JP4854359B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP4854359B2
JP4854359B2 JP2006090195A JP2006090195A JP4854359B2 JP 4854359 B2 JP4854359 B2 JP 4854359B2 JP 2006090195 A JP2006090195 A JP 2006090195A JP 2006090195 A JP2006090195 A JP 2006090195A JP 4854359 B2 JP4854359 B2 JP 4854359B2
Authority
JP
Japan
Prior art keywords
layer
titanium carbonitride
titanium
hard coating
carbonitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006090195A
Other languages
Japanese (ja)
Other versions
JP2007260851A (en
Inventor
剛 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006090195A priority Critical patent/JP4854359B2/en
Publication of JP2007260851A publication Critical patent/JP2007260851A/en
Application granted granted Critical
Publication of JP4854359B2 publication Critical patent/JP4854359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、優れた耐欠損性を有し、さらには優れた耐摩耗性をも有しうる硬質被覆層を表面に被着形成した表面被覆切削工具に関する。   The present invention relates to a surface-coated cutting tool having a hard coating layer formed on the surface, which has excellent fracture resistance and can also have excellent wear resistance.

従来より、基体の表面に硬質被覆層が被着形成された表面被覆工具が各種用途に用いられている。例えば、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の硬質基体の表面に、TiC層、TiN層、TiCN層、Al層およびTiAlN層等の硬質被覆層が単層または複数層形成された工具が多用されている。 Conventionally, surface-coated tools having a hard coating layer formed on the surface of a substrate have been used for various purposes. For example, cutting tools widely used for metal cutting work include a TiC layer, a TiN layer, a TiCN layer, an Al 2 O 3 layer, and a TiAlN layer on the surface of a hard substrate such as cemented carbide, cermet, or ceramic. A tool having a single hard coating layer or a plurality of hard coating layers is often used.

一方、最近の切削加工の高能率化に伴って、さらなる耐欠損性・耐摩耗性の向上が求められている。特に、金属の重断続切削等の大きな衝撃が切刃にかかるような切削が増えており、かかる過酷な切削条件下においては従来の工具では硬質被覆層が大きな衝撃に耐えきれず、チッピングや硬質被覆層の剥離が発生しやすく、これが引き金となって切刃の欠損や異常摩耗の発生等の突発的な工具損傷により工具寿命を長くできないという問題があった。   On the other hand, with the recent improvement in cutting efficiency, further improvement in fracture resistance and wear resistance is required. In particular, there is an increasing number of cuttings in which a large impact such as heavy interrupted cutting of metal is applied to the cutting edge. Under such severe cutting conditions, the hard coating layer cannot withstand the large impact with conventional tools, and chipping and hard cutting are difficult. There is a problem in that the coating layer is easily peeled off, which triggers the tool life due to sudden tool damage such as chipping of the cutting edge or abnormal wear.

そこで、上記硬質被覆層の特性改善のために、特許文献1には、(422)面に最高ピーク強度を示すTiCN層を1層目に形成することにより、TiCN層の付着力が高くなり基体および他の硬質層との密着力を高めることができることが記載されている。   Therefore, in order to improve the characteristics of the hard coating layer, Patent Document 1 discloses that a TiCN layer having the highest peak intensity on the (422) plane is formed as the first layer, thereby increasing the adhesion of the TiCN layer. In addition, it is described that the adhesion strength with other hard layers can be increased.

また、特許文献2においては、TiCN層の結晶面の(422)面と(311)面における配向係数がTc422,Tc311を最適化することによって、耐摩耗性および耐欠損性を向上させることが記載されている。   Patent Document 2 describes that the orientation coefficient in the (422) plane and (311) plane of the crystal plane of the TiCN layer optimizes Tc422 and Tc311 to improve wear resistance and fracture resistance. Has been.

さらに、特許文献3において、TiCN層のX線回折分析における(311)面と(200)面のピーク強度の比率を厚み方向で漸次変化させることによって、TiCN層の耐摩耗性と耐欠損性を向上させることが記載されている。   Furthermore, in Patent Document 3, by gradually changing the ratio of the peak intensity of the (311) plane and the (200) plane in the X-ray diffraction analysis of the TiCN layer in the thickness direction, the wear resistance and fracture resistance of the TiCN layer are improved. It is described to improve.

またさらに、特許文献4において、(111)面に最高ピーク強度を示すTiCN層を被覆形成することにより、使用寿命が長くなることが記載されている。   Furthermore, Patent Document 4 describes that the service life is prolonged by coating a TiCN layer having the highest peak intensity on the (111) plane.

さらに、特許文献5において、TiCN層の結晶粒のアスペクト比が6以上であることなどにより、前記TiCN層を含む微細柱状結晶構造のTiCN膜が、柱状結晶粒界に発生する亀裂によって剥離することを抑制することが記載されている。
特開平5−220604号公報 特開1999−140647号公報 特開1995−100701号公報 特開平8−90310号公報 特開2002−233902号公報
Further, in Patent Document 5, when the aspect ratio of the crystal grain of the TiCN layer is 6 or more, the TiCN film having a fine columnar crystal structure including the TiCN layer is peeled off by a crack generated in the columnar crystal grain boundary. It is described that suppresses.
Japanese Patent Laid-Open No. 5-220604 JP 1999-140647 A Japanese Patent Laid-Open No. 1995-1000070 JP-A-8-90310 JP 2002-233902 A

上記特許文献1、2および3には、(422)面に最高ピーク強度を示すTiCN層が、基体との密着性および耐摩耗性および耐欠損性に優れるとある。しかし、このようにTiCN層のX線回折分析によって測定される結晶面のピーク強度を最適化するだけでは、同号公報の実施例に記載された切削条件よりさらに過酷な切削条件、特に高速の荒加工のような、耐摩耗性及び刃先の強度が必要となる過酷な切削条件においては、依然として切刃のチッピングの発生や早期の摩耗の進行によって、工具寿命が短くなってしまうという問題があった。   According to Patent Documents 1, 2, and 3, the TiCN layer exhibiting the highest peak intensity on the (422) plane has excellent adhesion to the substrate, wear resistance, and fracture resistance. However, only by optimizing the peak intensity of the crystal plane measured by the X-ray diffraction analysis of the TiCN layer in this way, cutting conditions that are more severe than the cutting conditions described in the examples of the same publication, particularly high-speed In severe cutting conditions that require wear resistance and edge strength, such as rough machining, there is still a problem that the tool life is shortened due to the occurrence of chipping of the cutting edge and the advancement of early wear. It was.

また、上記特許文献4には、(111)面に最高ピーク強度を示すTiCN層が、逃げ面摩耗を抑制することができるとある。しかし、このような構成とするだけでは、層厚み方向からの衝撃、すなわち、縦方向の衝撃には弱く、チッピングおよび硬質被覆層の剥離が生じてしまうという問題があった。   In Patent Document 4, the TiCN layer having the highest peak intensity on the (111) plane can suppress flank wear. However, with such a configuration alone, there is a problem that it is weak against impact from the layer thickness direction, that is, impact in the vertical direction, and chipping and peeling of the hard coating layer occur.

さらに、上記特許文献5には、微細柱状結晶構造のTiCN膜が、柱状TiCN粒子と粒状TiCN粒子を混在させた層を第二層として具備し、第三層のTiCN層のアスペクト比を規定することで、柱状結晶粒界に発生する亀裂による剥離を抑制するとある。しかし、このような構成では、層厚み方向からの衝撃に対しては弱く、膜の剥離を十分抑制することはできないという問題があった。   Furthermore, in the above-mentioned Patent Document 5, the TiCN film having a fine columnar crystal structure includes a layer in which columnar TiCN particles and granular TiCN particles are mixed as a second layer, and defines the aspect ratio of the third TiCN layer. In this way, peeling due to cracks generated at the columnar grain boundaries is suppressed. However, in such a configuration, there is a problem that it is weak against an impact from the layer thickness direction, and film peeling cannot be sufficiently suppressed.

従って、本発明は、上記課題を解決するためになされたもので、柱状晶TiCN層の特性である高硬度および優れた耐摩耗性を発揮するとともに、刃先の強度が高く、特に層厚み方向からの衝撃に強く、耐チッピング性に優れた表面被覆切削工具を提供することを目的とし、とりわけ鋼等の金属の切削、中でも鋳鉄の高速荒加工等の工具切刃に強い衝撃がかかり、耐摩耗性を要求されるような過酷な切削条件においても、優れた耐チッピング性および耐摩耗性を有する表面被覆切削工具を提供することを目的とする。   Therefore, the present invention has been made to solve the above problems, and exhibits high hardness and excellent wear resistance, which are the characteristics of the columnar crystal TiCN layer, and has high edge strength, particularly from the thickness direction of the layer. The purpose is to provide a surface-coated cutting tool that is strong against impact and has excellent chipping resistance. Especially, the tool cutting blade for cutting metal such as steel, especially high-speed roughing of cast iron is subjected to strong impact and wear resistance. An object of the present invention is to provide a surface-coated cutting tool having excellent chipping resistance and wear resistance even under severe cutting conditions that require high performance.

本発明者は、上記課題に対し、鋭意研究を重ねた結果、TiCN層の粒子幅を小さくし、かつ、硬質被覆層の表面を適正なものとすることによって、特に層厚み方向からの衝撃に強い、耐欠損性および耐摩耗性に優れた、高硬度で高強度な表面被覆切削工具を得ることができた。   As a result of intensive research on the above problems, the present inventor reduced the particle width of the TiCN layer and made the surface of the hard coating layer appropriate, particularly in the impact from the layer thickness direction. It was possible to obtain a high-hardness and high-strength surface-coated cutting tool that was strong, excellent in chipping resistance and wear resistance.

つまり、本発明の表面被覆切削工具は、基体の表面に、基体に対して垂直に伸びる柱状粒子からなる炭窒化チタン層を含む硬質被覆層を有する表面被覆切削工具において、前記
前記炭窒化チタン層の粒子幅が0.01〜0.1μmであるとともに、前記硬質被覆層のJIS B0601’01に準拠して測定されるRsmが18〜30μmであり、前記硬質被覆層のRzが3〜9μm、X線回折分析における前記炭窒化チタン層の最強ピークが、(111)結晶面を表すピークであるとともに、下記に示される式で算出される前記炭窒化チタン層の(111)面における配向係数T が1.1以上であることを特徴とする表面被覆切削工具である。
=[I(111)/I (111)][1/8Σ(I(hkl)/I (hkl))] −1
但し、
I(111) :(111)面におけるX線回折ピーク強度測定値
(111):JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I (hkl)):(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)面における[X線回折ピーク強度測定値]/[JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の標準X線回折ピーク強度の平均値]の値の合計
That is, the surface-coated cutting tool of the present invention is the surface-coated cutting tool having a hard coating layer including a titanium carbonitride layer made of columnar particles extending perpendicularly to the substrate on the surface of the substrate. with particles width is 0.01 to 0.1 [mu] m, Ri Rsm is 18 30 .mu.m der which is measured in accordance with JIS B0601'01 of the hard coating layer, Rz of the hard coating layer 3 9 μm, the strongest peak of the titanium carbonitride layer in the X-ray diffraction analysis is a peak representing the (111) crystal plane, and the orientation in the (111) plane of the titanium carbonitride layer calculated by the following formula a surface-coated cutting tool, wherein the coefficient T C is 1.1 or more.
T C = [I (111) / I 0 (111)] [1 / 8Σ (I (hkl) / I 0 (hkl))] −1
However,
I (111): X-ray diffraction peak intensity measurement on (111) plane
I 0 (111): JCPDS card number No. 6-0614 (titanium carbide) and no. Average value of standard X-ray diffraction peak intensity in the (111) plane of the crystal plane described in 6-0642 (titanium nitride)
Σ (I (hkl) / I 0 (hkl)): [X-rays on (111), (200), (220), (311), (222), (331), (420), (422) planes Diffraction peak intensity measurement value] / [JCPDS card number no. 6-0614 (titanium carbide) and no. Sum of the values of the average value of standard X-ray diffraction peak intensities described in 6-0642 (titanium nitride)]

また、前記硬質被覆層のRzがμmとすることによって、TiCN層の粒子の成長方向を適正化することができ、TiCN層の層厚み方向からの衝撃に対するTiCN層の強度を向上させることができるとともに溶着を防ぐことができ、表面被覆切削工具の耐チッピング性および耐溶着性を向上させることができるため重要である
In addition, when the Rz of the hard coating layer is 3 to 9 μm, the grain growth direction of the TiCN layer can be optimized, and the strength of the TiCN layer against the impact from the thickness direction of the TiCN layer is improved. it welding can be prevented it is, is important because it can improve the chipping resistance and welding resistance of the surface-coated cutting tool.

さらに、X線回折分析における前記炭窒化チタン層の最強ピークが、(111)結晶面を表すピークであることによって、より炭窒化チタン層の結晶の結合が安定し、前記炭窒化チタン層の強度が向上して、逃げ面摩耗などを抑制することができるため重要である
Furthermore, when the strongest peak of the titanium carbonitride layer in the X-ray diffraction analysis is a peak representing the (111) crystal plane, the crystal bond of the titanium carbonitride layer is further stabilized, and the strength of the titanium carbonitride layer is increased. This is important because flank wear can be suppressed and flank wear can be suppressed.

ここで、下記に示される式で算出される前記炭窒化チタン層の(111)面における配向係数 が1.1以上であることによって、炭窒化チタン層の粒子間の接触面積が増えることにより、炭窒化チタン層を破壊する際に必要なエネルギーが大きくなり、炭窒化チタン層の強度をより高くすることができ、表面被覆切削工具の耐摩耗性を向上させることができるため重要である
=[I(111)/I (111)][1/8Σ(I(hkl)/I (hkl))] −1
但し、
I(111):(111)面におけるX線回折ピーク強度測定値
(111):JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I (hkl)):(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)面における[X線回折ピーク強度測定値]/[JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の標準X線回折ピーク強度の平均値]の値の合計
Here, by orientation coefficient T C in (111) plane of the titanium carbonitride layer which is calculated by the formula shown below is 1.1 or more, the contact area between the particles of the titanium carbonitride layer is increased Accordingly, the greater the energy required to break the titanium carbonitride layer, it is possible to further increase the strength of the titanium carbonitride layer is important because it can improve the abrasion resistance of the surface-coated cutting tool .
T C = [I (111) / I 0 (111)] [1 / 8Σ (I (hkl) / I 0 (hkl))] −1
However,
I (111): X-ray diffraction peak intensity measurement on (111) plane
I 0 (111): JCPDS card number No. 6-0614 (titanium carbide) and no. Average value of standard X-ray diffraction peak intensity in the (111) plane of the crystal plane described in 6-0642 (titanium nitride)
Σ (I (hkl) / I 0 (hkl)): [X-rays on (111), (200), (220), (311), (222), (331), (420), (422) planes Diffraction peak intensity measurement value] / [JCPDS card number no. 6-0614 (titanium carbide) and no. Sum of the values of the average value of standard X-ray diffraction peak intensities described in 6-0642 (titanium nitride)]

記炭窒化チタン層を構成する粒子のアスペクト比を10〜500の範囲内とすることによって、炭窒化チタン層の硬度と強度を共に高くすることができ、耐摩耗性および耐チッピング性を共に優れたものとすることができるため望ましい。
Before by a range of aspect ratios of 10 to 500 particles constituting the Kisumi titanium nitride layer, it is possible to increase both the hardness and strength of the titanium carbonitride layer, both wear resistance and chipping resistance It is desirable because it can be made excellent.

また、前記炭窒化チタン層の層厚みを3〜10μmの範囲内とすることによって、硬質被覆層の剥離を防ぐと共に、十分な耐摩耗性を得ることができるため望ましい。   Further, it is desirable that the thickness of the titanium carbonitride layer be in the range of 3 to 10 μm because it is possible to prevent peeling of the hard coating layer and to obtain sufficient wear resistance.

本発明の表面被覆工具によれば、基体の表面に、基体に対して垂直に伸びる柱状粒子からなる炭窒化チタン層を含む硬質被覆層を有する表面被覆切削工具において、前記炭窒化チタン層の粒子幅が0.01〜0.1μmであるとともに、前記硬質被覆層のRsmを18〜30μmとすることによって、特に層厚み方向からの衝撃に強い、高硬度かつ高強度な炭窒化チタン層とすることができ、耐摩耗性および耐チッピング性の高い硬質被覆層となるので、高速荒加工のような耐摩耗性が求められ、かつ刃先に大きな負荷がかかるような切削条件に対しても、耐摩耗性が高くなるとともに、刃先がチッピングしたり剥離したりすることを低減することができる。
According to the surface-coated tool of the present invention, in the surface-coated cutting tool having a hard coating layer including a titanium carbonitride layer made of columnar particles extending perpendicularly to the substrate on the surface of the substrate, the particles of the titanium carbonitride layer With a width of 0.01 to 0.1 μm and an Rsm of the hard coating layer of 18 to 30 μm, a high hardness and high strength titanium carbonitride layer that is particularly resistant to impact from the layer thickness direction, Since it becomes a hard coating layer with high wear resistance and chipping resistance, it is required to have wear resistance such as high-speed rough machining, and even for cutting conditions where a heavy load is applied to the cutting edge, Abrasion resistance can be increased, and chipping and peeling of the blade edge can be reduced.

したがって、鋼等の金属の切削、中でも鋳鉄等の高速荒加工等の、工具切刃に強い衝撃がかかり、耐摩耗性が要求されるような過酷な切削条件においても、優れた耐チッピング性および耐摩耗性を有する表面被覆切削工具とすることができる。   Therefore, it has excellent chipping resistance even under severe cutting conditions such as cutting of metals such as steel, especially high-speed roughing of cast iron, etc. A surface-coated cutting tool having wear resistance can be obtained.

本発明の一実施例である旋削用のスローアウェイチップタイプの表面被覆切削工具(以下、単に工具と称す)1について説明する。   A throw-away tip type surface-coated cutting tool (hereinafter simply referred to as a tool) 1 for turning which is an embodiment of the present invention will be described.

本発明の工具1は、主面にすくい面、側面に逃げ面を配し、該すくい面と逃げ面との交差稜線部に切刃を具備する略平板状の形状の基体からなる。   The tool 1 of the present invention comprises a substantially flat substrate having a rake face on the main surface and a flank face on the side face, and a cutting edge at the crossing ridge line between the rake face and the flank face.

上記基体の表面に化学蒸着法(CVD)や物理蒸着法(PVD)といった公知の成膜方法によって硬質被覆層を成膜する。本実施例はCVDによって成膜することを例として説明する。   A hard coating layer is formed on the surface of the substrate by a known film formation method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD). In the present embodiment, the film formation by CVD will be described as an example.

ここで、本発明の工具1は、基体の表面に、基体に対して垂直に伸びる柱状粒子からなる炭窒化チタン層を含む硬質被覆層を有する表面被覆切削工具において、前記炭窒化チタン層の粒子幅が0.01〜0.1μmであるとともに、前記硬質被覆層のRsmが18〜30μmであることを特徴とするものである。
Here, the tool 1 of the present invention is a surface-coated cutting tool having a hard coating layer including a titanium carbonitride layer made of columnar particles extending perpendicularly to the substrate on the surface of the substrate. The width is 0.01 to 0.1 μm, and the Rsm of the hard coating layer is 18 to 30 μm.

このような構成とすることによって、炭窒化チタン層粒子の粒子幅および硬質被覆層のRsmを最適化させることにより、炭窒化チタン層粒子の成長方向を母材のうねりに沿って変化させることができるため、層の厚み方向からかかる衝撃を分散させることができ、硬質被覆層のチッピングを防ぐことができる。   By adopting such a configuration, it is possible to change the growth direction of the titanium carbonitride layer particles along the waviness of the base material by optimizing the particle width of the titanium carbonitride layer particles and the Rsm of the hard coating layer. Therefore, the impact applied from the thickness direction of the layer can be dispersed, and chipping of the hard coating layer can be prevented.

つまり、炭窒化チタン層粒子の粒子幅が0.01μmを下回ると、炭窒化チタン層と基体との密着力が低下してしまい、膜剥離が発生しやすくなるため、異常摩耗や、突発欠損が発生してしまう。   In other words, when the particle width of the titanium carbonitride layer particles is less than 0.01 μm, the adhesion between the titanium carbonitride layer and the substrate is reduced, and film peeling tends to occur. Will occur.

一方、炭窒化チタン層粒子の粒子幅が0.5μmを超えると、炭窒化チタン層粒子が母材のうねりに沿って成長しにくくなるとともに、炭窒化チタン層の硬度が十分ではなくなってしまい、耐摩耗性が低下してしまう。   On the other hand, when the particle width of the titanium carbonitride layer particles exceeds 0.5 μm, it becomes difficult for the titanium carbonitride layer particles to grow along the waviness of the base material, and the hardness of the titanium carbonitride layer becomes insufficient. Wear resistance will decrease.

さらに、硬質被覆層のRsmが18μm未満だと、柱状晶のアスペクト比が大きくなりづらく、柱状晶の配向がランダムになりやすくなり、炭窒化チタン層の強度が低下し、すくい面方向からの衝撃や負荷による耐チッピング性が低下してしまう。
Furthermore, if the Rsm of the hard coating layer is less than 18 μm, the columnar crystal aspect ratio is difficult to increase, the columnar crystal orientation tends to be random, the strength of the titanium carbonitride layer decreases, and the direction from the rake face direction is reduced. Chipping resistance due to impact or load is reduced.

一方、硬質被覆層のRsmが30μmを越えると、炭窒化チタン層結晶の成長方向が母材と硬質被覆層の境界面に対してほぼ垂直となり、炭窒化チタン層の厚み方向、すなわち母材と硬質被覆層の境界面に対して垂直方向への割れを抑制しにくくなり、やはり炭窒化チタン層の強度が低下し、層厚み方向からの衝撃や負荷による耐チッピング性が低下してしまう。   On the other hand, when the Rsm of the hard coating layer exceeds 30 μm, the growth direction of the titanium carbonitride layer crystal is substantially perpendicular to the boundary surface between the base material and the hard coating layer, and the thickness direction of the titanium carbonitride layer, that is, the base material It becomes difficult to suppress cracking in the direction perpendicular to the boundary surface of the hard coating layer, the strength of the titanium carbonitride layer also decreases, and chipping resistance due to impact and load from the layer thickness direction decreases.

ここで、炭窒化チタン層の粒子幅の測定方法としては、炭窒化チタン層を含む、工具1の切断面または破断面を走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等によって観察した画像にて、炭窒化チタン層の厚みの中間部分に基体と平行な線分Aを引き、線分Aと炭窒化チタン層の粒界との交点数を算出し、線分Aの長さを前記交点数で割った値をとる。   Here, as a method for measuring the particle width of the titanium carbonitride layer, the cut surface or fracture surface of the tool 1 including the titanium carbonitride layer is observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. In the obtained image, a line segment A parallel to the substrate is drawn at the middle part of the thickness of the titanium carbonitride layer, the number of intersections between the line segment A and the grain boundary of the titanium carbonitride layer is calculated, and the length of the line segment A Is divided by the number of intersections.

上記測定を、測定場所を変えて5箇所以上行い、得られた値の平均をとって炭窒化チタン層の平均粒子幅とする。   The above measurement is performed at five or more locations at different measurement locations, and the average of the obtained values is taken as the average particle width of the titanium carbonitride layer.

また、硬質被覆層の表面粗さRsmの測定方法としては、硬質被覆層の表面、すなわち、工具表面であるすくい面上の、刃先からすくい面の中心に向かって300μmの範囲で、ホーニング加工部分以外において、触針式の表面粗さ測定器にて、JIS B0601’01に準拠して測定した。   Further, as a method for measuring the surface roughness Rsm of the hard coating layer, the honing process part is in the range of 300 μm from the blade edge to the center of the rake surface on the surface of the hard coating layer, that is, the rake face which is the tool surface. In addition to the above, measurement was performed with a stylus type surface roughness measuring instrument in accordance with JIS B0601'01.

また、工具1のすくい面に切り屑処理のためのブレーカ溝を設けている際には切削により衝撃や負荷がかかるブレーカ溝部においても、上記の方法で硬質被覆層の表面粗さRsmを測定しても問題ない。   In addition, when the breaker groove for chip disposal is provided on the rake face of the tool 1, the surface roughness Rsm of the hard coating layer is measured by the above method also in the breaker groove portion that is subjected to impact or load by cutting. There is no problem.

前記硬質被覆層のRzをμmとすることによって、TiCN層の粒子の成長方向を適正化することができ、TiCN層の層厚み方向からの衝撃に対するTiCN層の強度を向上させることができ、表面被覆切削工具の耐チッピング性を向上させることができる。
By setting the Rz of the hard coating layer to 3 to 9 μm, the grain growth direction of the TiCN layer can be optimized, and the strength of the TiCN layer against the impact from the thickness direction of the TiCN layer can be improved. And the chipping resistance of the surface-coated cutting tool can be improved.

ここで、硬質被覆層のRzが1μm未満であると、TiCN層の層厚み方向、すなわち、母材と被膜の境界面に対して垂直方向の衝撃に対して弱く、硬質被覆層に亀裂が生じやすくなる。   Here, if the Rz of the hard coating layer is less than 1 μm, the TiCN layer is weak against impact in the thickness direction of the TiCN layer, that is, the direction perpendicular to the interface between the base material and the coating, and the hard coating layer is cracked. It becomes easy.

一方、硬質被覆層のRzが5μmより大きいと、工具表面の凹凸が大きくなってしまい、溶着が生じやすくなってしまう。   On the other hand, if the Rz of the hard coating layer is larger than 5 μm, the unevenness of the tool surface becomes large and welding is likely to occur.

なお、硬質被覆層の表面粗さRzの測定も、上記した硬質被覆層のRsmの測定方法と同様に、硬質被覆層の表面、すなわち、工具表面であるすくい面上の、刃先からすくい面の中心に向かって300μmの範囲で、ホーニング加工部分以外において、触針式の表面粗さ測定器にて、JIS B0601’01に準拠して測定可能である。   Note that the surface roughness Rz of the hard coating layer is measured on the surface of the hard coating layer, that is, on the rake face that is the tool surface, from the cutting edge to the rake face, in the same manner as the Rsm measurement method of the hard coating layer described above. In the range of 300 μm toward the center, it can be measured in accordance with JIS B0601′01 with a stylus type surface roughness measuring instrument in a portion other than the honing processed portion.

また、X線回折分析における前記炭窒化チタン層の最強ピークを示す結晶面が(111)面以外になると、炭窒化チタン層の粒子間における結合が弱くなり、炭窒化チタン層の強度が低下してしまい、工具の逃げ面摩耗が大きくなりやすい。   Further, when the crystal plane showing the strongest peak of the titanium carbonitride layer in the X-ray diffraction analysis is other than the (111) plane, the bond between the particles of the titanium carbonitride layer becomes weak, and the strength of the titanium carbonitride layer decreases. The flank wear of the tool tends to increase.

下記に示される式で算出される前記炭窒化チタン層の(111)面における配向係数 が1.1以上であることによって、炭窒化チタン層の粒子間の接触面積が増えることにより、炭窒化チタン層を破壊する際に必要なエネルギーが大きくなり、炭窒化チタン層の強度をより高くすることができ、表面被覆切削工具の耐摩耗性を向上させることができる。
=[I(111)/I (111)][1/8Σ(I(hkl)/I (hkl))] −1
但し、
I(111) :(111)面におけるX線回折ピーク強度測定値
(111):JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I (hkl)):(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)面における[X線回折ピーク強度測定値]/[JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の標準X線回折ピーク強度の平均値]の値の合計
By orientation coefficient T c in (111) plane of the titanium carbonitride layer which is calculated by the formula shown below is 1.1 or more, by the increase in contact area between the particles of the titanium carbonitride layer, charcoal The energy required for breaking the titanium nitride layer is increased, the strength of the titanium carbonitride layer can be increased, and the wear resistance of the surface-coated cutting tool can be improved.
T C = [I (111) / I 0 (111)] [1 / 8Σ (I (hkl) / I 0 (hkl))] −1
However,
I (111): X-ray diffraction peak intensity measurement on (111) plane
I 0 (111): JCPDS card number No. 6-0614 (titanium carbide) and no. Average value of standard X-ray diffraction peak intensity in the (111) plane of the crystal plane described in 6-0642 (titanium nitride)
Σ (I (hkl) / I 0 (hkl)): [X-rays on (111), (200), (220), (311), (222), (331), (420), (422) planes Diffraction peak intensity measurement value] / [JCPDS card number no. 6-0614 (titanium carbide) and no. Sum of the values of the average value of standard X-ray diffraction peak intensities described in 6-0642 (titanium nitride)]

こで、炭窒化チタン層のX線回折分析による最強ピークをしめす結晶面を測定する際には、Kα線を用いて、20度〜150度まで測定する。また、刃先及びすくい面上の刃
先からすくい面の中心に向かって300μmの範囲内におけるX線回折ピーク強度の測定には、微小X線回折分析(微小XRD)により測定する。また、硬質被覆層が多層構造の場合は、TiCN層より上部の層を研磨加工等の方法により除去した後、露出したTiCN層の露出面について、微小XRDにより測定することが可能である。
In here, when measuring the crystal plane indicating the strongest peak by X-ray diffraction analysis of the titanium carbonitride layer, using the Kα line is measured up to 20 degrees to 150 degrees. The X-ray diffraction peak intensity in the range of 300 μm from the cutting edge and the cutting edge on the rake face toward the center of the rake face is measured by a fine X-ray diffraction analysis (micro XRD). In the case where the hard coating layer has a multilayer structure, it is possible to measure the exposed surface of the exposed TiCN layer by micro XRD after removing the layer above the TiCN layer by a method such as polishing.

前記炭窒化チタン層を構成する粒子のアスペクト比を10〜500の範囲内とすることによって、炭窒化チタン層の硬度と強度を共に高くすることができ、耐摩耗性および耐チッピング性を共に優れたものとすることができる。   By setting the aspect ratio of the particles constituting the titanium carbonitride layer within a range of 10 to 500, both the hardness and strength of the titanium carbonitride layer can be increased, and both wear resistance and chipping resistance are excellent. Can be.

ここで、前記アスペクト比の測定方法は、炭窒化チタン層の層厚みを、上記粒子幅の測定方法にて算出した粒子幅にて除することにより算出することができる。なお、前記炭窒化チタン層の層厚みは、炭窒化チタン層を含む任意の切断面または破断面を走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等で観察することによって測定し、各任意の5箇所における層厚みの平均値とする。   Here, the method for measuring the aspect ratio can be calculated by dividing the layer thickness of the titanium carbonitride layer by the particle width calculated by the method for measuring particle width. The layer thickness of the titanium carbonitride layer is measured by observing an arbitrary cut surface or fractured surface including the titanium carbonitride layer with a scanning electron microscope (SEM), a transmission electron microscope (TEM), It is set as the average value of the layer thickness in each arbitrary five places.

前記炭窒化チタン層の層厚みを3〜10μmの範囲内とすることによって、硬質被覆層の剥離を防ぐと共に、十分な耐摩耗性を得ることができるため望ましい。   By making the thickness of the titanium carbonitride layer in the range of 3 to 10 μm, it is desirable because it prevents peeling of the hard coating layer and sufficient wear resistance can be obtained.

また、工具1に成膜される硬質被覆層としては、炭窒化チタン層のほかに、4,5,6族元素の金属、アルミニウム、ジルコニウム、ハフニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物からなる層を積層させる多層膜とすることで、硬質被覆層の強度、硬度および耐酸化性と炭窒化チタン層の付着力等とをより向上させることができる。   Further, as the hard coating layer formed on the tool 1, in addition to the titanium carbonitride layer, metals of Group 4, 5, 6 elements, aluminum, zirconium, hafnium carbide, nitride, oxide, carbonitride By using a multilayer film in which layers of carbon oxide, nitrogen oxide, and carbonitride oxide are laminated, the strength, hardness and oxidation resistance of the hard coating layer and the adhesion of the titanium carbonitride layer are further improved. be able to.

特に、基体の表面に、チタンの窒化物からなる最下層が形成され、該最下層の直上に前記炭窒化チタン層を形成することによって、炭窒化チタン層の付着力を向上させることができ、母材の成分が炭窒化チタン層に拡散し、炭窒化チタン層の強度および硬度が低下することを防ぐことができるため望ましい。   In particular, the lowermost layer made of titanium nitride is formed on the surface of the substrate, and by forming the titanium carbonitride layer directly on the lowermost layer, the adhesion of the titanium carbonitride layer can be improved, It is desirable because it is possible to prevent the base material components from diffusing into the titanium carbonitride layer and reducing the strength and hardness of the titanium carbonitride layer.

さらに、最下層のX線回折分析における最強ピークが、(111)結晶面を表すピークとすることによって、炭窒化チタン層の付着力を向上させることができると共に、直上に形成される炭窒化チタン層のX線回折分析における最強ピークを(111)結晶面に容易に調整することができる。   Furthermore, when the strongest peak in the X-ray diffraction analysis of the lowermost layer is a peak representing the (111) crystal plane, the adhesion of the titanium carbonitride layer can be improved, and the titanium carbonitride formed directly above The strongest peak in the X-ray diffraction analysis of the layer can be easily adjusted to the (111) crystal plane.

本発明の工具1に用いる基体を構成する硬質材料としては、例えばコバルト(Co)および/またはニッケル(Ni)などの鉄族金属からなる結合相にて硬質相を結合させた超硬合金やサーメットからなる硬質合金が挙げられる。硬質相としては、例えば炭化タングステン(WC)、炭化チタン(TiC)またはTiCN(TiCN)と、所望により周期律表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる。   Examples of the hard material constituting the substrate used in the tool 1 of the present invention include a cemented carbide or a cermet in which a hard phase is bonded with a bonded phase made of an iron group metal such as cobalt (Co) and / or nickel (Ni). A hard alloy consisting of As the hard phase, for example, selected from the group of tungsten carbide (WC), titanium carbide (TiC) or TiCN (TiCN) and, if desired, carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table It consists of at least one kind.

また、基体を構成する硬質材料の他の例としては、例えば窒化珪素(Si)や酸化アルミニウム(Al)質セラミック焼結体、立方晶窒化ホウ素(cBN)やダイヤモンドを主体とした超硬質焼結体等も適応可能である。 As other examples of the hard material constituting the substrate, for example, silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ) ceramic sintered body, cubic boron nitride (cBN), and diamond are mainly used. The super-hard sintered body and the like can also be applied.

なお、本発明の工具としては、前記硬質合金を使用することが高い切削性能を幅広い種類の被削材に発揮することができるため望ましい。   As the tool of the present invention, it is desirable to use the hard alloy because high cutting performance can be exerted on a wide variety of work materials.

(製造方法)
次に、本発明の一実施形態である上述した表面被覆切削工具を製造する方法について説明する。
(Production method)
Next, a method for manufacturing the above-described surface-coated cutting tool according to an embodiment of the present invention will be described.

まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合、粉砕し、混合粉末を作製する。   First, metal powder, carbon powder, etc. are appropriately added to metal powders, nitrides, carbonitrides, oxides, and other inorganic powders that can be formed by firing the hard alloy described above, and mixed powders are prepared. .

ここで本発明によれば、作製した混合粉末を金型プレス成形によって所定の工具形状に成形して成形体を作製するが、このときに使用する金型の表面の面粗度、Rsmを7〜28μm、好ましくは、Rsmに加えてRzを0.8〜4μmの範囲内に調節したものを使用することなどによって、作製された成形体を焼結したときの表面状態を本発明の範囲内に容易に調節することができる。   Here, according to the present invention, the produced mixed powder is molded into a predetermined tool shape by die press molding to produce a molded body. The surface roughness, Rsm, of the die surface used at this time is 7 -28 μm, preferably the surface state when the produced molded body is sintered is adjusted within the range of the present invention by using a material in which Rz is adjusted in the range of 0.8-4 μm in addition to Rsm. Can be adjusted easily.

次に、作製した成形体を真空中または非酸化性雰囲気中にて焼成することによって上述した硬質材料からなる基体を作製する。   Next, the produced compact is fired in a vacuum or in a non-oxidizing atmosphere to produce a substrate made of the hard material described above.

そして、上記基体の表面に所望によって研磨加工や切刃部のホーニング加工を施す。このとき、炭化ケイ素等の比較的やわらかい材質の砥粒を用いて、刃先のみに砥石が当たるように角度を調節して刃先処理を施す。これにより、基体表面において、焼成後の焼結体の表面状態を変化させないようにすることができ、本発明の範囲内にある表面構成を有した硬質被覆層を有した工具を作成することができる。   Then, polishing or honing of the cutting edge portion is performed on the surface of the base as desired. At this time, using a relatively soft abrasive such as silicon carbide, the blade edge treatment is performed by adjusting the angle so that only the blade edge hits the grinding wheel. As a result, the surface state of the sintered body after firing can be prevented from changing on the surface of the substrate, and a tool having a hard coating layer having a surface configuration within the scope of the present invention can be created. it can.

次に、作製した焼結体の表面に例えば化学気相蒸着(CVD)法によって硬質被覆層を成膜する。まず、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを5〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1000℃、10〜30kPaの条件で下地層であるTiN層を成膜する。 Next, a hard coating layer is formed on the surface of the produced sintered body by, for example, chemical vapor deposition (CVD). First, a mixed gas composed of titanium chloride (TiCl 4 ) gas of 0.1 to 10% by volume, nitrogen (N 2 ) gas of 5 to 60% by volume, and the balance of hydrogen (H 2 ) gas as a reaction gas composition is prepared. Then, it is introduced into the reaction chamber, and a TiN layer as a base layer is formed in the chamber under conditions of 800 to 1000 ° C. and 10 to 30 kPa.

次に、反応ガス組成として、体積%で塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを5〜60体積%、メタン(CH)ガスを0〜0.1体積%、アセトニトリル(CHCN)ガスを0.1〜2体積%、アセトニトリルガスに対するTiCl4ガスとの流量比率が0.5〜6の範囲内、と残りが水素(H2)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を780〜950℃、5〜25kPaの条件でTiCN層を成膜する。 Next, as a reaction gas composition, titanium chloride (TiCl 4 ) gas is 0.1 to 10% by volume, nitrogen (N 2 ) gas is 5 to 60% by volume, and methane (CH 4 ) gas is 0 to 0 by volume%. 0.1% by volume, 0.1% to 2% by volume of acetonitrile (CH 3 CN) gas, a flow rate ratio of TiCl 4 gas to acetonitrile gas in the range of 0.5 to 6, and the remainder from hydrogen (H 2 ) gas The mixed gas is adjusted and introduced into the reaction chamber, and a TiCN layer is formed under conditions of a film formation temperature of 780 to 950 ° C. and 5 to 25 kPa.

次に、所望により中間層を成膜する。例えば中間層としてTiCNO層を成膜する場合には、塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、二酸化炭素(CO)ガスを0.01〜5体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜30kPaとする。 Next, an intermediate layer is formed as desired. For example, when a TiCNO layer is formed as an intermediate layer, titanium chloride (TiCl 4 ) gas is 0.1 to 3% by volume, methane (CH 4 ) gas is 0.1 to 10% by volume, carbon dioxide (CO 2 ) A mixed gas composed of 0.01 to 5% by volume of gas, 0 to 60% by volume of nitrogen (N 2 ) gas, and the remaining hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber. 800-1100 ° C., 5-30 kPa.

そして、引き続き、Al層を成膜する。Al層の成膜方法としては、塩化アルミニウム(AlCl)ガスを3〜20体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.01〜5.0体積%、硫化水素(HS)ガスを0〜0.01体積%、残りが水素(H)ガスからなる混合ガスを用い、900〜1100℃、5〜10kPaとすることが望ましい。 Subsequently, an Al 2 O 3 layer is formed. As a method for forming the Al 2 O 3 layer, 3 to 20% by volume of aluminum chloride (AlCl 3 ) gas, 0.5 to 3.5% by volume of hydrogen chloride (HCl) gas, and carbon dioxide (CO 2 ) gas 0.01 to 5.0% by volume, hydrogen sulfide (H 2 S) gas is 0 to 0.01% by volume, and the balance is hydrogen (H 2 ) gas. 10 kPa is desirable.

また、表層(TiN層)を成膜するには、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを5〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 In order to form a surface layer (TiN layer), the reaction gas composition is titanium chloride (TiCl 4 ) gas of 0.1 to 10% by volume, nitrogen (N 2 ) gas of 5 to 60% by volume, and the remainder is hydrogen. A mixed gas composed of (H 2 ) gas may be adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa.

そして、所望により、成膜した硬質被覆層の表面の少なくとも切刃部を研磨加工する。この研磨加工により、硬質被覆層中に残存する残留応力が開放されてさらに耐欠損性に優れた工具となる。   Then, if desired, at least the cutting edge portion of the surface of the formed hard coating layer is polished. By this polishing process, the residual stress remaining in the hard coating layer is released, and the tool is further excellent in fracture resistance.

なお、本発明は上記実施態様に限定されるものではなく、例えば、上記説明においては成膜方法として化学蒸着(CVD)法を用いた場合について説明したが、硬質被覆層の一部または全部を物理蒸着(PVD)法によって形成したものであってもよい。   The present invention is not limited to the above embodiment. For example, in the above description, the case where the chemical vapor deposition (CVD) method is used as the film forming method has been described. It may be formed by a physical vapor deposition (PVD) method.

例えば、イオンプレーティング法にてTiCN層を成膜する場合でも、TiCN層の構成を上述した範囲に制御することによって、耐欠損性に優れ、さらに耐摩耗性に優れた工具を作製することができる。   For example, even when a TiCN layer is formed by an ion plating method, by controlling the structure of the TiCN layer within the above-described range, it is possible to produce a tool having excellent fracture resistance and excellent wear resistance. it can.

平均粒径1.5μmの金属コバルト(Co)粉末を7質量%、平均粒径2.0μmの炭化チタン(TiC)粉末を0.5質量%、窒化チタン(TiN)粉末を1.0、炭化タンタル(TaC)粉末を3.0質量%、炭化ジルコニウム(ZrC)粉末を1.0質量%、炭化ニオブ(NbC)粉末を1.5質量%、残りが平均粒径1.5μmの炭化タングステン(WC)粉末である割合でそれぞれ添加、混合した。得られた混合粉末を、表1に示す表面粗さを持つ金型を用いたプレス成形により切削工具形状(CNMA120412)に成形して成形体を作製した。その後、得られた成形体に脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金に表1に示す加工条件にて刃先処理(ホーニングR)を施し、母材試料No.1〜7の母材を作製した。

Figure 0004854359
7% by mass of metallic cobalt (Co) powder with an average particle size of 1.5 μm, 0.5% by mass of titanium carbide (TiC) powder with an average particle size of 2.0 μm, 1.0 carbonized with titanium nitride (TiN) powder Tungsten carbide (3.0% by mass of tantalum (TaC) powder, 1.0% by mass of zirconium carbide (ZrC) powder, 1.5% by mass of niobium carbide (NbC) powder, and the remainder having an average particle size of 1.5 μm ( WC) Each was added and mixed in a proportion of powder. The obtained mixed powder was molded into a cutting tool shape (CNMA12041) by press molding using a mold having the surface roughness shown in Table 1, and a molded body was produced. Thereafter, the obtained compact was subjected to a binder removal treatment and fired at 1500 ° C. for 1 hour in a vacuum of 0.01 Pa to produce a cemented carbide. Further, the prepared cemented carbide was subjected to cutting edge processing (Honing R) under the processing conditions shown in Table 1, and the base material sample No. 1 to 7 base materials were produced.
Figure 0004854359

次に、上記母材に対して、CVD法により各種の硬質被覆層を表2に示す構成の多層膜からなる硬質被覆層を成膜して、試料No.1〜8の工具を作製した。なお、表2の各層の成膜条件は表3に示した。

Figure 0004854359
Next, a hard coating layer composed of a multilayer film having a structure shown in Table 2 was formed on the base material by CVD, and various sample coating layers were formed. 1 to 8 tools were produced. The deposition conditions for each layer in Table 2 are shown in Table 3.
Figure 0004854359

Figure 0004854359
Figure 0004854359

得られた工具について、硬質被覆層のうち、研磨加工によって、TiCN層より上部の層を除去し、刃先近傍におけるTiCN層の露出面についてX線回折測定を行った。X線回折測定として、理学電機社製微小部X線回折装置PSPC/MDG−2000を用いて、X線出力はCu−Kα線にて電圧40kV、電流200mAの条件にて行い、コリメータ径は30μm、サンプリング時間は11990秒、ステップ幅は0.02°の条件で微小X線回折測定を行なった。回折チャートにおいてはKα線除去処理を行ったデータを用いて炭窒化チタン層の最強ピークを示す結晶面を割り出した。また、測定されたピーク強度を上記の式に当てはめて、TiCN層の(111)結晶面における配向係数Tを算出した。結果は表4に示した。 About the obtained tool, the layer above the TiCN layer was removed from the hard coating layer by polishing, and the exposed surface of the TiCN layer in the vicinity of the blade edge was subjected to X-ray diffraction measurement. For X-ray diffraction measurement, X-ray output was performed using Cu-Kα ray at a voltage of 40 kV and a current of 200 mA using a micro X-ray diffractometer PSPC / MDG-2000 manufactured by Rigaku Corporation. The collimator diameter was 30 μm Micro X-ray diffraction measurement was performed under the conditions of sampling time of 11990 seconds and step width of 0.02 °. In the diffraction chart, the crystal plane showing the strongest peak of the titanium carbonitride layer was determined using the data subjected to the Kα ray removal treatment. Also, the measured peak intensity by applying the above equation to calculate the orientation coefficient T C in (111) crystal plane of TiCN layer. The results are shown in Table 4.

また、得られた工具について、硬質被覆層の表面粗さRzおよびRsmを触針式の表面粗さ測定器にて、JIS B0601’01に準拠して測定した。結果は表4に示した。さらに、上記の方法で、TiCN粒子の粒子幅を算出し、平均粒子幅を、TiCNの粒子幅として表4に示した。   Further, for the obtained tool, the surface roughness Rz and Rsm of the hard coating layer were measured with a stylus type surface roughness measuring instrument in accordance with JIS B0601'01. The results are shown in Table 4. Further, the particle width of TiCN particles was calculated by the above method, and the average particle width is shown in Table 4 as the particle width of TiCN.

さらに、TiCN粒子のアスペクト比を、上記のように、TiCN層の層厚みを測定し、該層厚みおよび前記TiCNの粒子幅を用いて、算出した。結果は、表4に示した。   Further, the aspect ratio of the TiCN particles was calculated by measuring the layer thickness of the TiCN layer as described above and using the layer thickness and the particle width of the TiCN. The results are shown in Table 4.

そして、この切削工具を用いて下記の条件により、連続切削試験および断続切削試験を行い、耐摩耗性および耐欠損性を評価した。   Then, using this cutting tool, a continuous cutting test and an intermittent cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.

(連続切削条件)
被削材 :ダクタイル鋳鉄スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:250m/分
送り速度:0.3mm/rev
切り込み:2mm
切削時間:20分
その他 :水溶性切削液使用
評価項目:20分間切削した後、顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(断続切削条件)
被削材 :ダクタイル鋳鉄4本溝付スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:250m/分
送り速度:0.3〜0.5mm/rev
切り込み:2mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の硬質被覆層の剥離状態を観察

Figure 0004854359
(Continuous cutting conditions)
Work Material: Ductile Cast Iron Sleeve Material (FCD700)
Tool shape: CNMA120204
Cutting speed: 250 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 2mm
Cutting time: 20 minutes Others: Use of water-soluble cutting fluid Evaluation item: After cutting for 20 minutes, observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (intermittent cutting conditions)
Work material: Ductile cast iron 4-slot sleeve material (FCD700)
Tool shape: CNMA120204
Cutting speed: 250 m / min Feeding speed: 0.3 to 0.5 mm / rev
Cutting depth: 2mm
Other: Use of water-soluble cutting fluid Evaluation item: Number of impacts leading to breakage
Observe the peeling state of the hard coating layer of the cutting edge with a microscope at the point of impact 1000 times
Figure 0004854359

表4より、炭窒化チタン層の粒子の粒子幅または硬質被覆層の表面粗さRsmが本発明の範囲内ではない試料No.6〜8では、刃先にチッピングが早期に発生し、耐摩耗性および耐欠損性共に不十分なものとなった。なお、表2、4の試料No.1−3は参考例、試料No.6−8は比較例試料を示す。 Table 4 shows that the sample width of the titanium carbonitride layer particles or the surface roughness Rsm of the hard coating layer is not within the scope of the present invention. In Nos. 6 to 8, chipping occurred early on the cutting edge, and both wear resistance and fracture resistance were insufficient. In Tables 2 and 4, Sample No. 1-3 is a reference example, sample No. 6-8 shows a comparative example sample.

これに対して、本発明に従い、炭窒化チタン層の粒子の粒子幅および硬質被覆層の表面粗さRsmを本発明の範囲内にした試料No.1〜5では、刃先のチッピングもほとんど発生せずに、良好な耐摩耗性、耐欠損性を発揮し、優れた切削性能を有するものであった。   On the other hand, according to the present invention, in accordance with the present invention, Sample No. In Nos. 1 to 5, the chipping of the cutting edge hardly occurred, and excellent wear resistance and fracture resistance were exhibited, and the cutting performance was excellent.

Claims (3)

基体の表面に、基体に対して垂直に伸びる柱状粒子からなる炭窒化チタン層を含む硬質被覆層を有する表面被覆切削工具において、前記炭窒化チタン層の粒子幅が0.01〜0.1μmであるとともに、前記硬質被覆層のJIS B0601’01に準拠して測定されるRsmが18〜30μmであり、前記硬質被覆層のRzが3〜9μm、X線回折分析における前記炭窒化チタン層の最強ピークが、(111)結晶面を表すピークであるとともに、下記に示される式で算出される前記炭窒化チタン層の(111)面における配向係数T が1.1以上であることを特徴とする表面被覆切削工具。
=[I(111)/I (111)][1/8Σ(I(hkl)/I (hkl))] −1
但し、
I(111) :(111)面におけるX線回折ピーク強度測定値
(111):JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I (hkl)):(111)、(200)、(220)、(311)、(222)、(331)、(420)、(422)面における[X線回折ピーク強度測定値]/[JCPDSカード番号No.6‐0614(炭化チタン)とNo.6‐0642(窒化チタン)に記載の標準X線回折ピーク強度の平均値]の値の合計
In the surface-coated cutting tool having a hard coating layer including a titanium carbonitride layer composed of columnar particles extending perpendicularly to the substrate on the surface of the substrate, the particle width of the titanium carbonitride layer is 0.01 to 0.1 μm. with it, the Rsm is measured according to JIS B0601'01 the hard layer Ri is 18 30 .mu.m der, Rz of the hard coating layer 3~9Myuemu, said titanium carbonitride layer of X-ray diffraction analysis of the strongest peak, that (111) with a peak representing a crystal plane, orientation coefficient T C in (111) plane of the titanium carbonitride layer which is calculated by the formula shown below is 1.1 or more A surface-coated cutting tool.
T C = [I (111) / I 0 (111)] [1 / 8Σ (I (hkl) / I 0 (hkl))] −1
However,
I (111): X-ray diffraction peak intensity measurement on (111) plane
I 0 (111): JCPDS card number No. 6-0614 (titanium carbide) and no. Average value of standard X-ray diffraction peak intensity in the (111) plane of the crystal plane described in 6-0642 (titanium nitride)
Σ (I (hkl) / I 0 (hkl)): [X-rays on (111), (200), (220), (311), (222), (331), (420), (422) planes Diffraction peak intensity measurement value] / [JCPDS card number no. 6-0614 (titanium carbide) and no. Sum of the values of the average value of standard X-ray diffraction peak intensities described in 6-0642 (titanium nitride)]
前記炭窒化チタン層を構成する粒子のアスペクト比が10〜500の範囲内であることを特徴とする請求項に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1 , wherein an aspect ratio of particles constituting the titanium carbonitride layer is in a range of 10 to 500. 前記炭窒化チタン層の層厚みが3〜10μmの範囲内であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1 or 2 , wherein a layer thickness of the titanium carbonitride layer is in a range of 3 to 10 µm.
JP2006090195A 2006-03-29 2006-03-29 Surface coated cutting tool Active JP4854359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090195A JP4854359B2 (en) 2006-03-29 2006-03-29 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090195A JP4854359B2 (en) 2006-03-29 2006-03-29 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2007260851A JP2007260851A (en) 2007-10-11
JP4854359B2 true JP4854359B2 (en) 2012-01-18

Family

ID=38634351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090195A Active JP4854359B2 (en) 2006-03-29 2006-03-29 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP4854359B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757489B1 (en) 2009-10-30 2017-07-12 미쓰비시 마테리알 가부시키가이샤 Surface coated cutting tool with excellent chip resistance
JP5569739B2 (en) * 2009-10-30 2014-08-13 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
JP5569740B2 (en) * 2010-03-23 2014-08-13 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
JP5257535B2 (en) 2011-08-31 2013-08-07 三菱マテリアル株式会社 Surface coated cutting tool
JP5850402B2 (en) * 2012-02-16 2016-02-03 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6331503B2 (en) * 2014-03-11 2018-05-30 三菱日立ツール株式会社 Coated cutting tool and cutting method of Ni-base superalloy
EP3000913B1 (en) * 2014-09-26 2020-07-29 Walter Ag Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N)
KR102141354B1 (en) * 2015-08-29 2020-08-05 교세라 가부시키가이샤 Cloth tools
WO2018066469A1 (en) * 2016-10-04 2018-04-12 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6999383B2 (en) * 2017-11-29 2022-01-18 株式会社タンガロイ Cover cutting tool
JP6784928B2 (en) 2018-09-04 2020-11-18 株式会社タンガロイ Cover cutting tool
JP7055761B2 (en) 2019-02-15 2022-04-18 株式会社タンガロイ Cover cutting tool
JP6876278B2 (en) * 2019-05-14 2021-05-26 株式会社タンガロイ Cover cutting tool
JP7401850B2 (en) 2020-03-19 2023-12-20 三菱マテリアル株式会社 surface coated cutting tools

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890310A (en) * 1994-09-19 1996-04-09 Mitsubishi Materials Corp Surface coat cutting tool
SE519005C2 (en) * 1999-03-26 2002-12-17 Sandvik Ab Coated cemented carbide inserts
US6756111B1 (en) * 1999-06-21 2004-06-29 Sumitomo Electric Industries, Ltd. Coated hard alloy
JP2005118925A (en) * 2003-10-15 2005-05-12 Sumitomo Electric Hardmetal Corp Coated chaser

Also Published As

Publication number Publication date
JP2007260851A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4854359B2 (en) Surface coated cutting tool
JP5866650B2 (en) Surface coated cutting tool
JP4711714B2 (en) Surface coated cutting tool
JP5902865B2 (en) Coated tool
WO2011105420A1 (en) Cutting tool
JP4942326B2 (en) Surface covering member and cutting tool using surface covering member
WO2012144088A1 (en) Surface-coated cutting tool and method for manufacturing same
JP4711691B2 (en) Surface covering member and cutting tool
WO2019146785A1 (en) Coated tool, and cutting tool comprising same
WO2012132032A1 (en) Surface-coated cutting tool and method for manufacturing same
JP2007229821A (en) Surface-coated cutting tool
US10744568B2 (en) Coated tool
JP4991244B2 (en) Surface coated cutting tool
JP2012144766A (en) Coated member
JP6556246B2 (en) Coated tool
JP2006205300A (en) Surface-coated member and cutting tool
JP4351521B2 (en) Surface coated cutting tool
CN112839761B (en) cutting tool
JP4284201B2 (en) Surface covering member and cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP4284144B2 (en) Surface coated cutting tool
JP4845490B2 (en) Surface coated cutting tool
JP7213888B2 (en) Coated tool and cutting tool with the same
JP5201936B2 (en) Surface coating tool
CN112839760B (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150