JP5127477B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5127477B2
JP5127477B2 JP2008017106A JP2008017106A JP5127477B2 JP 5127477 B2 JP5127477 B2 JP 5127477B2 JP 2008017106 A JP2008017106 A JP 2008017106A JP 2008017106 A JP2008017106 A JP 2008017106A JP 5127477 B2 JP5127477 B2 JP 5127477B2
Authority
JP
Japan
Prior art keywords
coating layer
cutting
cutting edge
average particle
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008017106A
Other languages
Japanese (ja)
Other versions
JP2009178774A (en
Inventor
ヨウセン シュ
和範 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008017106A priority Critical patent/JP5127477B2/en
Publication of JP2009178774A publication Critical patent/JP2009178774A/en
Application granted granted Critical
Publication of JP5127477B2 publication Critical patent/JP5127477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は基体の表面に被覆層を成膜してなる切削工具に関する。   The present invention relates to a cutting tool formed by forming a coating layer on the surface of a substrate.

現在、切削工具では耐摩耗性や摺動性、耐欠損性が必要とされるため、WC基超硬合金やTiCN基サーメット等の硬質基体の表面に様々な被覆層を成膜して表面被覆工具の耐摩耗性、耐欠損性を向上させる手法が使われている。かかる被覆層として、TiCN層やTiAlN層が一般的に広く採用されているが、より高い耐摩耗性と耐欠損性の向上を目的として種々な被覆層が開発されつつある。   Currently, cutting tools require wear resistance, slidability, and fracture resistance, so various coating layers are formed on the surface of a hard substrate such as a WC-based cemented carbide or TiCN-based cermet to cover the surface. Techniques to improve the wear resistance and fracture resistance of tools are used. As the coating layer, a TiCN layer or a TiAlN layer is generally widely used, but various coating layers are being developed for the purpose of improving higher wear resistance and fracture resistance.

例えば、特許文献1では、CVD法で成膜したTiCN被覆層の成膜において、混合ガスの供給流量を3倍から10倍に調整することにより、得られた被覆層のノーズRの先端部に対応するホーニングの端部(エッジ)付近と逃げ面の中央におけるX線回折強度が異なり、具体的には(111)面のピーク強度と(220)面のピーク強度を比較した場合、エッジ付近では逃げ面中央部に比べて(111)面のピーク強度の比率が高くなることが開示されている。   For example, in Patent Document 1, in the formation of a TiCN coating layer formed by the CVD method, the supply flow rate of the mixed gas is adjusted to 3 to 10 times, and the tip of the nose R of the obtained coating layer is adjusted. The X-ray diffraction intensity near the end (edge) of the corresponding honing is different from that at the center of the flank. Specifically, when the peak intensity of the (111) plane and the peak intensity of the (220) plane are compared, It is disclosed that the ratio of the peak intensity of the (111) plane is higher than that of the central portion of the flank.

また、特許文献2では、TiAl化合物膜において負のバイアス電圧の絶対値を徐々に高くする条件で成膜して、エッジのみTi/Alの比率が高い被覆層を形成したことが記載されている。   Patent Document 2 describes that a TiAl compound film is formed under conditions where the absolute value of the negative bias voltage is gradually increased, and a coating layer having a high Ti / Al ratio only at the edge is described. .

さらに、特許文献3では、TiAl化合物膜において基材電圧(バイアス電圧)が低い(マイナスの絶対値が大きい)条件で成膜するとエッジのみTi/Alの比率が変化するという性質を利用して、基材電圧を成膜途中で変化させることによって、エッジ稜線の近接部ではTi/Alの比率が異なる2層以上の多層膜にて構成するとともに、エッジ稜線の近接部を除いた中心部ではTi/Alの比率が一定である単層膜にて構成した工具等の被覆部材が作製できることが開示されている。
特開平10−237648号公報 特開平8−267306号公報 特開2003−113463号公報
Furthermore, in Patent Document 3, utilizing the property that the Ti / Al ratio changes only at the edge when the TiAl compound film is formed under conditions where the substrate voltage (bias voltage) is low (the absolute value of minus is large), By changing the substrate voltage during film formation, the proximity portion of the edge ridge line is composed of two or more layers having different Ti / Al ratios, and the central portion excluding the proximity portion of the edge ridge line is Ti. It is disclosed that a covering member such as a tool constituted by a single layer film having a constant ratio of / Al can be produced.
JP-A-10-237648 JP-A-8-267306 JP 2003-113463 A

しかしながら、上記特許文献1のようにエッジ部におけるX線回折のピーク強度比を変化させたTiCN膜や、引用文献2、3のようにエッジ部におけるTi/Alの比率を変化させたTiAl系皮膜でも、エッジ部における更なる耐摩耗性が求められていた。また、エッジ以外の中央部においては、切削によって切刃で発生した切屑がすくい面で曲げられてカールし、このカールした切屑がエッジ部以外の中央部にランダムに当たって被覆層が部分的に剥離してしまうことがあり、エッジ部以外の中央部では切屑の衝突によっても剥離しない高い耐衝撃性が求められていた。   However, a TiCN film in which the peak intensity ratio of the X-ray diffraction at the edge portion is changed as in Patent Document 1 above, or a TiAl-based film in which the Ti / Al ratio in the edge portion is changed as in References 2 and 3 However, further wear resistance at the edge portion has been demanded. In addition, in the central portion other than the edge, the chips generated by the cutting blade by the cutting are bent and curled by the rake face, and the curled chips randomly hit the central portion other than the edge portion and the coating layer is partially peeled off. In the central portion other than the edge portion, there has been a demand for high impact resistance that does not separate even when chips collide.

本発明は、切刃における耐摩耗性と切屑が衝突するエッジ以外の部分においても被覆層が剥離しない耐剥離性を兼ね備えた切削工具を提供することを目的とする。   An object of this invention is to provide the cutting tool which has the abrasion resistance in a cutting blade, and the peeling resistance which a coating layer does not peel also in parts other than the edge which a chip collides.

本発明の切削工具は、すくい面と逃げ面との交差稜線部を切刃とし、基体の表面に被覆層を被覆してなる切削工具において、前記被覆層を外表面から顕微鏡にて観察した組織が、切刃部においては平均粒径0.5〜2μmの粒状粒子として観察され、該切刃部から離れた中央部では、前記切刃部より平均粒径が小さく、かつ平均粒径0.1〜0.8μmの
粒状粒子として観察されることを特徴とする。
The cutting tool of the present invention is a cutting tool in which a crossing ridge line portion between a rake face and a flank face is used as a cutting edge, and a coating layer is coated on the surface of a substrate. However, the particles are observed as granular particles having an average particle diameter of 0.5 to 2 μm at the cutting edge part, and the average particle diameter is smaller than the cutting edge part at the central part away from the cutting edge part, and the average particle diameter is 0. 1-0.8μm
It is observed as granular particles, characterized in Rukoto.

ここで、上記構成において、前記切刃部における前記被覆層の表面でのスキューネスRskeが、前記中央部における被覆層の表面でのスキューネスRskcよりも小さい(Rske<Rskc)ことが望ましい。 Here, in the above configuration, it is desirable that the skewness R ske at the surface of the coating layer in the cutting edge portion is smaller than the skewness R skc at the surface of the coating layer in the central portion (R ske <R skc ). .

また、上記構成において、前記被覆層を断面から顕微鏡にて観察した組織が、前記切刃部においては平均粒子幅0.02〜0.3μmの縦長粒子として観察され、前記中央部では平均粒子幅0.1〜0.5μmの縦長粒子として観察されることが望ましい。   Further, in the above configuration, a structure obtained by observing the coating layer with a microscope from a cross section is observed as vertically long particles having an average particle width of 0.02 to 0.3 μm in the cutting edge portion, and an average particle width in the central portion. It is desirable to observe as vertically long particles of 0.1 to 0.5 μm.

さらに、上記構成において、前記切刃部における前記被覆層の表面での硬度Hが、前記中央部における前記被覆層の表面での硬度Hよりも高い(H>H)ことが望ましい。 Further, in the above structure, the hardness H e at the surface of the coating layer in the cutting edge is higher (H e> H c) is more desirable than the hardness H c at the surface of the coating layer in the central portion .

また、上記構成において、前記被覆層は、Ti1−a−bAlab(Cx1−x)(ただし、MはTiを除く周期表4、5、6族元素、YおよびSiから選ばれる1種以上、0.40≦a≦0.65、0≦b≦0.3、0≦x≦1)からなることが望ましい。 In the above configuration, the coating layer is made of Ti 1-ab Al a M b (C x N 1-x ) (where M is a periodic table 4, 5, or 6 element excluding Ti, Y and Si 1 or more selected from the group consisting of 0.40 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1).

本発明の切削工具は、切刃部においては初期摩耗が少なくかつ切削抵抗が小さくて耐摩耗性が高い。また、中央部では耐衝撃性が高くて切屑が衝突しても被覆層が剥離しにくいものである。   The cutting tool of the present invention has low initial wear, low cutting resistance and high wear resistance at the cutting edge. Moreover, the impact resistance is high in the central portion, and the coating layer is difficult to peel off even when chips collide.

ここで、前記切刃部における前記被覆層の表面でのスキューネスRskeが、前記中央部における被覆層の表面でのスキューネスRskcよりも小さい(Rske<Rskc)ことによって、切刃部においては初期摩耗が小さくかつ切削抵抗が小さくて耐摩耗性が高く、中央部においては切屑が衝突した際の衝撃を吸収できる点で望ましい。 Here, the skewness R ske on the surface of the coating layer in the cutting edge part is smaller than the skewness R skc on the surface of the coating layer in the central part (R ske <R skc ), so that Is desirable in that the initial wear is small, the cutting resistance is small and the wear resistance is high, and the impact at the time of chip collision can be absorbed in the central portion.

また、前記被覆層を断面から顕微鏡にて観察した組織が、前記切刃部においては平均粒子幅0.02〜0.3μmの縦長粒子として観察され、前記中央部では平均粒径0.1〜0.5μmの縦長粒子として観察されることによって、切刃部における耐摩耗性がより高くかつ中央部における耐衝撃性がより高いものとなる。このとき、前記切刃部における前記被覆層の表面での硬度Hが、前記中央部における前記被覆層の表面での硬度Hよりも高い(H>H)ことが望ましいものである。 In addition, the structure obtained by observing the coating layer with a microscope from a cross-section is observed as vertically long particles having an average particle width of 0.02 to 0.3 μm in the cutting edge portion, and an average particle diameter of 0.1 to 0.1 in the central portion. By being observed as 0.5 μm vertically long particles, the wear resistance at the cutting edge portion is higher and the impact resistance at the center portion is higher. At this time, the hardness H e at the surface of the coating layer in the cutting edge is at high (H e> H c) it is more desirable than the hardness H c at the surface of the coating layer in the central portion .

また、上記構成において、前記被覆層は、Ti1−a−bAlab(Cx1−x)(ただし、MはTiを除く周期表4、5、6族元素、YおよびSiから選ばれる1種以上、0.40≦a≦0.65、0≦b≦0.3、0≦x≦1)からなることが、被覆層の硬度および耐酸化性を高めることができる点で望ましい。 In the above configuration, the coating layer is made of Ti 1-ab Al a M b (C x N 1-x ) (where M is a periodic table 4, 5, or 6 element excluding Ti, Y and Si 1 or more selected from the group consisting of 0.40 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1) can improve the hardness and oxidation resistance of the coating layer Is desirable.

図1に示すように、本発明の切削工具(以下、単に工具と略す)1は、すくい面3と逃げ面4との交差稜線部を切刃5とし、図3に示すように、基体6の表面に被覆層7を被覆してなる。   As shown in FIG. 1, a cutting tool (hereinafter simply abbreviated as a tool) 1 according to the present invention has a cutting edge 5 as an intersecting ridge line portion between a rake face 3 and a flank face 4, and as shown in FIG. The surface is coated with a coating layer 7.

そして、本発明によれば、工具1の好適な実施態様についての被覆層の一例について、(a)切刃部、(b)中央部についての走査型電子顕微鏡写真を示す図2から明らかなとおり、基体6の表面に被覆される被覆層7を外表面から顕微鏡にて観察した組織が、切刃部5においては平均粒径0.5〜2μmの粒状粒子として観察され、切刃部5から離れた中央部8では、切刃部5より平均粒径が小さく、かつ平均粒径0.1〜0.8μmの粒状粒子として観察されることが大きな特徴である。これによって、切刃部5においては初期摩耗が少なくかつ切削抵抗が小さくて耐摩耗性が高く、中央部8では耐衝撃性が高くて切屑が衝突しても被覆層7が剥離しにくい構成となっている。
And according to this invention, as FIG. 2 which shows the scanning electron micrograph about (a) a cutting blade part and (b) center part about an example of the coating layer about the suitable embodiment of the tool 1 is clear. The structure obtained by observing the coating layer 7 coated on the surface of the substrate 6 with a microscope from the outer surface is observed as granular particles having an average particle diameter of 0.5 to 2 μm in the cutting blade portion 5, and from the cutting blade portion 5. in remote central 8, the average particle diameter is smaller than the cutting edge 5, and Rukoto observed as granular particles having an average particle size 0.1~0.8μm is a significant feature. Accordingly, the cutting edge portion 5 has a low initial wear and a low cutting resistance and a high wear resistance, and the central portion 8 has a high impact resistance and the coating layer 7 is difficult to peel off even when chips collide. It has become.

ここで、切刃部5における被覆層7の表面でのスキューネスRskeが、中央部8における被覆層7の表面でのスキューネスRskcよりも小さい(Rske<Rskc)ことによって、切刃部5においては初期摩耗が小さくかつ切削抵抗が低くて耐摩耗性が高く、中央部8においては切屑が衝突した際の衝撃を吸収できる点で望ましい。なお、スキューネスの測定は原子間力顕微鏡(AFM)にて被覆層7の表面状態を測定し、その凹凸状態からJISB0601に規定されたスキューネスSskの規定に順じて算出する方法が本発明においては好適に採用できる。 Here, the skewness R ske on the surface of the coating layer 7 in the cutting edge part 5 is smaller than the skewness R skc on the surface of the coating layer 7 in the central part 8 (R ske <R skc ), so that the cutting edge part No. 5 is desirable in that the initial wear is small and the cutting resistance is low and the wear resistance is high, and the center portion 8 can absorb the impact when chips collide. The measurement of skewness measures the surface state of the coating layer 7 by an atomic force microscope (AFM), in the present invention a method of calculating in Ji order provisions of skewness S sk defined from the irregularities in JISB0601 Can be suitably employed.

また、被覆層7を断面から顕微鏡にて観察した組織が、切刃部5においては平均粒子幅0.02〜0.3μmの縦長粒子として観察され、中央部8では平均粒子幅0.1〜0.5μmの縦長粒子として観察されることが望ましいものである。これによって、切刃部5における耐摩耗性がより高く、かつ中央部8における耐衝撃性がより高いものとなる。つまり、被覆層7に含有される粒子は、断面方向から見て縦長にかつ外表面から見ると粒状に見える組織にて構成されることが望ましい。   Further, a structure obtained by observing the coating layer 7 with a microscope from a cross-section is observed as vertically long particles having an average particle width of 0.02 to 0.3 μm in the cutting edge portion 5, and an average particle width of 0.1 to 0.1 in the central portion 8. It is desirable to be observed as 0.5 μm long particles. As a result, the wear resistance at the cutting edge portion 5 is higher and the impact resistance at the central portion 8 is higher. That is, it is desirable that the particles contained in the coating layer 7 have a structure that is vertically long when viewed from the cross-sectional direction and looks granular when viewed from the outer surface.

ここで、本発明によれば、成膜中に実施する表面処理によって、切刃部5においては中央部8よりもより強く被覆層7の表面がたたかれて被覆層7の外表面に堆積した微粒子が再蒸発する。この時、本発明の表面処理の条件では被覆層7の表面性状が平らになるように制御されているので、外表面から顕微鏡で観察した際に測定される組織中の粒子の平均粒径は上記範囲のように断面から顕微鏡で観察した際に測定される組織中の粒子の平均粒子幅に比べて大きく観察される。また、この工程によって、被覆層7の表面において微粒子が除去されるので、引き続き被覆層7が成膜される際には核形成が初期状態に戻った状態となり、表面処理しない場合に比べて成長する粒子は微粒となるものと考えられる。   Here, according to the present invention, the surface of the coating layer 7 is struck more strongly at the cutting edge portion 5 than the central portion 8 by the surface treatment performed during film formation, and is deposited on the outer surface of the coating layer 7. The fine particles re-evaporate. At this time, since the surface property of the coating layer 7 is controlled to be flat under the surface treatment conditions of the present invention, the average particle size of the particles in the tissue measured when observed from the outer surface with a microscope is It is observed to be larger than the average particle width of the particles in the structure measured when observed with a microscope from the cross section as in the above range. In addition, since fine particles are removed from the surface of the coating layer 7 by this process, when the coating layer 7 is subsequently formed, the nucleation is returned to the initial state, which is higher than that in the case where the surface treatment is not performed. It is considered that the particles to be formed are fine.

また、被覆層7の表面においては、図2に示すように、切刃部5における粒子は粒子同士の界面が表面処理によって浸食されて消滅し、この界面の一部だけが残存した状態となる。そして、粒子同士を連結する界面の残存部が一方向に並んでおり、かかる粒子間の界面が消滅した部分も特定の方向に大きくなって、粒子自体が角ばった組織となっている。一方、中央部8においては粒子が成膜されたままほとんど再蒸発しないので、微粒子が凝集した組織となっている。   On the surface of the coating layer 7, as shown in FIG. 2, the particles in the cutting edge portion 5 disappear due to the erosion of the interface between the particles by the surface treatment, and only a part of this interface remains. . And the remaining part of the interface which connects particle | grains is located in a line, and the part where the interface between this particle | grains disappeared became large in the specific direction, and it has become the structure | tissue where the particle itself was angular. On the other hand, in the central portion 8, particles are hardly re-evaporated while being formed into a film, so that a structure in which fine particles are aggregated is formed.

なお、本発明における上記縦長粒子とは、図3に示すような基体6の表面に対して垂直に長く成長した粒子を指し、この縦長粒子は被覆層7内に発生する内部応力を低減して工具1の耐欠損性を改善できるので被覆層7の厚みを厚くしても自己破壊することなく安定した成膜が可能であるとともに、被覆層7の靭性が高くて耐欠損性が向上する。そのため、上記被覆層7がチッピングしにくく、被覆層7の層厚が0.5〜6μmであっても被覆層7が剥離やチッピングすることを防止できて十分な耐摩耗性を維持することができる。   In the present invention, the vertically long particles refer to particles that have grown long vertically to the surface of the substrate 6 as shown in FIG. 3, and the vertically long particles reduce internal stress generated in the coating layer 7. Since the fracture resistance of the tool 1 can be improved, stable film formation is possible without self-destruction even when the thickness of the coating layer 7 is increased, and the fracture resistance is improved because the toughness of the coating layer 7 is high. Therefore, the coating layer 7 is difficult to chip, and even when the thickness of the coating layer 7 is 0.5 to 6 μm, the coating layer 7 can be prevented from peeling or chipping, and sufficient wear resistance can be maintained. it can.

また、被覆層7中の縦長粒子の粒子幅は、縦長粒子をなす被覆層7の中間の厚さにあたる部分に引いた線Aにて測定する。被覆層7中の縦長粒子の平均粒子幅wは線A(ただし100nm以上)の長さLを特定し、この長さLの線Aを横切る粒界の数を数えて、長さL/粒界の数によって算出することができる。 Further, the particle width of the vertically long particles in the coating layer 7 is measured by a line A drawn to a portion corresponding to an intermediate thickness of the coating layer 7 forming the vertically long particles. The average particle width w t of the longitudinally long particles in the coating layer 7 specifies the length L of the line A (however, 100 nm or more), and the number of grain boundaries crossing the line A of this length L is counted. It can be calculated by the number of grain boundaries.

さらに、切刃部5における被覆層7の表面での硬度Hが、中央部8における被覆層7の表面での硬度Hよりも高い(H>H)ことが、切刃部5における耐摩耗性の向上と中央部8における耐欠損性の向上との両立の点で望ましいものである。 Further, the cutting edge 5 has a hardness H e on the surface of the coating layer 7 in the cutting edge 5 higher than the hardness H c on the surface of the coating 7 in the central part 8 (H e > H c ). This is desirable in terms of both improvement in wear resistance and improvement in fracture resistance in the central portion 8.

また、被覆層7は、単純なTi1−aAlNにて構成されていても良いが、例えば、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0≦a<1、0<b≦1、0≦x≦1である。)にて構成されていてもよい。中でも、Ti1−a−bAlab(Cx1−x)(ただし、MはTiとAlを除く周期表4、5、6族元素、YおよびSiから選ばれる1種以上、0.40≦a≦0.65、0≦b≦0.3、0≦x≦1)からなることが、被覆層7の硬度および耐酸化性を高める点で望ましい。さらには、上記組成の中でも、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはTiとWを除く周期表第4、5、6族元素、希土類元素から選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなることが望ましく、この組成領域では、酸化開始温度が高くなって耐酸化性が高くて切削時の耐摩耗性が向上するとともに切刃先端に発生しやすいチッピングが抑制できて耐欠損性が高いものとなる。また、金属MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であるが、中でもNbまたはMoを含有することが耐摩耗性・耐酸化性に最も優れる点で望ましい。 The covering layer 7 may be composed of simple Ti 1-a Al a N. For example, Ti 1-a-b Al a M b (C x N 1-x ) (however, M Is one or more selected from Group 4, 5, 6 elements of the periodic table excluding Ti, rare earth elements, and Si, and 0 ≦ a <1, 0 <b ≦ 1, and 0 ≦ x ≦ 1. It may be configured. Among them, Ti 1-a-b Al a M b (C x N 1-x ) (where M is one or more selected from Group 4, 5 and 6 elements in the periodic table excluding Ti and Al, Y and Si, 0.40 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1) are desirable from the viewpoint of increasing the hardness and oxidation resistance of the coating layer 7. Further, among the above composition, Ti 1-a-b- c-d Al a M b W c Si d (C x N 1-x) ( where periodic table 4, 5 M is, except for Ti and W 1 or more selected from group 6 elements and rare earth elements, and 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1). In the composition region, the oxidation start temperature is high, the oxidation resistance is high, the wear resistance at the time of cutting is improved, and the chipping that is likely to occur at the tip of the cutting edge can be suppressed, and the fracture resistance is high. Further, the metal M is at least one selected from Nb, Mo, Ta, Hf, and Y. Among them, the inclusion of Nb or Mo is desirable in terms of the most excellent wear resistance and oxidation resistance.

さらに、被覆層7の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものであり、被覆層7の表面に発生するドロップレットの過剰な発生を抑制するために、x(C含有比率)の特に望ましい範囲は0≦x≦0.5である。なお、被覆層7の組成はエネルギー分散型X線分光(EDS)分析法またはX線光電子分光(XPS)分析法にて測定できる。   Furthermore, C and N which are non-metallic components of the coating layer 7 are excellent in hardness and toughness required for the cutting tool, and in order to suppress excessive generation of droplets generated on the surface of the coating layer 7, A particularly desirable range of x (C content ratio) is 0 ≦ x ≦ 0.5. The composition of the coating layer 7 can be measured by energy dispersive X-ray spectroscopy (EDS) analysis or X-ray photoelectron spectroscopy (XPS) analysis.

なお、本発明の切削工具1において、被覆層7の表面には機械加工が施されていなくても上記構成を実現でき、複雑な形状の工具1においても適応可能であるとともに製造工程の簡略化が可能である。   In the cutting tool 1 of the present invention, the above-described configuration can be realized even if the surface of the coating layer 7 is not machined, and can be applied to the tool 1 having a complicated shape, and the manufacturing process can be simplified. Is possible.

また、切刃部5における被覆層7の層厚tが中央部8における被覆層7の層厚tよりも薄くなる傾向にあるが、その比率(切刃部5での層厚t/中央部8での層厚t)は0.7以上であることが、工具1の耐摩耗性を高めるために望ましい。さらに、被覆層7の組成は、切刃部5における被覆層7のTiとAlとの総量に対するTiの比率をTi、中央部8における被覆層7のTiとAlとの総量に対するTiの比率をTiとしたとき、Ti/Tiが1〜1.2であることが、切刃部5に求められる耐摩耗性および中央部8に求められる耐欠損性のバランスを最適化する点で望ましい。 Further, there is a tendency that the layer thickness t e of the coating layer 7 in the cutting edge 5 becomes thinner than the thickness t c of the coating layer 7 in the central portion 8, the layer thickness at the ratio (cutting edge 5 t e / The layer thickness t c ) at the central portion 8 is preferably 0.7 or more in order to increase the wear resistance of the tool 1. Further, the composition of the coating layer 7 is such that the ratio of Ti to the total amount of Ti and Al of the coating layer 7 in the cutting edge portion 5 is Ti e , and the ratio of Ti to the total amount of Ti and Al of the coating layer 7 in the central portion 8 When Ti is c , Ti e / Ti c is 1 to 1.2, which optimizes the balance between the wear resistance required for the cutting edge part 5 and the fracture resistance required for the central part 8 Is desirable.

なお、被覆層7中の各元素の含有比率は、透過型電子顕微鏡測定装置に備え付けられたエネルギー分散型X線分光(EDS)分析装置を用いて測定することができ、被覆層7中のTi含有比率は各元素のピーク強度の総和とTi元素のピーク強度との比率で算出される。ここで、エネルギー分散型X線分光(EDS)分析法におけるTiのLα線のピーク(エネルギー0.4keV付近)についてはN元素のKα線のピークと重なって正確な測定ができないために、N元素が含有される可能性がある場合にはこのピークは算出に用いるピークから外してTiのKα線のピーク(エネルギー4.5keV付近)を用いてTi、Tiとも算出し、その比Ti/Tiを求める。また、本発明によれば、Ti、Tiの測定に際してはそれぞれ被覆層7の任意5箇所以上の測定値に基づいてその平均値として求めるものとする。 The content ratio of each element in the coating layer 7 can be measured using an energy dispersive X-ray spectroscopy (EDS) analyzer provided in the transmission electron microscope measurement device. The content ratio is calculated by the ratio between the total peak intensity of each element and the peak intensity of the Ti element. Here, the peak of the Lα ray of Ti (energy around 0.4 keV) in the energy dispersive X-ray spectroscopy (EDS) analysis method cannot be accurately measured because it overlaps with the Kα ray peak of the N element. If there is a possibility that Ti is contained, this peak is excluded from the peak used for calculation, and Ti e and Ti c are also calculated using the peak of Ti Kα ray (energy around 4.5 keV), and the ratio Ti e / Ti c is obtained. Further, according to the present invention, when measuring Ti e and Ti c , the average value is obtained based on the measured values at five or more arbitrary locations of the coating layer 7.

また、基体6としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの他、窒化ケイ素や、酸化アルミニウムを主成分とするセラミック、多粒子ダイヤモンドや立方晶窒化ホウ素からなる硬質相と、セラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as the substrate 6, in addition to cemented carbide or cermet composed of tungsten carbide, a hard phase mainly composed of titanium carbonitride, and a binder phase mainly composed of an iron group metal such as cobalt or nickel, silicon nitride And hard materials such as ceramics mainly composed of aluminum oxide, a hard phase composed of multi-particle diamond or cubic boron nitride, and a super-high pressure sintered body in which a binder phase such as ceramics or iron group metal is fired under an ultra-high pressure. Materials are preferably used.

(製造方法)
次に、本発明の切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the cutting tool of this invention is demonstrated.

まず、工具形状の基体を従来公知の方法を用いて作製する。次に、この基体の表面に、被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の詳細についての一例を説明すると、被覆層をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用いる。   First, a tool-shaped substrate is produced using a conventionally known method. Next, a coating layer is formed on the surface of the substrate. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method. An example of the details of the film forming method will be described. When the coating layer is manufactured by the ion plating method, metal titanium (Ti), metal aluminum (Al), metal M (where M is a periodic table excluding Ti). One or more selected from Group 4, 5, 6 elements, rare earth elements and Si) are used independently for metal targets or composite alloy targets.

成膜条件としては、このターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させる条件が好適に採用できる。このとき、窒素(N)ガスまたはこれにアルゴン(Ar)ガスを添加した混合ガスを用いて、試料を400〜600℃に加熱した状態で、イオンプレーティング法またはスパッタリング法によって30〜200Vのバイアス電圧を印加しながら被覆層を成膜する。このとき、成膜する前に100〜300Vのバイアス電圧で30〜60分の表面処理を行い、かつ成膜の途中で
100〜300Vのバイアス電圧で5〜10分の表面処理を行いながら成膜することによって、上述した本発明の被覆層の構成を形成することができる。
As the film forming conditions, using this target, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C) as a carbon source. Conditions for reacting with 2 H 2 ) gas can be suitably employed. At this time, the sample was heated to 400 to 600 ° C. using nitrogen (N 2 ) gas or a mixed gas obtained by adding argon (Ar) gas thereto, and the sample was heated to 30 to 200 V by an ion plating method or a sputtering method. A coating layer is formed while applying a bias voltage. At this time, surface treatment is performed for 30 to 60 minutes with a bias voltage of 100 to 300 V before film formation, and film formation is performed while performing surface treatment for 5 to 10 minutes with a bias voltage of 100 to 300 V during film formation. By doing so, the structure of the coating layer of the present invention described above can be formed.

平均粒径0.5μmの炭化タングステン(WC)粉末に対して、金属コバルト(Co)粉末を10質量%、炭化バナジウム(VC)粉末を0.2質量%、炭化クロム(Cr)粉末を0.8質量%の割合で添加、混合し、刃先交換式切削工具(DCGT11T302FR−U)インサート形状に成型して焼成した。そして、研削工程を経た後、アルカリ、酸、蒸留水の順によって表面を洗浄してインサート基体を作製した。 10% by mass of metallic cobalt (Co) powder, 0.2% by mass of vanadium carbide (VC) powder, chromium carbide (Cr 3 C 2 ) powder with respect to tungsten carbide (WC) powder having an average particle size of 0.5 μm Was added and mixed at a ratio of 0.8% by mass, molded into an insert shape cutting tool (DCGT11T302FR-U) insert shape, and fired. After the grinding process, the surface was washed in the order of alkali, acid, and distilled water to produce an insert substrate.

そして、アークイオンプレーティング装置内に上記基体をセットし基体を表1に示す温度に加熱して表1に示す被覆層を成膜した。また、成膜中の表面処理条件についても表1に示した。なお、成膜条件は窒素ガスとアルゴンガスの混合ガスを総圧力4Paの雰囲気中、アーク電流150Aとした。また、バイアス電圧については電圧と略して記載し、時間については表面処理時間を除いた正味の成膜時間を記載した。さらに、表1の表面処理条件における成膜中の時期とは、表面処理を開始するまでに成膜した時間を示している。
And the said base | substrate was set in the arc ion plating apparatus, the base | substrate was heated to the temperature shown in Table 1, and the coating layer shown in Table 1 was formed into a film. The surface treatment conditions during film formation are also shown in Table 1. The film forming conditions were an arc current of 150 A in a mixed gas of nitrogen gas and argon gas in an atmosphere having a total pressure of 4 Pa. The bias voltage is abbreviated as voltage, and the time is the net film formation time excluding the surface treatment time. Furthermore, the time during film formation under the surface treatment conditions in Table 1 indicates the time during which the film was formed before the surface treatment was started.

得られたインサートについて、キーエンス社製走査型電子顕微鏡(VE8800)を用いて、被覆層の外表面と断面それぞれについて倍率5000倍にて組織観察を行い、被覆層を構成する粒子の性状や層厚(t、t)を確認した。また、同装置に付随のEDAXアナライザ(AMETEK EDAX-VE9800)を用いて加速電圧15kVにてエネルギー分散型X線分光(EDS)分析法の一種であるZAF法により被覆層の組成の定量分析を行い、切刃部と中央部それぞれについてTiとAlの比率であるTi/(Ti+Al)を算出した(切刃部Ti、中央部Ti)。なお、この方法で測定できなかった元素については、PHI社製X線光電子分光分析装置(Quantum2000)を用い、X線源はモノクロAlK(200μm、35W、15kV)を測定領域約200μmに照射して測定を行った。結果は表2に示した。 The obtained insert was subjected to a structure observation at a magnification of 5000 for each of the outer surface and the cross section of the coating layer using a scanning electron microscope (VE8800) manufactured by Keyence, and the properties and layer thickness of the particles constituting the coating layer were observed. (T e , t c ) was confirmed. In addition, using the EDAX analyzer (AMETEK EDAX-VE9800) attached to the device, the composition of the coating layer is quantitatively analyzed by the ZAF method, which is a type of energy dispersive X-ray spectroscopy (EDS) analysis method, at an acceleration voltage of 15 kV. Ti / (Ti + Al), which is the ratio of Ti and Al, was calculated for each of the cutting edge part and the central part (cutting edge part Ti e , central part Ti c ). For elements that could not be measured by this method, a PHI X-ray photoelectron spectrometer (Quantum2000) was used, and the X-ray source was irradiated with monochrome AlK (200 μm, 35 W, 15 kV) to a measurement region of about 200 μm. Measurements were made. The results are shown in Table 2.

また、上記被覆層の断面については透過型電子顕微鏡(TEM)にて観察して組織状態の詳細を確認し、縦長粒子の平均粒子幅を算出した。結果は表2に記載した。
Further, the cross section of the coating layer was observed with a transmission electron microscope (TEM) to confirm the details of the structure state, and the average particle width of the vertically long particles was calculated. The results are shown in Table 2.

さらに、得られたインサートを用いて以下の切削条件にて切削試験を行った。結果は表2に記載した。 Furthermore, the cutting test was done on the following cutting conditions using the obtained insert. The results are shown in Table 2.

切削方法:外径旋削
被削材 :S45C
切削速度:100m/分
送り :0.04mm/刃
切り込み:1.5mm
切削状態:湿式
評価方法:60分間切削した時点で、逃げ面摩耗量と切刃におけるチッピング状態、被削材の加工面粗度を測定。
Cutting method: Outer turning work material: S45C
Cutting speed: 100 m / minute feed: 0.04 mm / blade cutting: 1.5 mm
Cutting state: wet evaluation method: At the time of cutting for 60 minutes, the flank wear amount, the chipping state at the cutting edge, and the processed surface roughness of the work material are measured.

表1〜3より、被覆層を外表面から顕微鏡にて観察した組織において、切刃部における平均粒径が0.5μmより小さい粒状粒子として観察される試料No.11では、切刃部での初期摩耗が大きく、その後も摩耗の進行が早かった。切刃部における平均粒径が2μmを超える試料No.15でも、切刃における耐摩耗性が悪かった。また、中央部における平均粒径が0.1μmよりも小さい試料No.13では、内部応力によって耐チッピング性が低下して切屑が衝突した部分に被覆層の剥離が発生した。逆に、中央部における平均粒径が0.8μmを超える試料No.12でも、切屑の衝突による被覆層の剥離が発生した。   From Tables 1 to 3, in the structure in which the coating layer was observed with a microscope from the outer surface, Sample No. observed as granular particles having an average particle size in the cutting edge portion smaller than 0.5 μm. In No. 11, the initial wear at the cutting edge was large and the wear progressed rapidly thereafter. Sample No. in which the average particle size at the cutting edge exceeds 2 μm. 15 also had poor wear resistance at the cutting edge. In addition, Sample No. with an average particle size of less than 0.1 μm in the central portion. In No. 13, chipping resistance was lowered by internal stress, and peeling of the coating layer occurred at the portion where the chips collided. On the other hand, Sample No. with an average particle size in the center exceeding 0.8 μm. 12, peeling of the coating layer due to the collision of chips occurred.

これに対し、被覆層を外表面から顕微鏡にて観察した組織が、切刃部においては平均粒径0.5〜2μmの粒状粒子として観察され、かつ切刃部から離れた中央部では、切刃部より平均粒径が小さく、かつ平均粒径0.1〜0.5μmの粒状粒子として観察される試料No.1〜10では、耐欠損性と耐摩耗性が良くて切削性能に優れたものであった。 On the other hand, the structure obtained by observing the coating layer with a microscope from the outer surface is observed as granular particles having an average particle diameter of 0.5 to 2 μm at the cutting edge, and at the center portion away from the cutting edge , Sample No. observed as granular particles having an average particle size smaller than the blade portion and having an average particle size of 0.1 to 0.5 μm. In Nos. 1 to 10, the chipping resistance and wear resistance were good and the cutting performance was excellent.

本発明の切削工具の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the cutting tool of this invention. 本発明の切削工具の被覆層を外表面から走査型電子顕微鏡にて観察した組織の一例であり、(a)切刃部、(b)中央部である。It is an example of the structure | tissue which observed the coating layer of the cutting tool of this invention with the scanning electron microscope from the outer surface, (a) Cutting edge part, (b) Center part. 図2の切削工具の被覆層を含む断面から走査型電子顕微鏡にて観察した組織の一例であり、(a)切刃部、(b)中央部である。It is an example of the structure | tissue observed with the scanning electron microscope from the cross section containing the coating layer of the cutting tool of FIG. 2, (a) Cutting edge part, (b) Center part.

符号の説明Explanation of symbols

1 切削工具(工具)
3 すくい面
4 逃げ面
5 切刃部
6 基体
7 被覆層
8 中央部
1 Cutting tool
3 rake face 4 flank face 5 cutting edge part 6 base 7 covering layer 8 center part

Claims (5)

すくい面と逃げ面との交差稜線部を切刃とし、基体の表面に被覆層を被覆してなる切削工具において、前記被覆層を外表面から顕微鏡にて観察した組織が、切刃部においては平均粒径0.5〜2μmの粒状粒子として観察され、該切刃部から離れた中央部では、前記切刃部より平均粒径が小さく、かつ平均粒径0.1〜0.8μmの粒状粒子として観察されることを特徴とする切削工具。 In a cutting tool in which a crossing ridge line portion between a rake face and a flank surface is used as a cutting edge, and the surface of the substrate is coated with a coating layer, the structure of the coating layer observed with a microscope from the outer surface is It is observed as granular particles having an average particle diameter of 0.5 to 2 μm, and in the central part away from the cutting edge part, the average particle diameter is smaller than that of the cutting edge part, and the average particle diameter is 0.1 to 0.8 μm. A cutting tool characterized by being observed as particles. 前記切刃部における前記被覆層の表面でのスキューネスRskeが、前記中央部における被覆層の表面でのスキューネスRskcよりも小さい(Rske<Rskc)ことを特徴とする請求項1記載の切削工具。 The skewness R ske at the surface of the coating layer in the cutting edge portion is smaller than the skewness R skc at the surface of the coating layer in the central portion (R ske <R skc ). Cutting tools. 前記被覆層を断面から顕微鏡にて観察した組織が、前記切刃部においては平均粒子幅0.02〜0.3μmの縦長粒子として観察され、前記中央部では平均粒子幅0.1〜0.5μmの縦長粒子として観察されることを特徴とする請求項1または2記載の切削工具。   A structure obtained by observing the coating layer with a microscope from a cross section is observed as vertically long particles having an average particle width of 0.02 to 0.3 μm in the cutting edge portion, and an average particle width of 0.1 to 0.3 in the central portion. The cutting tool according to claim 1, wherein the cutting tool is observed as 5 μm long particles. 前記切刃部における前記被覆層の表面での硬度Hが、前記中央部における前記被覆層の表面での硬度Hよりも高い(H>H)ことを特徴とする請求項1乃至3のいずれか記載の切削工具。 Hardness H e at the surface of the coating layer in the cutting portion, to claim 1, characterized in said higher than the hardness H c at the surface of the coating layer (H e> H c) that in the central portion 4. The cutting tool according to any one of 3. 前記被覆層は、Ti1−a−bAlab(Cx1−x)(ただし、MはTiを除く周期表4、5、6族元素、YおよびSiから選ばれる1種以上、0.40≦a≦0.65、0≦b≦0.3、0≦x≦1)からなることを特徴とする請求項1乃至4のいずれか記載の切削工具。 The coating layer is Ti 1-ab Al a M b (C x N 1-x ) (where M is one or more selected from the periodic tables 4, 5, 6 elements except Ti, Y and Si) The cutting tool according to claim 1, wherein 0.40 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1).
JP2008017106A 2008-01-29 2008-01-29 Cutting tools Active JP5127477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017106A JP5127477B2 (en) 2008-01-29 2008-01-29 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017106A JP5127477B2 (en) 2008-01-29 2008-01-29 Cutting tools

Publications (2)

Publication Number Publication Date
JP2009178774A JP2009178774A (en) 2009-08-13
JP5127477B2 true JP5127477B2 (en) 2013-01-23

Family

ID=41033147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017106A Active JP5127477B2 (en) 2008-01-29 2008-01-29 Cutting tools

Country Status (1)

Country Link
JP (1) JP5127477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150108906A (en) * 2013-02-27 2015-09-30 쿄세라 코포레이션 Cutting tool

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052767A1 (en) * 2009-10-30 2011-05-05 三菱マテリアル株式会社 Surface coated cutting tool with excellent chip resistance
JP5495735B2 (en) * 2009-11-27 2014-05-21 京セラ株式会社 Cutting tools
JP5597469B2 (en) * 2010-07-29 2014-10-01 京セラ株式会社 Cutting tools
US9725811B2 (en) 2013-03-04 2017-08-08 Tungaloy Corporation Coated cutting tool
JP6198002B2 (en) * 2013-11-28 2017-09-20 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting.
JP7173026B2 (en) * 2017-09-28 2022-11-16 日立金属株式会社 Cutting tool and manufacturing method thereof
US20220088686A1 (en) * 2018-11-29 2022-03-24 Kyocera Corporation Coated tool and cutting tool including same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353449B2 (en) * 1994-04-20 2002-12-03 住友電気工業株式会社 Coated cutting tool
JP2004074312A (en) * 2002-08-12 2004-03-11 Ngk Spark Plug Co Ltd Cutting tool
JP4099081B2 (en) * 2003-02-17 2008-06-11 京セラ株式会社 Surface coated cutting tool
JP2007313636A (en) * 2006-04-27 2007-12-06 Kyocera Corp Cutting tool and cutting method for work using the cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150108906A (en) * 2013-02-27 2015-09-30 쿄세라 코포레이션 Cutting tool
CN104994979A (en) * 2013-02-27 2015-10-21 京瓷株式会社 Cutting tool
KR101701186B1 (en) * 2013-02-27 2017-02-01 쿄세라 코포레이션 Cutting tool
US9694426B2 (en) 2013-02-27 2017-07-04 Kyocera Corporation Cutting tool

Also Published As

Publication number Publication date
JP2009178774A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5046726B2 (en) Surface coated cutting tool
JP5127477B2 (en) Cutting tools
JP5038303B2 (en) Surface coating tool and method for machining workpiece
JP4975194B2 (en) Cutting tools
JP5052666B2 (en) Surface coating tool
JP5066301B2 (en) Cutting tools
JP2007160504A (en) Coated cutting tool insert
JP5383019B2 (en) End mill
JP5883161B2 (en) Cutting tools
JP2006231422A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP5558558B2 (en) Cutting tools
JPWO2020075356A1 (en) Cutting tools and their manufacturing methods
JP5247377B2 (en) Cutting tools
JP2008155328A (en) Surface-coated tool
JP2008155329A (en) Surface-coated tool
JP4942495B2 (en) Surface coating tool
JP6794604B1 (en) Cutting tools
JP5495735B2 (en) Cutting tools
JP6780222B1 (en) Cutting tools
JP5037931B2 (en) Surface coating tool
JP2019063900A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
US11033969B2 (en) Cutting tool
US11524339B2 (en) Cutting tool
JP2020020017A (en) Hard alloy and coated hard alloy
JP2014144506A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3