP2012030308A (en
Inventor
剛 山崎
剛 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010170751A priority Critical patent/JP5597469B2/en
Publication of JP2012030308A publication Critical patent/JP2012030308A/en
Application granted granted Critical
Publication of JP5597469B2 publication Critical patent/JP5597469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は切削工具に関し、特に、ねずみ鋳鉄を加工する際に優れた耐摩耗性を発揮する切削工具に関する。   The present invention relates to a cutting tool, and more particularly, to a cutting tool that exhibits excellent wear resistance when processing gray cast iron.

切削工具として、超硬合金やサーメット等の基体の表面に被覆層を成膜して、耐摩耗性、摺動性、耐欠損性を向上させたコーティング超硬合金が広く使われている。   As a cutting tool, a coated cemented carbide in which a coating layer is formed on the surface of a substrate such as cemented carbide or cermet to improve wear resistance, slidability, and fracture resistance is widely used.

例えば、特許文献1では、超硬合金基体の表面にTiCN層を含む被覆層を形成して、すくい面に位置するTiCN結晶の平均幅を逃げ面に位置するTiCN結晶の平均幅よりも狭くして、鋳鉄の断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、すくい面側でのTiCN層の強固な密着性と逃げ面側でのTiCN層の耐摩耗性を向上できることが開示されている。   For example, in Patent Document 1, a coating layer including a TiCN layer is formed on the surface of a cemented carbide substrate so that the average width of TiCN crystals located on the rake face is narrower than the average width of TiCN crystals located on the flank face. Even under severe cutting conditions such as intermittent cutting of cast iron, where the tool cutting edge is subjected to a strong impact, the TiCN layer has strong adhesion on the rake face side and the wear resistance of the TiCN layer on the flank face side. It is disclosed that it can be improved.

特開2004−216488号公報JP 2004-216488 A

しかしながら、特許文献1の構成では、すくい面におけるTiCN層の密着性は向上したものの、さらに過酷な切削条件に耐えられる切削工具が求められていた。特に、湿式加工においても乾式加工においても被覆層の耐摩耗性および耐欠損性を向上させることが求められていた。   However, in the configuration of Patent Document 1, there has been a demand for a cutting tool that can withstand even severer cutting conditions although the adhesion of the TiCN layer on the rake face is improved. In particular, it has been required to improve the wear resistance and fracture resistance of the coating layer in both wet processing and dry processing.

本発明では、ねずみ鋳鉄の切削加工のような過酷な切削加工条件においてさらに良好な耐摩耗性および耐欠損性が得られる切削工具を提供することを目的とする。   An object of the present invention is to provide a cutting tool capable of obtaining even better wear resistance and fracture resistance under severe cutting conditions such as gray cast iron cutting.

本発明の切削工具は、基体の表面にTiCN層を含む多層からなる被覆層を形成しており、前記TiCN層は筋状結晶からなるとともに、前記TiCN層のうちの前記基体側において、該基体側より1μm高さの平均結晶幅が、切刃においてすくい面よりも細いとともに、前記被覆層が前記TiCN層の上層としてAl 層を含み、前記TiCN層の厚みと前記Al 層の厚みとの比率(Al 層/TiCN層)をRとしたとき、前記切刃における比率Rcが前記すくい面における比率Rrよりも小さいものである。
In the cutting tool of the present invention, a multi-layer coating layer including a TiCN layer is formed on the surface of the substrate. The TiCN layer is formed of streak crystals, and the substrate is disposed on the substrate side of the TiCN layer. The average crystal width of 1 μm height from the side is narrower than the rake face at the cutting edge, and the coating layer includes an Al 2 O 3 layer as an upper layer of the TiCN layer. The thickness of the TiCN layer and the Al 2 O 3 When the ratio to the layer thickness (Al 2 O 3 layer / TiCN layer) is R, the ratio Rc at the cutting edge is smaller than the ratio Rr at the rake face .

また、前記切刃における前記被覆層の総厚みが前記すくい面における前記被覆層の総厚みと同じであってもよい。   Moreover, the total thickness of the coating layer on the cutting edge may be the same as the total thickness of the coating layer on the rake face.

さらに、前記被覆層の最表層がTi(C(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8、1.0≦a≦1.7)層からなってもよい。 Furthermore, the outermost layer of the coating layer is Ti (C x N y O z ) a (x + y + z = 1, 0 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8, 1.0 ≦ a ≦ 1.7) layer.

本発明の切削工具によれば、切刃における結晶幅がすくい面における結晶幅よりも細いので、湿式加工における切刃での耐チッピング性を向上させるとともに、乾式切削加工においてすくい面でのTiCN層の密着性を高めて、被覆層の耐熱性を向上できる。   According to the cutting tool of the present invention, the crystal width at the cutting edge is narrower than the crystal width at the rake face, so that the chipping resistance at the cutting edge in wet machining is improved and the TiCN layer on the rake face in dry cutting is obtained. The heat resistance of the coating layer can be improved.

本発明の切削工具の好適例であるスローアウェイチップの一例について、(a)概略斜視図、(b)要部拡大断面図である。It is (a) schematic perspective view, (b) principal part expanded sectional view about an example of the throw away tip which is a suitable example of the cutting tool of this invention. 図1のスローアウェイチップの切刃を含む破断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a fracture surface including a cutting edge of the throw-away tip in FIG. 1.

本発明の切削工具の好適例であるスローアウェイチップの一例について、図1の概略斜視図および要部拡大断面図、および図2の切刃を含む破断面の走査型電子顕微鏡写真を基に説明する。   An example of a throw-away tip that is a preferred example of the cutting tool of the present invention will be described based on a schematic perspective view of FIG. 1 and an enlarged sectional view of a main part, and a scanning electron micrograph of a fractured surface including a cutting blade of FIG. To do.

図1のスローアウェイチップ1は、すくい面2と逃げ面3との交差稜線部が切刃4を構成しているとともに、基体6の表面に、TiCN層を含むTiの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物のうちの1層以上と、α型結晶構造のAl層(以下、単にAl層と略す。)12と、Ti(C(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8、1.0≦a≦1.7)層からなる最表層14とが順に積層された被覆層が形成されている。 In the throw-away tip 1 of FIG. 1, the intersecting ridge line portion of the rake face 2 and the flank face 3 constitutes a cutting edge 4, and Ti carbide, nitride, charcoal containing a TiCN layer on the surface of the base 6. One or more layers of nitride, carbonate, nitride oxide and oxynitride, an Al 2 O 3 layer (hereinafter simply referred to as Al 2 O 3 layer) 12 having an α-type crystal structure, Ti ( C x N y O z ) a (x + y + z = 1, 0 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8, 1.0 ≦ a ≦ 1.7) layer A covering layer is formed in which the outermost layer 14 is sequentially laminated.

そして、図2によれば、TiCN層8は筋状結晶からなるとともに、TiCN層8のうちの最も基体側のTiCN層8aにおける基体6側より1μm高さの平均結晶幅が、切刃4においてすくい面2よりも細いので、湿式加工における切刃4での耐チッピング性を向上させて、切刃4の境界損傷による摩耗の進行を低減できるとともに、乾式切削加工においてすくい面2でのTiCN層8とその上層として存在するAl層12との密着性を高めて、被覆層の耐熱性を向上できる。 According to FIG. 2, the TiCN layer 8 is composed of streak crystals, and the average crystal width of 1 μm height from the substrate 6 side in the TiCN layer 8 a on the most substrate side of the TiCN layer 8 is at the cutting edge 4. Since it is thinner than the rake face 2, it can improve the chipping resistance at the cutting edge 4 in wet machining, reduce the progress of wear due to boundary damage of the cutting edge 4, and the TiCN layer on the rake face 2 in dry cutting. 8 and the Al 2 O 3 layer 12 existing as an upper layer thereof can be improved to improve the heat resistance of the coating layer.

なお、各層の厚みおよび各層を構成する結晶の性状は、図2に示すような切削工具1の断面における電子顕微鏡写真(走査型電子顕微鏡(SEM)写真または透過電子顕微鏡(TEM)写真)を観察することにより、測定することが可能である。また、本発明においては、各層を構成する結晶の平均粒径(筋状結晶の場合は平均結晶幅)は、その層の平均厚みが1μm以下の場合は当該層の厚みの半分の位置に層の界面と平行な直線を引き、その線を横切る粒界の数を数えて測定した線分長さで割ることによって算出する。また、層の平均厚みが1μmを超える場合は、層の始まりから1μm厚みの位置に層の界面と平行な直線を引き、その線を横切る粒界の数を数えて測定した線分長さで割ることによって算出する。   The thickness of each layer and the properties of the crystals constituting each layer were observed in an electron micrograph (scanning electron microscope (SEM) photograph or transmission electron microscope (TEM) photograph) in the cross section of the cutting tool 1 as shown in FIG. By doing so, it is possible to measure. In the present invention, the average grain size of crystals constituting each layer (the average crystal width in the case of a streak crystal) is a layer that is half the thickness of the layer when the average thickness of the layer is 1 μm or less. A straight line parallel to the interface is drawn, and the number of grain boundaries crossing the line is counted and divided by the measured line segment length. When the average thickness of the layer exceeds 1 μm, a straight line length parallel to the interface of the layer is drawn at a position of 1 μm thickness from the beginning of the layer, and the line segment length measured by counting the number of grain boundaries crossing the line Calculate by dividing.

また、切刃4における被覆層の総厚みがすくい面2における被覆層の総厚みよりも薄いことが、乾式加工におけるすくい面2での摩耗の進行を抑制できるとともに、湿式加工における逃げ面での境界損傷の防止ができる点で望ましい。   Further, the fact that the total thickness of the coating layer in the cutting edge 4 is thinner than the total thickness of the coating layer in the rake face 2 can suppress the progress of wear on the rake face 2 in the dry machining, and at the flank face in the wet machining. This is desirable because it can prevent boundary damage.

次に、基体6側に形成される被覆層は、TiCN層8を含み、他に、TiC、TiN、TiCNO、TiCO、TiNOの群から選ばれる1層以上が好適に用いられ、耐摩耗性および耐欠損性が向上する。本実施態様によれば、具体的な構成として、図2に示すように、基体6の直上には第1層としてTiN層7が形成され、第2層としてTiCN層8が形成されている。TiCN層8としては、アセトニトリル(CHCN)ガスを原料として含み成膜温度が780〜900℃と比較的低温で成膜した筋状結晶からなる、いわゆるMT−TiCN層8a,8bと、成膜温度が950〜1100℃と高温で成膜した、いわ
ゆるHT−TiCN層8cとが順に成膜された構成であることが望ましい。さらに、MT−TiCN層8a,8bは、平均結晶幅が0.5μm未満と微細な微粒筋状結晶からなる微粒MT−TiCN層8aと、平均結晶幅が0.5〜2μmと比較的大きい粗粒筋状結晶からなる粗粒MT−TiCN層8bとの積層からなることが望ましい。これによって、Al層12との密着力が高まり、被覆層の剥離やチッピングを抑えることができる。なお、筋状TiCN層は1層構成であってもよい。
Next, the coating layer formed on the substrate 6 side includes the TiCN layer 8, and in addition, one or more layers selected from the group of TiC, TiN, TiCNO, TiCO, and TiNO are preferably used. Improved fracture resistance. According to this embodiment, as a specific configuration, as shown in FIG. 2, a TiN layer 7 is formed as a first layer and a TiCN layer 8 is formed as a second layer immediately above the substrate 6. The TiCN layer 8 is composed of so-called MT-TiCN layers 8a and 8b made of streaky crystals formed at a relatively low film formation temperature of 780 to 900 ° C. using acetonitrile (CH 3 CN) gas as a raw material. It is desirable that the so-called HT-TiCN layer 8c, which is formed at a high film temperature of 950 to 1100 ° C., is sequentially formed. Further, the MT-TiCN layers 8a and 8b are composed of a fine MT-TiCN layer 8a made of fine fine streak crystals having an average crystal width of less than 0.5 μm, and a relatively large coarse crystal having an average crystal width of 0.5 to 2 μm. It is desirable to consist of a lamination with a coarse-grained MT-TiCN layer 8b made of grain streak-like crystals. Thereby, the adhesive force with the Al 2 O 3 layer 12 is increased, and peeling and chipping of the coating layer can be suppressed. The streak TiCN layer may have a single layer configuration.

また、HT−TiCN層8cの上部は、成膜工程で酸化されて、Ti原子を40〜55原子%と、酸素(O)を15〜25原子%と、炭素(C)を25〜40原子%と、残部が窒素(N)とのTiCNO層に変化して、厚み0.05〜0.5μmの中間層11を形成していることが望ましい。これによって、平均粒径0.05〜0.7μmのα型結晶構造のAl結晶からなるα型Al層12をより容易に作製することができる。 Further, the upper part of the HT-TiCN layer 8c is oxidized in the film forming step, so that Ti atoms are 40 to 55 atomic%, oxygen (O) is 15 to 25 atomic%, and carbon (C) is 25 to 40 atoms. It is desirable that the intermediate layer 11 having a thickness of 0.05 to 0.5 μm is formed by changing to a TiCNO layer of nitrogen and nitrogen (N). Thus, the α-type Al 2 O 3 layer 12 made of Al 2 O 3 crystals having an α-type crystal structure with an average particle size of 0.05 to 0.7 μm can be more easily produced.

さらに、TiCN層8の上層として形成されるAl層12について説明する。Al層12を構成するAl結晶はα型結晶構造であることが望ましく、かつ基体6の表面に対して垂直な方向から見た平均結晶幅が0.05〜0.7μmであることが
、耐摩耗性の点で望ましいものである。Al層12のすくい面2における平均粒径dArと逃げ面3における平均粒径dAfとの比(dAr/dAf)は1.1〜1.5であることが、すくい面2における耐熱性の向上の点で望ましい。なお、この構成において、切刃4における被覆層5の総厚みがすくい面2における被覆層5の総厚みと同じであることが、耐摩耗性と耐欠損性のバランスがよい点で望ましい。
Further, the Al 2 O 3 layer 12 formed as the upper layer of the TiCN layer 8 will be described. It is desirable Al 2 O 3 crystals constituting the the Al 2 O 3 layer 12 is α-type crystal structure and an average crystal width as viewed from a direction perpendicular to the surface of the substrate 6 is 0.05~0.7μm It is desirable from the viewpoint of wear resistance. The ratio (d Ar / d Af ) of the average particle diameter d Ar on the rake face 2 of the Al 2 O 3 layer 12 to the average particle diameter d Af on the flank face 3 is 1.1 to 1.5. It is desirable in terms of improving heat resistance on the surface 2. In this configuration, it is desirable that the total thickness of the coating layer 5 in the cutting edge 4 is the same as the total thickness of the coating layer 5 in the rake face 2 in terms of a good balance between wear resistance and fracture resistance.

また、被覆層がTiCN層8の上層としてAl層12を含んで、TiCN層8の厚みとAl層12の厚みとの比率(Al層12/TiCN層8)をRとしたとき、切刃4における比率Rcが前記すくい面における比率Rrよりも小さいことが、乾式加工におけるすくい面2での摩耗の進行を抑制できるとともに、湿式加工における切刃での境界損傷の防止ができる点で重要である。すなわち、湿式加工においては切刃の逃げ面側における境界部分に局所的な損傷が発生してこれを引き金に摩耗が進行して欠損することを緩和する。また、乾式加工においてはすくい面が高温になるのですくい面の被覆層が酸化して劣化し摩耗が進行する傾向にあるが、上記構成によれば、すくい面2には酸化しにくいAl層12が厚く形成されているので、耐酸化性が高くなる。
Further, the covering layer includes the Al 2 O 3 layer 12 as the upper layer of the TiCN layer 8, and the ratio of the thickness of the TiCN layer 8 to the thickness of the Al 2 O 3 layer 12 (Al 2 O 3 layer 12 / TiCN layer 8) When R is R, the ratio Rc in the cutting edge 4 is smaller than the ratio Rr in the rake face can suppress the progress of wear on the rake face 2 in dry machining, and boundary damage at the cutting edge in wet machining. This is important in that it can be prevented. That is, in the wet machining, local damage is generated at the boundary portion on the flank side of the cutting blade, and this is used to alleviate the loss caused by the progress of wear in the trigger. In dry processing, the rake face becomes hot, so the coating layer of the rake face tends to oxidize and deteriorate and wear tends to progress. According to the above configuration, the rake face 2 is not easily oxidized by Al 2 O. Since the three layers 12 are formed thick, the oxidation resistance is increased.

そして、最表層14は、Ti(C(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8、1.0≦a≦1.7)からなり、最表層14の逃げ面3の中央部における厚みが表面粗さ(Ra)よりも小さい構成となっている。この構成により、最表層14であるTiCNO層またはTiCO層が凹凸のある表面に極薄く形成されるので、最表層14が簡単に摩滅や剥離することなく安定して存在するとともに、ねずみ鋳鉄の構成成分であるSi、Mn、Al、Cr、Mo等が酸化物となってベラーグを生成することを促し、ねずみ鋳鉄の切削加工において耐摩耗性を向上させることができる。ベラーグ生成の効果は、最表層14が切削により除去される前の最表層14が被削材によって激しく擦られる段階で特に効果が大きい。なお、最表層14は切削時に摩耗して連続した被覆層として存在しない状態となるが、最表層が残存する部分についてはベラーグ生成の効果による切削性能の向上については継続する。 The outermost layer 14 is Ti (C x N y O z ) a (x + y + z = 1, 0 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8, 1. 0 ≦ a ≦ 1.7), and the thickness of the central portion of the flank 3 of the outermost layer 14 is smaller than the surface roughness (Ra). With this configuration, since the TiCNO layer or TiCO layer as the outermost layer 14 is formed extremely thin on the uneven surface, the outermost layer 14 exists stably without being easily worn or peeled, and the structure of the gray cast iron The components Si, Mn, Al, Cr, Mo, etc. can be converted into oxides to promote the formation of belag, and the wear resistance can be improved in the machining of gray cast iron. The effect of generating the belarg is particularly significant at the stage where the outermost layer 14 is rubbed vigorously by the work material before the outermost layer 14 is removed by cutting. The outermost layer 14 is worn during cutting and does not exist as a continuous coating layer. However, the improvement of the cutting performance due to the effect of the belag is continued in the portion where the outermost layer remains.

ここで、逃げ面3の中央部における最表層14の厚みが0.01〜0.1μmであり、表面粗さ(Ra)が0.1〜0.5μmであることが、最表層14の耐摩耗性および耐チッピング性を高める点で望ましい。また、逃げ面3の中央部における最表層14の厚み/表面粗さ(Ra)の比率は0.2〜0.3であることが、ベラーグの生成効果による耐摩耗性向上の点で望ましい。   Here, the resistance of the outermost layer 14 is that the thickness of the outermost layer 14 at the center of the flank 3 is 0.01 to 0.1 μm and the surface roughness (Ra) is 0.1 to 0.5 μm. It is desirable in terms of enhancing wear resistance and chipping resistance. In addition, the ratio of the thickness / surface roughness (Ra) of the outermost layer 14 at the central portion of the flank 3 is preferably 0.2 to 0.3 from the viewpoint of improving the wear resistance due to the effect of generating a belag.

また、逃げ面3の中央部における最表層14の表面粗さ(Ra)がすくい面頂面(最上面)部2aにおける最表層14の表面粗さ(Ra)よりも粗いことが、すくい面2における切屑排出性を高めることができるとともに、逃げ面3におけるベラーグの生成を促進する点で望ましい。なお、すくい面2においては、表面粗さが小さくても切屑が接触することによりベラーグが生成しやすい状態にある。   Further, the surface roughness (Ra) of the outermost layer 14 at the center portion of the flank 3 is rougher than the surface roughness (Ra) of the outermost layer 14 at the rake face top surface (upper surface) portion 2a. It is desirable in that it can improve the chip dischargeability and promote the generation of belag on the flank 3. In addition, in the rake face 2, even if the surface roughness is small, it is in a state in which belag is likely to be generated due to contact of chips.

さらに、切刃4における最表層14の厚みが逃げ面3の中央部における最表層14の厚みよりも薄いか、または切刃4において最表層14が存在しないものであってもよく、かかる構成であれば、鋳鉄加工特有の湯口の切削などの衝撃がかかる不連続切削において、切刃4つまりホーニング加工を施されている部分やランド部付近の最表層14に起因する
膜の破壊が起こる頻度を低減するという効果がある。
Furthermore, the thickness of the outermost layer 14 in the cutting edge 4 may be thinner than the thickness of the outermost layer 14 in the central portion of the flank 3 or the outermost layer 14 may not exist in the cutting edge 4. If so, in discontinuous cutting that is impacted such as cutting of the sprue peculiar to cast iron processing, the frequency of film breakage due to the cutting edge 4, that is, the portion subjected to honing processing or the outermost surface layer 14 near the land portion occurs. There is an effect of reducing.

また、最表層14は白紫色から灰紫色を示すため、切削工具1の表面が有色となり切削工具1を使用したときに最表層14が摩耗して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できる。   Further, since the outermost layer 14 shows white purple to gray purple, the surface of the cutting tool 1 is colored, and when the cutting tool 1 is used, it is easy to determine whether the outermost layer 14 is worn and used, The progress of wear can be easily confirmed.

一方、切削工具1の基体6は、炭化タングステン(WC)と、所望により周期表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種と、からなる硬質相を、コバルト(Co)やニッケル(Ni)等の鉄属金属からなる結合相にて結合させた超硬合金やTi基サーメット、またはSi、Al、ダイヤモンド、立方晶窒化ホウ素(cBN)等のセラミックスのいずれかが好適に使用できる。中でも、切削工具1を切削工具として用いる場合には、基体6は、超硬合金またはサーメットからなることが耐欠損性および耐摩耗性の点で望ましい。また、用途によっては、基体6は炭素鋼、高速度鋼、合金鋼等の金属からなるものであっても良い。 On the other hand, the base 6 of the cutting tool 1 is made of tungsten carbide (WC) and, if desired, at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table. Cemented carbide, Ti-based cermet, or Si 3 N 4 , Al 2 O 3 , diamond, cubic crystal in which the hard phase is bonded with a binder phase made of an iron group metal such as cobalt (Co) or nickel (Ni) Any ceramic such as boron nitride (cBN) can be suitably used. In particular, when the cutting tool 1 is used as a cutting tool, the base 6 is preferably made of cemented carbide or cermet in terms of fracture resistance and wear resistance. Depending on the application, the substrate 6 may be made of a metal such as carbon steel, high-speed steel, or alloy steel.

(製造方法)
本実施形態のスローアウェイチップ1の製造方法の一実施形態について説明する。
(Production method)
An embodiment of a method for manufacturing the throw-away tip 1 of the present embodiment will be described.

まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形する。その後、得られた成形体を真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体6を作製する。そして、上記基体の表面に所望によって両頭加工や外周加工等の研磨加工を施した後、切刃部のホーニング加工を施す。切刃部のホーニング加工の際、加工の最後のタイミングで砥粒の番手を上げて細かい砥粒で切刃のみを局所的に加工することにより、切刃に成長する筋状結晶の平均結晶幅をすくい面に成長する筋状結晶の平均結晶幅よりも小さくすることができる。   First, metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powders such as metal carbides, nitrides, carbonitrides, and oxides that can be formed by firing the hard alloy described above, press molding, cast molding, A predetermined tool shape is formed by a known forming method such as extrusion molding or cold isostatic pressing. Thereafter, the obtained molded body is fired in a vacuum or in a non-oxidizing atmosphere to produce the substrate 6 made of the hard alloy described above. Then, the surface of the base body is subjected to a polishing process such as a double-ended process or an outer peripheral process as desired, and then the honing process of the cutting edge part is performed. During honing of the cutting edge, the average crystal width of the streaky crystals that grow on the cutting edge by increasing the count of the abrasive grains at the final timing of processing and locally processing only the cutting edge with fine abrasive grains Can be made smaller than the average crystal width of the streaky crystal growing on the rake face.

次に、得られた基体6の表面に化学気相蒸着(CVD)法によって被覆層を形成する。始めに、基体をCVD装置のチャンバ内にセットする。このとき、中央にネジ孔の空いた基体を串刺しにし、また、隣接する基体との間隔を近づけて基体間の間隔を調整することにより、すくい面、逃げ面および切刃に成膜される被覆層の厚みを変化させることができる。また、成膜途中または成膜終了後にチップを取り出して研磨する等により、各被覆層の厚みを調整することができる。   Next, a coating layer is formed on the surface of the obtained substrate 6 by chemical vapor deposition (CVD). First, the substrate is set in the chamber of the CVD apparatus. At this time, a coating formed on the rake face, the flank face and the cutting edge is formed by skewing a base with a screw hole in the center and adjusting the distance between the bases by reducing the distance between adjacent bases. The thickness of the layer can be varied. Moreover, the thickness of each coating layer can be adjusted by taking out the chip during polishing or after completion of the film formation and polishing it.

成膜に際しては、まず、基体の直上に1層目としてTiN層を形成する。TiN層の成膜条件としては、混合ガス組成として四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を800〜940℃(チャンバ(炉内)温度)、圧力を8〜50kPaにて成膜される。 In film formation, first, a TiN layer is formed as a first layer directly on the substrate. The conditions for forming the TiN layer include, as a mixed gas composition, titanium tetrachloride (TiCl 4 ) gas in a ratio of 0.5 to 10% by volume and nitrogen (N 2 ) gas in a ratio of 10 to 60% by volume, with the remainder being hydrogen. Using a mixed gas composed of (H 2 ) gas, the film is formed at a film formation temperature of 800 to 940 ° C. (chamber (furnace) temperature) and a pressure of 8 to 50 kPa.

次に、2層目としてTiCN層を形成する。ここでは、TiCN層が、平均結晶幅が小さい微粒筋状結晶層と、この層よりも平均結晶幅が大きい粗粒筋状結晶層とのMT−TiCN層と、HT−TiCN層との3層にて構成する場合の成膜条件について説明する。   Next, a TiCN layer is formed as a second layer. Here, the TiCN layer has three layers of an MT-TiCN layer of a fine-grained streaky crystal layer having a small average crystal width, a coarse-grained streaky crystal layer having a larger average crystal width than this layer, and an HT-TiCN layer. The film-forming conditions in the case of configuring in FIG.

MT−TiCN層のうちの微粒筋状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%、アセトニトリル(CHCN)ガスを0.1〜0.4体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。MT−TiCN層のうちの粗筋状結晶層の成膜条件は、四塩化チタン(TiCl)ガスを0.5〜4.0体積%、窒素(N)ガスを0〜40体積%、アセトニトリル(CHCN)ガスを0.4〜2.0体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780〜900℃、圧力を5〜25kPaとする。 The film formation conditions of the fine streaky crystal layer in the MT-TiCN layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.5 to 10% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, acetonitrile ( CH 3 CN) gas is contained at a ratio of 0.1 to 0.4% by volume, and the remaining gas is a hydrogen (H 2 ) gas mixture, the film forming temperature is 780 to 900 ° C., and the pressure is 5 to 25 kPa. To do. The film formation conditions of the coarse streak-like crystal layer in the MT-TiCN layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.5 to 4.0% by volume, nitrogen (N 2 ) gas is 0 to 40% by volume, acetonitrile (CH 3 CN) gas is contained at a ratio of 0.4 to 2.0% by volume, and the remaining gas is a hydrogen (H 2 ) gas mixed gas, the film forming temperature is 780 to 900 ° C., and the pressure is 5 to 25 kPa. And

HT−TiCN層の成膜条件は、四塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、窒素(N)ガスを0〜15体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を950〜1100℃、圧力を5〜40kPaとして成膜する。そして、チャンバ内を950〜1100℃、5〜40kPaとし、四塩化チタン(TiCl)ガスを1〜5体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを10〜30体積%、一酸化炭素(CO)ガスを4〜8体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に10〜60分導入して成膜した後、続いて体積%で二酸化炭素(CO)ガスを0.5〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を950〜1100℃、5〜40kPaにて、二酸化炭素(CO)ガスを0.5〜10体積%、残りが窒素(N)ガスからなる混合ガスを反応チャンバ内に10〜60分導入することによって、HT−TiCN層を酸化させてTiCNO層に変化させながら中間層を成膜する。なお、このCOガスを含む混合ガスを流す工程を経ることなく中間層を形成することもできるが、α型Al層を構成する結晶を微細なものとするためには、COガスを含む混合ガスを流す工程を経ることが望ましい。 The film forming conditions of the HT-TiCN layer were 0.1 to 3% by volume of titanium tetrachloride (TiCl 4 ) gas, 0.1 to 10% by volume of methane (CH 4 ) gas, and 0 of nitrogen (N 2 ) gas. The film is formed at a film forming temperature of 950 to 1100 ° C. and a pressure of 5 to 40 kPa, using a mixed gas containing hydrogen (H 2 ) gas in a ratio of ˜15% by volume. The chamber is 950 to 1100 ° C. and 5 to 40 kPa, titanium tetrachloride (TiCl 4 ) gas is 1 to 5% by volume, methane (CH 4 ) gas is 4 to 10% by volume, and nitrogen (N 2 ) gas is 10 to 30% by volume, carbon monoxide (CO) gas was 4 to 8% by volume, and the remaining mixed gas was hydrogen (H 2 ) gas, which was introduced into the reaction chamber for 10 to 60 minutes to form a film. Subsequently, a mixed gas consisting of 0.5% to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas in a volume% is prepared and introduced into the reaction chamber to form a film. At a temperature of 950 to 1100 ° C. and 5 to 40 kPa, a mixed gas composed of 0.5 to 10% by volume of carbon dioxide (CO 2 ) gas and the balance of nitrogen (N 2 ) gas is placed in the reaction chamber for 10 to 60 minutes. Oxidizing the HT-TiCN layer by introducing Then, an intermediate layer is formed while changing to a TiCNO layer. Note that the intermediate layer can be formed without passing the mixed gas containing CO 2 gas, but in order to make the crystals constituting the α-type Al 2 O 3 layer fine, CO 2 It is desirable to go through a process of flowing a mixed gas containing gas.

続いて体積%で二酸化炭素(CO)ガスを0.3〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を1000〜1100℃、5〜40kPaにて、反応チャンバ内に5〜30分導入することによって、被覆層表面の表面粗さを粗くする。そして、引き続き、α型Al層を形成する。α型Al層の成膜条件としては、三塩化アルミニウム(AlCl)ガスを0.5〜5.0体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.5〜5.0体積%、硫化水素(HS)ガスを0〜0.5体積%、残りが水素(H)ガスからなる混合ガスをチャンバ内に導入し、成膜温度を950〜1100℃、圧力を5〜10kPaとして成膜することが望ましい。 Subsequently, a mixed gas consisting of 0.3 to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas in a volume% is prepared and introduced into the reaction chamber. The surface roughness of the coating layer surface is roughened by introducing it into the reaction chamber at 1000 to 1100 ° C. and 5 to 40 kPa for 5 to 30 minutes. Subsequently, an α-type Al 2 O 3 layer is formed. As the film forming conditions for the α-type Al 2 O 3 layer, aluminum trichloride (AlCl 3 ) gas is 0.5 to 5.0% by volume, hydrogen chloride (HCl) gas is 0.5 to 3.5% by volume, A mixed gas consisting of 0.5 to 5.0% by volume of carbon dioxide (CO 2 ) gas, 0 to 0.5% by volume of hydrogen sulfide (H 2 S) gas, and the remaining hydrogen (H 2 ) gas is contained in the chamber. It is desirable to form the film at a film forming temperature of 950 to 1100 ° C. and a pressure of 5 to 10 kPa.

さらに、α型Al層の上層に最表層を形成する。四塩化チタン(TiCl)ガスを1〜10体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを0〜60体積%の割合で含み、残りが水素(H)ガスからなる混合ガスを反応チャンバ内に導入し、チャンバの温度を960〜1100℃、圧力を10〜85kPaとして、成膜時間を1分〜10分の間で成膜することで膜厚みを調整した後、続いて体積%で二酸化炭素
(CO)ガスを0.5〜4.0体積%、残りが窒素(N)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を950〜1100℃、5〜40kPaにて、反応チャンバ内に5〜30分導入することによって、HT−TiCN層を酸化させてTiCNO層に変化させながら最表層を成膜する。Tiに対する酸素の比率は、二酸化炭素(CO)ガスの濃度や酸化時間により調整する。
Further, an outermost layer is formed on the α-type Al 2 O 3 layer. Titanium tetrachloride (TiCl 4 ) gas is contained in an amount of 1 to 10% by volume, methane (CH 4 ) gas is contained in an amount of 4 to 10% by volume, nitrogen (N 2 ) gas is contained in an amount of 0 to 60% by volume, and the remainder is hydrogen (H 2 ) Film thickness is obtained by introducing a mixed gas consisting of gas into the reaction chamber, setting the chamber temperature to 960 to 1100 ° C., and the pressure to 10 to 85 kPa, and forming the film formation time between 1 minute and 10 minutes. Then, a mixed gas consisting of 0.5 to 4.0% by volume of carbon dioxide (CO 2 ) gas and the remainder of nitrogen (N 2 ) gas is adjusted in volume% and introduced into the reaction chamber. The outermost layer is formed while the HT-TiCN layer is oxidized and changed into a TiCNO layer by introducing the film into the reaction chamber at 950 to 1100 ° C. and 5 to 40 kPa for 5 to 30 minutes. The ratio of oxygen to Ti is adjusted by the concentration of carbon dioxide (CO 2 ) gas and the oxidation time.

そして、所望により形成した被覆層の表面の少なくとも切刃部、望ましくは切刃部とすくい面を研磨加工する。この研磨加工により、切刃部およびすくい面が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた切削工具となる。   Then, at least the cutting edge portion, preferably the cutting edge portion and the rake face of the surface of the coating layer formed as desired is polished. By this polishing process, the cutting edge part and the rake face are processed smoothly, suppressing welding of the work material, and a cutting tool having further excellent fracture resistance is obtained.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMG120412)に成形した。得られた成形体について、脱バインダ処理を施し、0.5〜100Paの真空中、1400℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金に対して、ブラシ加工にてすくい面側について刃先処理(Rホーニング)を施した。   A metal cobalt (Co) powder with an average particle diameter of 1.2 μm is added to and mixed with tungsten carbide (WC) powder with an average particle diameter of 1.5 μm at a ratio of 6% by mass, and the cutting tool shape ( CNMG120412). The obtained compact was subjected to a binder removal treatment and fired at 1400 ° C. for 1 hour in a vacuum of 0.5 to 100 Pa to produce a cemented carbide. Furthermore, the cutting edge processing (R honing) was performed on the rake face side by brush processing on the manufactured cemented carbide.

次に、上記超硬合金に対して、CVD法により各種の被覆層を表1に示す成膜条件、および表2に示す層構成にて形成した。そして、被覆層の表面をすくい面側から30秒間ブラシ加工して試料No.1〜7の表面被覆切削工具を作製した。   Next, various coating layers were formed on the cemented carbide by the CVD method under the film forming conditions shown in Table 1 and the layer configuration shown in Table 2. Then, the surface of the coating layer was brushed for 30 seconds from the rake face side, and sample No. 1 to 7 surface-coated cutting tools were prepared.

得られた工具について、走査型電子顕微鏡観察を行い、各層を構成する結晶の形状、平均粒径(または平均結晶幅)、厚みを見積もった。結果は表2に示した。また、被覆層の総厚みについては表3に示し、接触式表面粗さ計を用いて被覆層の表面粗さを測定した。さらに、被覆層の表面粗さと最表層厚みとの関係については表3に示した。   The obtained tool was observed with a scanning electron microscope, and the shape, average particle diameter (or average crystal width), and thickness of the crystals constituting each layer were estimated. The results are shown in Table 2. Moreover, it showed in Table 3 about the total thickness of a coating layer, and measured the surface roughness of the coating layer using the contact-type surface roughness meter. Furthermore, the relationship between the surface roughness of the coating layer and the outermost layer thickness is shown in Table 3.

次に、このスローアウェイチップを用いて以下の切削条件にて切削試験を行った。結果は表3に示した。
(条件1)
切削方法:端面加工(旋削加工)
被削材 :FC250
切削速度:450m/分
送り :0.35mm/rev
切り込み:3.0mm
切削状態:乾式
評価方法:フランク摩耗が0.3mm以上となる時間(表中、工具寿命と記載。)とそのときの切刃の状態
(条件2)
切削方法:平面削り(フライス加工)
被削材 :FC250
切削速度:300m/分
送り :0.3mm/tooth
切り込み:2.0mm
切削状態:湿式
評価方法:チッピング等の異常損傷が起きたときの衝撃回数。とそのときの切れ刃の状態
Next, a cutting test was performed using the throwaway tip under the following cutting conditions. The results are shown in Table 3.
(Condition 1)
Cutting method: End face machining (turning)
Work material: FC250
Cutting speed: 450 m / min Feed: 0.35 mm / rev
Cutting depth: 3.0mm
Cutting state: Dry evaluation method: Time for flank wear to be 0.3 mm or more (described as tool life in the table) and the state of the cutting edge at that time (Condition 2)
Cutting method: Planing (milling)
Work material: FC250
Cutting speed: 300 m / min Feed: 0.3 mm / tooth
Cutting depth: 2.0mm
Cutting state: wet evaluation method: number of impacts when abnormal damage such as chipping occurs. And the state of the cutting edge at that time

表1〜3に示される結果から、筋状TiCN結晶の基体側より1μm高さにおける平均結晶幅がすくい面と切刃で同じである試料No.7、および筋状TiCN結晶の基体側より1μm高さにおける平均結晶幅がすくい面より切刃で太い資料No.5,6では、旋削加工およびフライス加工のどちらにおいても耐欠損性が悪いものであった。   From the results shown in Tables 1 to 3, sample Nos. 1 and 2 in which the average crystal width at the height of 1 μm from the substrate side of the streak-like TiCN crystal is the same for the rake face and the cutting edge. 7, and the average crystal width at a height of 1 μm from the substrate side of the streaky TiCN crystal is thicker than the rake face with a thicker cutting edge. In Nos. 5 and 6, the fracture resistance was poor in both turning and milling.

これに対し、筋状TiCN結晶の基体側より1μm高さにおける平均結晶幅がすくい面より切刃で細い試料No.1、2、4では、耐欠損性が高く工具寿命が延びた。試料No.3は参考例を示す。
On the other hand, sample No. 1 whose average crystal width at a height of 1 μm from the substrate side of the streak-like TiCN crystal is thinner than the rake face with a cutting edge. 1 , 2 and 4 have high fracture resistance and extended tool life. Sample No. 3 shows a reference example.

1 切削工具
2 すくい面
3 逃げ面
4 切刃
6 基体
7 TiN層
8 TiCN層
8a 微粒MT−TiCN層
8b 粗粒MT−TiCN層
8c HT−TiCN層
11 中間層
12 Al
14 最表層
1 cutting tool 2 rake face 3 flank 4 cutting edge 6 base 7 TiN layer 8 TiCN layer 8a fine MT-TiCN layer 8b coarse MT-TiCN layer 8c HT-TiCN layer 11 intermediate layer 12 Al 2 O 3 layer 14 outermost layer

Claims (3)

基体の表面にTiCN層を含む多層からなる被覆層を形成しており、前記TiCN層は筋状結晶からなるとともに、前記TiCN層のうちの前記基体側において、該基体側より1μm高さにおける平均結晶幅が、切刃においてすくい面よりも細いとともに、前記被覆層が前記TiCN層の上層としてAl 層を含み、前記TiCN層の厚みと前記Al 層の厚みとの比率(Al 層/TiCN層)をRとしたとき、前記切刃における比率Rcが前記すくい面における比率Rrよりも小さい切削工具。 A multi-layer coating layer including a TiCN layer is formed on the surface of the substrate. The TiCN layer is composed of streak crystals, and the average of the TiCN layer on the substrate side is 1 μm higher than the substrate side. The crystal width is narrower than the rake face at the cutting edge, and the coating layer includes an Al 2 O 3 layer as an upper layer of the TiCN layer, and a ratio between the thickness of the TiCN layer and the thickness of the Al 2 O 3 layer ( A cutting tool in which the ratio Rc at the cutting edge is smaller than the ratio Rr at the rake face, where R is ( Al 2 O 3 layer / TiCN layer) . 前記切刃における前記被覆層の総厚みが前記すくい面における前記被覆層の総厚みと同じである請求項記載の切削工具。 Cutting tool according to claim 1, wherein the same as the total thickness of the coating layer total thickness of the covering layer in the cutting edge in the rake face. 前記被覆層の最表層がTi(C(x+y+z=1、0≦x≦0.6、0≦y≦0.6、0.2≦z≦0.8、1.0≦a≦1.7)層からなる請求項1または2記載の切削工具。 The outermost layer of the coating layer is Ti (C x N y O z ) a (x + y + z = 1, 0 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.6, 0.2 ≦ z ≦ 0.8, 1. The cutting tool according to claim 1 or 2, comprising a layer of 0≤a≤1.7).
JP2010170751A 2010-07-29 2010-07-29 Cutting tools Active JP5597469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170751A JP5597469B2 (en) 2010-07-29 2010-07-29 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170751A JP5597469B2 (en) 2010-07-29 2010-07-29 Cutting tools

Publications (2)

Publication Number Publication Date
JP2012030308A JP2012030308A (en) 2012-02-16
JP5597469B2 true JP5597469B2 (en) 2014-10-01

Family

ID=45844367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170751A Active JP5597469B2 (en) 2010-07-29 2010-07-29 Cutting tools

Country Status (1)

Country Link
JP (1) JP5597469B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994979B (en) * 2013-02-27 2018-04-17 京瓷株式会社 Cutting element
JP6999585B2 (en) 2019-01-18 2022-01-18 株式会社タンガロイ Cover cutting tool
JP7055761B2 (en) * 2019-02-15 2022-04-18 株式会社タンガロイ Cover cutting tool
KR102450097B1 (en) * 2020-11-16 2022-10-05 한국야금 주식회사 Hard film for cutting tools

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1158104A (en) * 1997-08-26 1999-03-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide excellent in chip resistance
JP2000024808A (en) * 1998-07-06 2000-01-25 Sumitomo Electric Ind Ltd Covered cemented carbide cutting tool
JP4142955B2 (en) * 2003-01-14 2008-09-03 京セラ株式会社 Surface coated cutting tool
JP4832108B2 (en) * 2005-03-29 2011-12-07 京セラ株式会社 Surface coated cutting tool
JP4711714B2 (en) * 2005-03-30 2011-06-29 京セラ株式会社 Surface coated cutting tool
JP5127477B2 (en) * 2008-01-29 2013-01-23 京セラ株式会社 Cutting tools

Also Published As

Publication number Publication date
JP2012030308A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5414883B2 (en) Cutting tools
JP4994367B2 (en) CUTTING TOOL, MANUFACTURING METHOD THEREOF, AND CUTTING METHOD
JP5866650B2 (en) Surface coated cutting tool
JP5890594B2 (en) Coated tool
JP4854359B2 (en) Surface coated cutting tool
JP5902865B2 (en) Coated tool
JP5710008B2 (en) Cutting tools
JP5683190B2 (en) Surface covering member
WO2013081047A1 (en) Coated tool
JP2012196726A (en) Cutting tool
JP2007229821A (en) Surface-coated cutting tool
JP2010253594A (en) Surface coated tool
JP5597469B2 (en) Cutting tools
JP2012144766A (en) Coated member
JP4142955B2 (en) Surface coated cutting tool
JP6556246B2 (en) Coated tool
JP6162484B2 (en) Surface covering member
JP4351521B2 (en) Surface coated cutting tool
JP5693039B2 (en) Surface covering member
JP2011093003A (en) Surface-coated member
JP2011122222A (en) Surface-coating member
JP6522985B2 (en) Coated tools
JP6039481B2 (en) Surface covering member
JP6050183B2 (en) Cutting tools
JP4936742B2 (en) Surface coating tools and cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5597469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150