JP7401850B2 - surface coated cutting tools - Google Patents

surface coated cutting tools Download PDF

Info

Publication number
JP7401850B2
JP7401850B2 JP2020048657A JP2020048657A JP7401850B2 JP 7401850 B2 JP7401850 B2 JP 7401850B2 JP 2020048657 A JP2020048657 A JP 2020048657A JP 2020048657 A JP2020048657 A JP 2020048657A JP 7401850 B2 JP7401850 B2 JP 7401850B2
Authority
JP
Japan
Prior art keywords
layer
average
tool
carbonitride
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048657A
Other languages
Japanese (ja)
Other versions
JP2021146442A (en
Inventor
亮介 山口
醇 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020048657A priority Critical patent/JP7401850B2/en
Publication of JP2021146442A publication Critical patent/JP2021146442A/en
Application granted granted Critical
Publication of JP7401850B2 publication Critical patent/JP7401850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、特に、球状黒鉛鋳鉄の高速旋削加工に用いても、硬質皮膜層が優れた耐溶着性、耐チッピング性を有し、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 In particular, the present invention provides a surface-coated cutting tool whose hard coating layer has excellent adhesion resistance and chipping resistance even when used for high-speed turning of spheroidal graphite cast iron, and which exhibits excellent cutting performance over long periods of use. (hereinafter sometimes referred to as coated tools).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。
従来から、被覆工具としては、例えば、WC基超硬合金等の工具基体に硬質皮膜層を形成したものが知られており、工具基体と硬質皮膜層との界面に注目して、切削性能の改善を目的として種々の提案がなされている。
In general, coated tools include inserts that are removably attached to the tip of a cutting tool for turning and planing workpiece materials such as various steels and cast iron, and inserts that are used for drilling and cutting workpiece materials. There are drills, miniature drills, and solid-type end mills that are used for facing, grooving, shoulder machining, etc. of workpiece materials, and inserts can be detachably attached to perform cutting operations in the same way as solid-type end mills. Insert type end mills are known.
Conventionally, coated tools have been known that have a hard coating layer formed on a tool base such as WC-based cemented carbide, and the cutting performance has been improved by focusing on the interface between the tool base and the hard coating layer. Various proposals have been made for the purpose of improvement.

例えば、特許文献1には、工具基体上に接合層としての機能を果たすTiN被覆層を設け、その上に中間層となるTiCN(MT-TiCN)被覆層を介してTiAlN層(TiとAlの複合窒化物層)を被覆した被覆工具が記載されている。 For example, in Patent Document 1, a TiN coating layer that functions as a bonding layer is provided on the tool base, and a TiAlN layer (Ti and Al A coated tool coated with a composite nitride layer) is described.

また、例えば、特許文献2には、工具基体表面に平均層厚0.1~1.0μmのTiN層、該TiN層の上に、平均層厚1.5~5.0μmの下部層としてのTiCxN1-x(但し、0.30≦x≦0.80)層および平均層厚0.1~1.0μmの上部層としてのTiCyN1-y(但し、0.85≦y≦1.00)を含む中間層、および、該中間層の上に、平均層厚1.5~6.0μmである(AlzTi1-z)N層(但し、0.70≦z≦0.95)、を有することを特徴とする被覆工具が記載され、この被覆工具は鋼のミーリングの高速高送り断続加工に対しても優れた耐チッピング性を有すると説明されている。 Further, for example, Patent Document 2 discloses that a TiN layer with an average layer thickness of 0.1 to 1.0 μm is formed on the surface of the tool base, and a lower layer with an average layer thickness of 1.5 to 5.0 μm is formed on the TiN layer. TiCxN1-x (however, 0.30≦x≦0.80) layer and TiCyN1-y (however, 0.85≦y≦1.00) as an upper layer with an average layer thickness of 0.1 to 1.0 μm. and an (AlzTi1-z)N layer having an average layer thickness of 1.5 to 6.0 μm (however, 0.70≦z≦0.95). A characteristic coated tool is described, and it is explained that the coated tool has excellent chipping resistance even in high-speed, high-feed interrupted machining of steel milling.

さらに、例えば、特許文献3には、工具基体表面に下部層としてTiCN層、上部層としてTiAlCN層を有し、前記下部層のうちの合計平均層厚の50%以上の平均層厚の結晶粒および上部層の結晶粒の{422}面の法線が前記工具基体表面となす角が0~10度の傾斜区分に30%以上となる度数分布をし、かつ、前記下部層の前記結晶粒は前記上部層の前記結晶粒の50%以上の面積割合を有する被覆工具が記載され、この被覆工具は鋼や鋳鉄の高速断続切削加工に対しても優れた耐チッピング性を有すると説明されている。 Further, for example, Patent Document 3 discloses that a tool base has a TiCN layer as a lower layer and a TiAlCN layer as an upper layer on the surface of the tool base, and crystal grains having an average layer thickness of 50% or more of the total average layer thickness of the lower layer. and the crystal grains of the lower layer have a frequency distribution in which the angle between the normal to the {422} plane of the crystal grains of the upper layer and the surface of the tool base is 30% or more in the slope section of 0 to 10 degrees, and the crystal grains of the lower layer describes a coated tool having an area ratio of 50% or more of the crystal grains in the upper layer, and explains that this coated tool has excellent chipping resistance even in high-speed interrupted cutting of steel and cast iron. There is.

特開2015-509858号公報Japanese Patent Application Publication No. 2015-509858 特開2018-164950号公報Japanese Patent Application Publication No. 2018-164950 特開2016-124098号公報Japanese Patent Application Publication No. 2016-124098

特許文献1~3に記載された硬質皮膜層を有する被覆工具は、それぞれの特許文献に記載された切削加工では満足する性能発揮するものの、引張強度の高い球状黒鉛鋳鉄などに対して、高速かつ高負荷な切削条件での加工に用いた場合には、硬質皮膜層の剥離やチッピングの発生が起こり、十分な寿命を有していないことが判明した。 Although the coated tools having hard coating layers described in Patent Documents 1 to 3 exhibit satisfactory performance in the cutting operations described in each patent document, they are difficult to cut at high speed and when cutting with high tensile strength, such as spheroidal graphite cast iron. When used for machining under high-load cutting conditions, the hard coating layer peeled off and chipping occurred, and it was found that it did not have a sufficient lifespan.

そこで、本発明は、このような状況を鑑みてなされたものであって、球状黒鉛鋳鉄の高速旋削加工に供しても、優れた耐剥離性、耐チッピング性を示し、長期の使用にわたって優れた切削性能を発揮する切削工具を提供することを目的とする。 Therefore, the present invention was made in view of the above circumstances, and it shows excellent peeling resistance and chipping resistance even when subjected to high-speed turning processing of spheroidal graphite cast iron, and has excellent resistance to peeling and chipping over a long period of use. The purpose is to provide cutting tools that exhibit cutting performance.

本発明者は、前記課題を解決すべく、球状黒鉛鋳鉄の高速旋削加工における硬質皮膜の剥離やチッピングの発生について鋭意検討したところ、剥離やチッピングの発生の原因はTiAlNの異常成長結晶が起点となっていること、このTiAlNの異常成長は工具基体の凹凸を起点とする結晶成長に起因するものであって、TiCN層とTiAlN層との界面領域付近で生じやすいとの新規な知見を得た。 In order to solve the above-mentioned problem, the inventors of the present invention conducted intensive studies on the occurrence of peeling and chipping of the hard coating during high-speed turning of spheroidal graphite cast iron, and found that the cause of the occurrence of peeling and chipping was abnormally grown crystals of TiAlN. We obtained new knowledge that this abnormal growth of TiAlN is caused by crystal growth originating from the irregularities of the tool base, and that it tends to occur near the interface region between the TiCN layer and the TiAlN layer. .

本発明は、この知見に基づくものであって、次のとおりのものである。
「(1)工具基体と該工具基体の表面上に工具表面に向かって、順に、下層、中間層、上層を含む被覆層を有する表面被覆切削工具であって、
前記下層は、2.0~20.0μmの平均層厚で、少なくとも1層のTiの炭窒化物層を有し、
前記中間層は0.1~1.5μmの平均層厚で、前記下層側にTiの窒化物である下部層と、前記上層側にTiの炭窒化物、炭酸化物、または、炭窒酸化物である上部層とを有し、前記上部層の前記Tiの炭窒化物、炭酸化物、または、炭窒酸化物は、前記工具基体の表面に平行な方向の結晶粒の平均幅が0.20μm以下であって、
前記上層は、1.0~10.0μmの平均層厚であって、組成を組成式:Ti1-xAlNで表したとき(但し、xは原子比で平均組成を表す)、0.60≦x≦0.95を満足して、NaCl型面心立方構造の結晶粒が主である、
ことを特徴とする表面被覆切削工具。」
The present invention is based on this knowledge and is as follows.
"(1) A surface-coated cutting tool having a tool base and a coating layer on the surface of the tool base including, in order, a lower layer, an intermediate layer, and an upper layer toward the tool surface,
The lower layer has at least one Ti carbonitride layer with an average layer thickness of 2.0 to 20.0 μm,
The intermediate layer has an average layer thickness of 0.1 to 1.5 μm, and includes a lower layer made of Ti nitride on the lower layer side, and a carbonitride, carbonate, or carbonitoxide of Ti on the upper layer side. The carbonitride, carbonide, or carbonitoxide of Ti in the upper layer has an average width of crystal grains of 0.20 μm in a direction parallel to the surface of the tool base. The following is true,
The upper layer has an average layer thickness of 1.0 to 10.0 μm, and the composition is expressed by the composition formula: Ti 1-x Al x N (where x represents the average composition in atomic ratio): 0 Satisfying .60≦x≦0.95, the crystal grains are mainly of NaCl type face-centered cubic structure,
A surface-coated cutting tool characterized by: ”

本発明の表面被覆切削工具は、球状黒鉛鋳鉄の高速旋削加工等の高温発生を伴う高負荷切削において、優れた耐摩耗性、耐剥離性、および、耐チッピング性を発揮する。 The surface-coated cutting tool of the present invention exhibits excellent wear resistance, peeling resistance, and chipping resistance in high-load cutting involving high temperature generation, such as high-speed turning of spheroidal graphite cast iron.

本発明の表面被覆切削工具における硬質皮膜層の縦断面の模式図である。FIG. 2 is a schematic diagram of a longitudinal section of a hard coating layer in a surface-coated cutting tool of the present invention.

以下、本発明の被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「A~B」(A、Bはともに数値)を用いて表現する場合、その範囲は上限(B)および下限(A)の数値を含むものである。また、上限(B)および下限(A)は同じ単位である。 Hereinafter, the coated tool of the present invention will be explained in more detail. In addition, in this specification and claims, when a numerical range is expressed using "A to B" (A and B are both numerical values), the range is defined by the upper limit (B) and the lower limit (A). Contains numerical values. Further, the upper limit (B) and the lower limit (A) are in the same unit.

ここで、本明細書において、Tiの窒化物、炭化物、窒化物、炭酸化物、炭窒酸化物、または、炭窒化物のように、化合物を組成式で表さないときは、その組成は、必ずしも化学量論的範囲のものに限定されない。 Here, in this specification, when a compound is not represented by a compositional formula, such as Ti nitride, carbide, nitride, carbonide, carbonitride oxide, or carbonitride, its composition is as follows: It is not necessarily limited to the stoichiometric range.

硬質皮膜層の構造と組成:
硬質皮膜層は、図1に模式的に示すように、工具基体から工具表面に向かって、順に、下層、中間層、上層の3層を有しており、中間層は上部層と下部層を有している。
以下、各層について説明する。
Structure and composition of hard film layer:
As schematically shown in Figure 1, the hard coating layer has three layers in order from the tool base toward the tool surface: a lower layer, an intermediate layer, and an upper layer, and the intermediate layer has an upper layer and a lower layer. have.
Each layer will be explained below.

(1)下層
下層は、少なくとも1層のTi炭窒化物層を有し、さらに、少なくとも1層のTiの炭化物、窒化物、炭酸化物、または、炭窒酸化物のいずれかを含んでもよい。Ti炭窒化物層は、柱状粒子から構成されることが好ましい。
少なくとも1層のTiの炭窒化物層を有することにより、中間層を介して形成される上層と工具基体を強固に結合することができる。また、少なくとも1層のTi炭窒化物層の他に、例えば、工具基体直上に下地層として、Tiの窒化物層、Tiの炭化物層を有することが好ましい。
(1) Lower layer The lower layer has at least one Ti carbonitride layer, and may further include at least one Ti carbide, nitride, carbonate, or carbonitride. The Ti carbonitride layer is preferably composed of columnar particles.
By having at least one Ti carbonitride layer, the upper layer formed via the intermediate layer and the tool base can be firmly bonded. Further, in addition to at least one Ti carbonitride layer, it is preferable to have a Ti nitride layer and a Ti carbide layer, for example, as a base layer directly above the tool base.

(2)中間層
中間層は、下層側にTiの窒化物である下部層と、上層側にTiの炭窒化物、炭酸化物、または、炭窒化物である上部層とを有している。このような2層構造とすることにより、工具基体の凹凸を起点とした下層のTi炭窒化物の成長方向の乱れを下部層のTiNで分断し、上部層の結晶成長を工具基体の表面に垂直な方向とし、後述する上層であるTiAlNの異常成長を抑制することができる。
そして、前記上部層であるTiの炭窒化物、炭酸化物、または、炭窒酸化物の層は、前記工具基体の表面と平行な方向の結晶粒の平均幅を0.20μm以下とすることにより、確実に、下層のTi炭窒化物の成長方向の乱れ分断し、中間層と上層との界面領域における上層のTiAlNの異常成長を抑制することができる。なお、この平均幅の下限値は特段の制約はないが、後述する実施例の製造方法に従って製造した場合は、0.02μm程度が下限になる。
(2) Intermediate layer The intermediate layer has a lower layer which is a nitride of Ti on the lower side, and an upper layer which is a carbonitride, carbonate, or carbonitride of Ti on the upper side. By adopting such a two-layer structure, the disorder in the growth direction of the Ti carbonitride in the lower layer originating from the unevenness of the tool base is interrupted by the TiN in the lower layer, and the crystal growth in the upper layer is directed to the surface of the tool base. By setting the direction perpendicularly, it is possible to suppress abnormal growth of TiAlN, which is an upper layer to be described later.
The upper layer, which is a Ti carbonitride, carbonate, or carbonitoxide layer, has an average width of crystal grains of 0.20 μm or less in a direction parallel to the surface of the tool base. It is possible to reliably disrupt the growth direction of the Ti carbonitride in the lower layer and to suppress abnormal growth of the TiAlN in the upper layer in the interface region between the intermediate layer and the upper layer. There is no particular restriction on the lower limit of this average width, but when manufactured according to the manufacturing method of the embodiment described later, the lower limit is about 0.02 μm.

ここで、工具基体の表面と平行な方向の結晶粒の平均幅は、以下のようにして求めるものである。すなわち、硬質皮膜層の縦断面(工具基体の表面に垂直な断面)の研磨面を透過型電子顕微鏡(Transmission Electron Microscope:TEM)の20000倍視野にて複数視野観察し、得られた顕微鏡写真中の5箇所において、前記上部層の上端と下端の中央に位置する基材と平行な5μmの直線と交わる粒界数を計測し、直線1μm当りの平均粒界数の逆数を平均粒子幅とする。 Here, the average width of crystal grains in the direction parallel to the surface of the tool base is determined as follows. That is, the polished surface of a longitudinal cross section (a cross section perpendicular to the surface of the tool base) of the hard coating layer was observed in multiple fields of view using a transmission electron microscope (TEM) at a magnification of 20,000 times, and the following micrographs were obtained. At five locations, measure the number of grain boundaries that intersect with a 5 μm straight line parallel to the base material located at the center of the top and bottom ends of the upper layer, and take the reciprocal of the average number of grain boundaries per 1 μm straight line as the average grain width. .

(3)上層
上層は、その組成を組成式:Ti1-xAlNで表したとき(但し、xは原子比で平均組成を表す)、0.60≦x≦0.95を満足するTiAlN層である。xをこの範囲とした理由は、0.60未満であると耐摩耗性が十分でなく、一方、0.95を超えると六方晶の析出量が増大して硬さが低下して耐摩耗性が低下するためである。
(3) Upper layer The upper layer satisfies 0.60≦x≦0.95 when its composition is expressed by the composition formula: Ti 1-x Al x N (where x represents the average composition in atomic ratio) It is a TiAlN layer. The reason why x is set in this range is that if it is less than 0.60, the wear resistance will not be sufficient, whereas if it exceeds 0.95, the amount of hexagonal crystal precipitation will increase and the hardness will decrease, resulting in poor wear resistance. This is because the amount decreases.

また、上層を形成する前記TiAlN層は、NaCl型の面心立方構造を主とすることが好ましい。ここで、NaCl型の面心立方構造を主とするとは、被覆層の縦断面おいて、NaCl型の面心立方構造を有する結晶の面積率が50%以上であることをいい、この面積率は70%以上がさらに好ましく、80%以上がより好ましく、100%であってもよい。 Further, it is preferable that the TiAlN layer forming the upper layer mainly has a NaCl type face-centered cubic structure. Here, "mainly having a NaCl-type face-centered cubic structure" means that the area ratio of crystals having a NaCl-type face-centered cubic structure is 50% or more in the longitudinal section of the coating layer, and this area ratio is more preferably 70% or more, more preferably 80% or more, and may be 100%.

各層の平均膜厚:
硬質皮膜を構成する各層の平均膜厚は、それぞれ、下層が2.0~20.0μm、中間層が0.1~1.5μm、上層が1.0~10.0μmである。
上層および下層の平均層厚を前記範囲とした理由は、それぞれの下限値未満であると、長期の使用にわたって優れた耐摩耗性を発揮することができず、一方、それぞれの上限値を超えると、硬質皮膜の結晶粒が粗大化しやすくなり、被覆層全体の厚さが厚くなって耐チッピング性向上効果が得られなくなるからである。
中間層の平均層厚を前記範囲とした理由は、下限値未満であると、下層のTi炭窒化物の成長方向の乱れを分断する十分な効果が得られず、一方、上限値を超えると中間層の結晶粒の粗大化により前述の平均幅が0.2μmを超えてしまうためである。なお、上部層と下部層のそれぞれの平均層厚は、中間層の層厚が前記範囲にあり、かつ、上部層の平均幅が0.2μm以下となれば、特に制約はない。
なお、より好ましい各層の平均層厚は、それぞれ、下層が6.0~15.0μm、中間層が0.3~1.0μm、上層が3.0~6.0μmである。
Average thickness of each layer:
The average thickness of each layer constituting the hard coating is 2.0 to 20.0 μm for the lower layer, 0.1 to 1.5 μm for the middle layer, and 1.0 to 10.0 μm for the upper layer.
The reason why the average layer thickness of the upper layer and the lower layer is set in the above range is that if it is less than the lower limit of each, it will not be able to exhibit excellent wear resistance over a long period of use, whereas if it exceeds the upper limit of each, This is because the crystal grains of the hard coating tend to become coarse, and the thickness of the entire coating layer increases, making it impossible to obtain the effect of improving chipping resistance.
The reason why the average layer thickness of the intermediate layer is set in the above range is that if it is less than the lower limit, a sufficient effect of separating the disorder in the growth direction of Ti carbonitride in the lower layer cannot be obtained, whereas if it exceeds the upper limit, This is because the aforementioned average width exceeds 0.2 μm due to coarsening of the crystal grains in the intermediate layer. Note that the average layer thickness of the upper layer and the lower layer is not particularly limited as long as the thickness of the intermediate layer is within the above range and the average width of the upper layer is 0.2 μm or less.
The average layer thickness of each layer is more preferably 6.0 to 15.0 μm for the lower layer, 0.3 to 1.0 μm for the intermediate layer, and 3.0 to 6.0 μm for the upper layer.

平均層厚、平均組成、結晶構造の測定方法:
平均膜厚については、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)を用いた硬質皮膜層の縦断面の観察により求めることができる。
前記TiAlN層の平均組成については、電子線マイクロアナライザ(Electro n-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均を平均組成とする。
TiAlN層の結晶構造については、電子線後方散乱回折装置(Electron Backscatter Diffraction:EBSD)を用いて、硬質皮膜層の研磨した縦断の測定範囲内に存在する個々の結晶粒に対して70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、0.01μm/stepの間隔で照射する。そして、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析し、結晶構造が同定された全ピクセル数に占めるNaCl型面心立方構造に属するピクセル数の割合を求めることで、NaCl型面心立方構造の結晶粒の面積割合を求める。なお、測定範囲は、工具基体の表面に平行な方向に50μm、垂直方向は硬質皮膜層の厚さ全体を含む範囲とする。
Measurement method for average layer thickness, average composition, and crystal structure:
The average film thickness can be determined by observing a longitudinal section of the hard film layer using a scanning electron microscope (SEM).
Regarding the average composition of the TiAlN layer, an electron beam was irradiated from the surface side of a sample with a polished surface using an electron beam microanalyzer (EPMA), and the obtained characteristics The 10-point average of the line analysis results is taken as the average composition.
The crystal structure of the TiAlN layer was measured using an electron backscatter diffraction (EBSD) device at 70 degrees of incidence on each crystal grain present within the measurement range of the polished longitudinal section of the hard coating layer. An electron beam with an acceleration voltage of 15 kV is irradiated with an irradiation current of 1 nA at intervals of 0.01 μm/step. Then, by measuring the electron beam backscatter diffraction image, analyzing the crystal structure of each crystal grain, and calculating the ratio of the number of pixels belonging to the NaCl type face-centered cubic structure to the total number of pixels for which the crystal structure was identified. , the area ratio of crystal grains having a NaCl type face-centered cubic structure is determined. Note that the measurement range is 50 μm in the direction parallel to the surface of the tool base, and the range including the entire thickness of the hard coating layer in the vertical direction.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主
成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、または、cBN焼結体のいずれかであることが好ましい。
Tool base:
As the tool base, any base material conventionally known as this type of tool base can be used as long as it does not impede achieving the object of the present invention. Examples include cemented carbide (WC-based cemented carbide, containing WC and Co, and also containing carbonitrides such as Ti, Ta, and Nb), cermets (TiC, It is preferable to use one of TiN, TiCN, etc. as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), or cBN sintered body.

その他の層(最上層)
本発明の硬質皮膜は、球状黒鉛鋳鉄の高速旋削加工においても十分な耐摩耗性、耐チッピング性、および、耐剥離性を有するが、少なくとも酸化アルミニウム層を含む層が1.0~25.0μmの合計平均層厚で最上層として、前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、より一層優れた耐摩耗性、耐チッピング性、および、耐剥離性を発揮することができる。ここで、少なくとも酸化アルミニウム層を含む層の合計平均層厚が1.0μm未満では、該層の効果が十分に奏されず、一方、25.0μmを超えると該層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
Other layers (top layer)
The hard coating of the present invention has sufficient wear resistance, chipping resistance, and peeling resistance even in high-speed turning processing of spheroidal graphite cast iron, but the layer including at least the aluminum oxide layer has a thickness of 1.0 to 25.0 μm. When provided as the top layer on the TiAlCN layer with a total average layer thickness of It can exhibit removability. Here, if the total average layer thickness of the layers including at least the aluminum oxide layer is less than 1.0 μm, the effect of the layer will not be sufficiently exhibited, while if it exceeds 25.0 μm, the crystal grains of the layer tend to become coarse. This makes chipping more likely to occur.

製造方法:
本発明の被覆工具の皮膜は、化学蒸着装置を使用して、例えば、以下の工程により行う。以下の%は、体積%(容量%)であり、上層の成膜工程ではガス群Aとガス群Bの和を100容量%としている。
Production method:
The coating of the coated tool of the present invention is formed using a chemical vapor deposition apparatus, for example, by the following steps. The following % is volume % (volume %), and in the upper layer film forming process, the sum of gas group A and gas group B is 100 volume %.

(1)下層(TiCN層)の成膜工程
反応ガス TiCl:2.0~2.5%、CHCN:0.6~1.0%、
:20~40%、H:残部
反応雰囲気温度:800~940℃
反応雰囲気圧力:5.0~10.0kPa
なお、TiCN層の他に、下地層として、Ti化合物層、すなわち、Tiの炭化物、窒化物、炭酸化物、または、炭窒酸化物のいずれかを成膜する場合は、公知の成膜条件を適宜採用すればよい。
(1) Lower layer (TiCN layer) film formation process Reactive gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.6 to 1.0%,
N 2 : 20-40%, H 2 : balance Reaction atmosphere temperature: 800-940°C
Reaction atmosphere pressure: 5.0-10.0kPa
In addition, when forming a Ti compound layer, that is, any one of Ti carbide, nitride, carbonate, or carbonitride oxide, as a base layer in addition to the TiCN layer, known film formation conditions are applied. It may be adopted as appropriate.

(2)中間層の成膜工程
中間層の成膜工程は、エッチング工程、下部層成膜工程と上部層成膜工程からなる。
a エッチング工程
反応ガス TiCl:4.0~6.0%、H:残部
反応雰囲気温度:800~980℃
反応雰囲気圧力:5.0~10.0kPa
b 下部層(TiN層)成膜工程
反応ガス TiCl:1.5~2.5%、N:45~65%、H:残部
反応雰囲気温度:880~1000℃
反応雰囲気圧力:12.0~20.0kPa
c 上部層(例:TiCN層)成膜工程
反応ガス TiCl:2.0~2.5%、CHCN:0.4~0.6%、
:20.0~40.0%、H:残部
反応雰囲気温度:700~800℃
反応雰囲気圧力:5.0~10.0kPa
(2) Intermediate layer deposition process The intermediate layer deposition process includes an etching process, a lower layer deposition process, and an upper layer deposition process.
a Etching process Reaction gas TiCl 4 : 4.0-6.0%, H 2 : remainder Reaction atmosphere temperature: 800-980°C
Reaction atmosphere pressure: 5.0-10.0kPa
b Lower layer (TiN layer) film formation process Reaction gas TiCl 4 : 1.5 to 2.5%, N 2 : 45 to 65%, H 2 : balance Reaction atmosphere temperature: 880 to 1000°C
Reaction atmosphere pressure: 12.0-20.0kPa
c Upper layer (e.g. TiCN layer) film formation process Reactive gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.4 to 0.6%,
N 2 : 20.0-40.0%, H 2 : balance Reaction atmosphere temperature: 700-800°C
Reaction atmosphere pressure: 5.0-10.0kPa

(3)上層(TiAlN層)の成膜工程
反応ガス群A NH:0.8~1.6%、H:45~55%
反応ガス群B AlCl:0.5~0.7%、TiCl:0.1~0.3%、
N2:0.0~10.0%、H:残部
反応雰囲気温度:700~900℃
反応雰囲気圧力:4.0~5.0kPa
反応ガス供給周期:1~5秒
1周期当りのガス供給時間:0.15~0.25秒
ガスA群の供給とガスB群の供給の位相差:0.10~0.20秒
(3) Film formation process of upper layer (TiAlN layer) Reactive gas group A NH 3 : 0.8 to 1.6%, H 2 : 45 to 55%
Reactive gas group B AlCl 3 : 0.5 to 0.7%, TiCl 4 : 0.1 to 0.3%,
N2: 0.0-10.0%, H 2 : balance Reaction atmosphere temperature: 700-900°C
Reaction atmosphere pressure: 4.0-5.0kPa
Reaction gas supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas B group: 0.10 to 0.20 seconds

次に、実施例について説明する。
ここでは、本発明の被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体は前述のとおりWC基超硬合金に限定されることはなく、また、工具としてドリル、エンドミル等に適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, a tool applied to an insert cutting tool using WC-based cemented carbide as the tool base will be described; however, as mentioned above, the tool base is limited to WC-based cemented carbide. The same is true when applied to tools such as drills and end mills.

まず、原料粉末として、Co粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、および、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格のCNMG120412のインサート形状をもったWC基超硬合金製の工具基体A~Eを作製した。 First, Co powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and WC powder were prepared as raw material powders, and these raw material powders were blended into the composition shown in Table 1. Further, wax was added and wet-mixed for 72 hours in a ball mill, dried under reduced pressure, and then press-molded at a pressure of 100 MPa. These compacts were sintered and processed to the specified dimensions to meet ISO standards. Tool bases A to E made of WC-based cemented carbide and having the insert shape of CNMG120412 were manufactured.

次に、この工具基体A~E上に、下層、中間層、上層を表2~表4に示す条件により、表7に示す本発明被覆工具1~10を得た。これら各層の成膜条件は、概ね次のとおりである。 Next, coated tools 1 to 10 of the present invention shown in Table 7 were obtained by forming a lower layer, an intermediate layer, and an upper layer on the tool substrates A to E under the conditions shown in Tables 2 to 4. The film forming conditions for each of these layers are generally as follows.

下層(TiCN層)の成膜工程
反応ガス TiCl:2.0~2.5%、CHCN:0.6~1.0%、
:20~40%、H:残部
反応雰囲気温度:800~940℃
反応雰囲気圧力:5.0~10.0kPa
Lower layer (TiCN layer) film formation process Reactive gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.6 to 1.0%,
N 2 : 20-40%, H 2 : balance Reaction atmosphere temperature: 800-940°C
Reaction atmosphere pressure: 5.0-10.0kPa

中間層の成膜工程
a エッチング工程
反応ガス TiCl:4.0~6.0%、H:残部
反応雰囲気温度:800~980℃
反応雰囲気圧力:5.0~10.0kPa
b 下部層(TiN層)の成膜工程
反応ガス TiCl:1.5~2.5%、N:45~65%、H:残部
反応雰囲気温度:880~1000℃
反応雰囲気圧力:12.0~20.0kPa
c 上部層(TiCN層)の成膜工程
反応ガス TiCl:2.0~2.5%、CHCN:0.4~0.6%、
:20.0~40.0%、H:残部
反応雰囲気温度:700~800℃
反応雰囲気圧力:5.0~10.0kPa
Intermediate layer film formation process a Etching process Reaction gas TiCl 4 : 4.0 to 6.0%, H 2 : balance Reaction atmosphere temperature: 800 to 980°C
Reaction atmosphere pressure: 5.0-10.0kPa
b Film formation process of lower layer (TiN layer) Reaction gas TiCl 4 : 1.5 to 2.5%, N 2 : 45 to 65%, H 2 : balance Reaction atmosphere temperature: 880 to 1000°C
Reaction atmosphere pressure: 12.0-20.0kPa
c Film formation process of upper layer (TiCN layer) Reactive gas TiCl 4 : 2.0 to 2.5%, CH 3 CN: 0.4 to 0.6%,
N 2 : 20.0-40.0%, H 2 : balance Reaction atmosphere temperature: 700-800°C
Reaction atmosphere pressure: 5.0-10.0kPa

(3)上層(TiAlN層)成膜工程
反応ガス群A NH:0.8~1.6%、H:45~55%
反応ガス群B AlCl:0.5~0.7%、TiCl:0.1~0.3%、
N2:0.0~10.0%、H:残部
反応雰囲気温度:700~900℃
反応雰囲気圧力:4.0~5.0kPa
反応ガス供給周期:1~5秒
1周期当りのガス供給時間:0.15~0.25秒
ガスA群の供給とガスB群の供給の位相差:0.10~0.20秒
(3) Upper layer (TiAlN layer) film formation process Reactive gas group A NH 3 : 0.8 to 1.6%, H 2 : 45 to 55%
Reactive gas group B AlCl 3 : 0.5 to 0.7%, TiCl 4 : 0.1 to 0.3%,
N2: 0.0~10.0%, H2 : remainder Reaction atmosphere temperature: 700~900°C
Reaction atmosphere pressure: 4.0-5.0kPa
Reaction gas supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas B group: 0.10 to 0.20 seconds

なお、本発明被覆工具7、10は、表5に記載された成膜条件により酸化アルミニウムを含む最上層を形成した。 In addition, in the coated tools 7 and 10 of the present invention, the uppermost layer containing aluminum oxide was formed under the film forming conditions listed in Table 5.

また、比較の目的で、工具基体A~Eの表面に、表2に示される成膜条件により、表7に示された比較例1~10を製造した。比較被覆工具2、4および8は、中間層の成膜条件は、実施例と同じ形成記号のものを使用したが、平均層厚を本発明で規定する範囲外にした。
なお、比較例7、10については、表5に記載された成膜条件により酸化アルミニウムを含む最上層を形成した。
In addition, for comparison purposes, Comparative Examples 1 to 10 shown in Table 7 were manufactured on the surfaces of tool bases A to E under the film forming conditions shown in Table 2. For comparative coated tools 2, 4, and 8, the intermediate layer was formed under the same formation symbol as in the example, but the average layer thickness was outside the range defined by the present invention.
Note that in Comparative Examples 7 and 10, the uppermost layer containing aluminum oxide was formed under the film forming conditions listed in Table 5.

また、本発明被覆工具1~10、比較被覆工具1~10の被覆層の縦断面を、SEM(倍率5000倍)用いて測定し、観察視野内の5点で各層の層厚を測定して、各層の平均層厚とし、その結果を表6および表7に示す。
さらに、本発明被覆工具1~10、比較被覆工具1~10の被覆層について、前述した方法により、組成および結晶構造(NaCl型面心立方構造の結晶粒の面積割合)を測定し表7に記載した。
In addition, the longitudinal sections of the coating layers of the coated tools 1 to 10 of the present invention and the comparison coated tools 1 to 10 were measured using an SEM (magnification of 5000 times), and the layer thickness of each layer was measured at 5 points within the observation field. , the average layer thickness of each layer, and the results are shown in Tables 6 and 7.
Furthermore, the composition and crystal structure (area ratio of crystal grains with NaCl type face-centered cubic structure) of the coating layers of the coated tools 1 to 10 of the present invention and comparative coated tools 1 to 10 were measured by the method described above, and the results are shown in Table 7. Described.

Figure 0007401850000001
Figure 0007401850000001

Figure 0007401850000002
Figure 0007401850000002

Figure 0007401850000003
Figure 0007401850000003

Figure 0007401850000004
Figure 0007401850000004

Figure 0007401850000005
Figure 0007401850000005

Figure 0007401850000006
Figure 0007401850000006

Figure 0007401850000007
Figure 0007401850000007

続いて、本発明被覆工具1~10、比較被覆工具1~10について、以下の切削試験を行った。 Subsequently, the following cutting tests were conducted on the coated tools 1 to 10 of the present invention and the comparative coated tools 1 to 10.

被削材:JIS・FCD700の丸棒
切削速度:380m/min
切込み:3.0mm
送り:0.35mm/rev
切削時間:5min
結果を表8に示す。
Work material: JIS/FCD700 round bar Cutting speed: 380m/min
Depth of cut: 3.0mm
Feed: 0.35mm/rev
Cutting time: 5min
The results are shown in Table 8.

Figure 0007401850000008
Figure 0007401850000008

表8に示す切削試験の結果から明らかなように、本発明被覆工具1~10は、いずれも、優れた耐摩耗性、耐剥離性、および、耐チッピング性を有しているため、球状黒鉛鋳鉄の高速旋削加工においも、長期にわたって優れた切削性能を発揮する。これに対して、本発明の被覆工具に規定される事項を満足していない比較被覆工具1~10は、球状黒鉛鋳鉄の高速旋削加工に供した場合、チッピングが発生して短時間で寿命に至っている。 As is clear from the results of the cutting tests shown in Table 8, coated tools 1 to 10 of the present invention all have excellent wear resistance, peeling resistance, and chipping resistance, so they are coated with spheroidal graphite. Demonstrates excellent cutting performance over a long period of time, even in high-speed turning of cast iron. On the other hand, when comparative coated tools 1 to 10, which do not satisfy the requirements stipulated for coated tools of the present invention, are used for high-speed turning machining of spheroidal graphite cast iron, chipping occurs and the service life ends in a short period of time. It has been reached.

本発明の表面被覆切削工具は、各種の鋼などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴うとともに、切刃部に対して大きな負荷がかかる球状黒鉛鋳鉄等の高速旋削加工において、優れた耐摩耗性、耐剥離性、および、耐チッピング性を発揮し、長期にわたって優れた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 The surface-coated cutting tool of the present invention can be used not only for cutting various types of steel under normal cutting conditions, but also for cutting at high speeds such as spheroidal graphite cast iron, which generates high heat and places a large load on the cutting edge. In turning processing, it exhibits excellent wear resistance, peeling resistance, and chipping resistance, and shows excellent cutting performance over a long period of time, so it can improve the performance of cutting equipment and save labor in cutting processing. The present invention can satisfactorily respond to energy saving and cost reduction.

Claims (1)

工具基体と該工具基体の表面上に工具表面に向かって、順に、下層、中間層、上層を含む被覆層を有する表面被覆切削工具であって、
前記下層は、2.0~20.0μmの平均層厚で、少なくとも1層のTiの炭窒化物層を有し、
前記中間層は0.1~1.5μmの平均層厚で、前記下層側にTiの窒化物である下部層と、前記上層側にTiの炭窒化物、炭酸化物、または、炭窒酸化物である上部層とを有し、前記上部層の前記Tiの炭窒化物、炭酸化物、または、炭窒酸化物は、前記工具基体の表面に平行な方向の結晶粒の平均幅が0.20μm以下であって、
前記上層は、1.0~10.0μmの平均層厚であって、組成を組成式:Ti1-xAlNで表したとき(但し、xは原子比で平均組成を表す)、0.60≦x≦0.95を満足して、NaCl型面心立方構造の結晶粒が主である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool base and a coating layer on the surface of the tool base including, in order toward the tool surface, a lower layer, an intermediate layer, and an upper layer,
The lower layer has at least one Ti carbonitride layer with an average layer thickness of 2.0 to 20.0 μm,
The intermediate layer has an average layer thickness of 0.1 to 1.5 μm, and includes a lower layer made of Ti nitride on the lower layer side, and a carbonitride, carbonate, or carbonitoxide of Ti on the upper layer side. The carbonitride, carbonate, or carbonitoxide of Ti in the upper layer has an average width of crystal grains of 0.20 μm in a direction parallel to the surface of the tool base. The following is true,
The upper layer has an average layer thickness of 1.0 to 10.0 μm, and the composition is represented by the composition formula: Ti 1-x Al x N (where x represents the average composition in atomic ratio): 0 Satisfying .60≦x≦0.95, the crystal grains are mainly of NaCl type face-centered cubic structure,
A surface-coated cutting tool characterized by:
JP2020048657A 2020-03-19 2020-03-19 surface coated cutting tools Active JP7401850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048657A JP7401850B2 (en) 2020-03-19 2020-03-19 surface coated cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048657A JP7401850B2 (en) 2020-03-19 2020-03-19 surface coated cutting tools

Publications (2)

Publication Number Publication Date
JP2021146442A JP2021146442A (en) 2021-09-27
JP7401850B2 true JP7401850B2 (en) 2023-12-20

Family

ID=77850318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048657A Active JP7401850B2 (en) 2020-03-19 2020-03-19 surface coated cutting tools

Country Status (1)

Country Link
JP (1) JP7401850B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179503A (en) 1999-12-24 2001-07-03 Mitsubishi Materials Corp Surface coated-thermet cutting tool having blade face of low frictional resistance to chip
JP2007260851A (en) 2006-03-29 2007-10-11 Kyocera Corp Surface coated cutting tool
US20160136786A1 (en) 2013-06-14 2016-05-19 Sandvik Intellectual Property Ab Coated cutting tool
JP2017159409A (en) 2016-03-10 2017-09-14 三菱マテリアル株式会社 Surface-coated cutting tool exerting excellent wear resistance
JP2018114611A (en) 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
WO2019146785A1 (en) 2018-01-29 2019-08-01 京セラ株式会社 Coated tool, and cutting tool comprising same
JP2019177424A (en) 2018-03-30 2019-10-17 三菱マテリアル株式会社 Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179503A (en) 1999-12-24 2001-07-03 Mitsubishi Materials Corp Surface coated-thermet cutting tool having blade face of low frictional resistance to chip
JP2007260851A (en) 2006-03-29 2007-10-11 Kyocera Corp Surface coated cutting tool
US20160136786A1 (en) 2013-06-14 2016-05-19 Sandvik Intellectual Property Ab Coated cutting tool
JP2017159409A (en) 2016-03-10 2017-09-14 三菱マテリアル株式会社 Surface-coated cutting tool exerting excellent wear resistance
JP2018114611A (en) 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
WO2019146785A1 (en) 2018-01-29 2019-08-01 京セラ株式会社 Coated tool, and cutting tool comprising same
JP2019177424A (en) 2018-03-30 2019-10-17 三菱マテリアル株式会社 Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance

Also Published As

Publication number Publication date
JP2021146442A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
US11365472B2 (en) Coated cutting tool
EP3412386B1 (en) Surface-coated cutting tool and manufacturing method therefor
WO2017122448A1 (en) Surface-coated cutting tool and method for producing same
WO2017175400A1 (en) Surface-coated cutting tool and method for producing same
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP2019005867A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP7453613B2 (en) surface coated cutting tools
WO2020166683A1 (en) Surface-coated cutting tool
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP7401850B2 (en) surface coated cutting tools
JP7541279B2 (en) Surface-coated cutting tools
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP7453616B2 (en) surface coated cutting tools
JP7190111B2 (en) surface coated cutting tools
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP7137149B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7492678B2 (en) Surface-coated cutting tools
JP2019177424A (en) Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance
JP7520286B2 (en) Surface-coated cutting tools
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
WO2018181123A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP7389948B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance.
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231121

R150 Certificate of patent or registration of utility model

Ref document number: 7401850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150