JP5383259B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5383259B2
JP5383259B2 JP2009055858A JP2009055858A JP5383259B2 JP 5383259 B2 JP5383259 B2 JP 5383259B2 JP 2009055858 A JP2009055858 A JP 2009055858A JP 2009055858 A JP2009055858 A JP 2009055858A JP 5383259 B2 JP5383259 B2 JP 5383259B2
Authority
JP
Japan
Prior art keywords
layer
plane
area
αal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009055858A
Other languages
Japanese (ja)
Other versions
JP2010207946A (en
Inventor
博規 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009055858A priority Critical patent/JP5383259B2/en
Publication of JP2010207946A publication Critical patent/JP2010207946A/en
Application granted granted Critical
Publication of JP5383259B2 publication Critical patent/JP5383259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被覆層を基体の表面に被着形成した切削工具に関する。   The present invention relates to a cutting tool in which a coating layer is formed on the surface of a substrate.

従来より、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の基体の表面に、複数の被覆層が形成された切削工具が多用されている。前記被覆層としては、炭化チタン(TiC)層、窒化チタン(TiN)層、炭窒化チタン(TiCN)層および酸化アルミニウム(Al)層等の多層構造からなる被覆層が知られており、TiCN層、中間層(結合層)、Al層の順に成膜された被覆層が多用されている。特に、Al層をα型結晶からなるαAl層にて構成する場合には、TiCN層とαAl層との間で剥離が発生しやすく、αAl層の密着力を高める必要があった。 2. Description of the Related Art Conventionally, cutting tools that are widely used for metal cutting have frequently been used in which a plurality of coating layers are formed on the surface of a substrate such as cemented carbide, cermet, or ceramic. As the coating layer, a coating layer having a multilayer structure such as a titanium carbide (TiC) layer, a titanium nitride (TiN) layer, a titanium carbonitride (TiCN) layer, and an aluminum oxide (Al 2 O 3 ) layer is known. A coating layer formed in the order of a TiCN layer, an intermediate layer (bonding layer), and an Al 2 O 3 layer is often used. In particular, when the Al 2 O 3 layer is composed of an αAl 2 O 3 layer made of α-type crystals, peeling is likely to occur between the TiCN layer and the αAl 2 O 3 layer, and the αAl 2 O 3 layer It was necessary to increase the adhesion.

特許文献1では、αAl層の粒径、膜厚、および(012)面に対する組織化係数を調整することにより、αAl層の密着力を向上させることが記載されている。 Patent Document 1 describes that the adhesion strength of the αAl 2 O 3 layer is improved by adjusting the particle diameter and thickness of the αAl 2 O 3 layer and the organization coefficient with respect to the (012) plane.

また、特許文献2では、αAl層における(0001)面に配向している粒子が、70面積%以上を占めることによって、Al層が優れた耐チッピング性を発揮することが記載されている。 Moreover, in patent document 2, when the particle | grains orientated in the (0001) plane in the αAl 2 O 3 layer occupy 70 area% or more, the Al 2 O 3 layer can exhibit excellent chipping resistance. Have been described.

特開平06−316758号公報Japanese Patent Laid-Open No. 06-316758 特開2004−284003号公報JP 2004-284003 A

しかしながら、上記特許文献1または2に記載の切削工具も、αAl層とその下地層との密着力やαAl層の被削材に対する耐溶着性が不十分であり、鋳鉄等の中速、または高速連続切削加工のように被削材が溶着しやすく、かつ、断続的に切刃に衝撃がかかるような切削加工においては被覆層が剥離して十分な切削性能を発揮できず、このような被削材の切削加工においては被覆層の耐剥離性の向上が求められていた。 However, the cutting tool described in the above-mentioned Patent Document 1 or 2 also has insufficient adhesion strength between the αAl 2 O 3 layer and the base layer and the welding resistance to the work material of the αAl 2 O 3 layer, such as cast iron. In a cutting process where the work material is easily welded, such as medium-speed or high-speed continuous cutting, and the cutting blade is impacted intermittently, the coating layer peels off and sufficient cutting performance can be demonstrated. However, in the cutting of such a work material, improvement in the peeling resistance of the coating layer has been demanded.

従って、本発明は上記課題を解決するためになされたもので、その目的は、被削材が溶着せず、さらにαAl層が剥離しない安定した切削性能を発揮する切削工具を提供することである。 Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cutting tool that exhibits stable cutting performance in which a work material does not weld and an αAl 2 O 3 layer does not peel off. That is.

本発明者は、上記課題に対して検討した結果、αAl層を構成する結晶を粗粒子と微粒子が混在した構成とし、かつ、粗粒子と微粒子の結晶方位を適正化することによって、αAl層の耐溶着性を向上させ、かつ、αAl層の剥離を抑制できる結果、切削工具の耐摩耗性が向上することを知見した。 As a result of studying the above problems, the present inventor made the crystals constituting the αAl 2 O 3 layer mixed with coarse particles and fine particles, and by optimizing the crystal orientation of the coarse particles and fine particles, to improve the adhesion resistance of the alpha Al 2 O 3 layer, and results that can suppress separation of alpha Al 2 O 3 layer was found that improves the wear resistance of the cutting tool.

すなわち、本発明の切削工具は、すくい面と逃げ面との交差稜線部が切刃を構成し、基体表面に、炭窒化チタン(TiCN)層とα型結晶構造を有する酸化アルミニウム(Al)層とを順に形成してなる切削工具において、前記すくい面において前記αAl層の表面を鏡面とした状態で電界放出型走査顕微鏡(FE−SEM)を用いて後方散乱電子回折像(EBSD)解析から酸化アルミニウム層の各結晶の結晶方位を特定し、これに基づいてカラーマップを作成して、(0,0,0,1)面、(1,0,−1,0)面または(0,1,−1,0)面のいずれの結晶方位に、より配向しているかを確認したとき、50〜90面積%が長径1μm〜3μmの粗粒子、0〜20面積%が長径0.5μmより大きくて1μmより小さい中粒子、10〜50面積%が長径0.05μm〜0.5μmの微粒子で構成され、かつ、前記粗粒子のうちの80面積%以上が(0,0,0,1)面の結晶方位に配向しているとともに、前記微粒子のうちの50面積%以上が(1,0,
−1,0)面の結晶方位に配向していることを特徴とする。
That is, in the cutting tool of the present invention, the intersection ridge line portion between the rake face and the flank face constitutes a cutting edge, and the surface of the base has an aluminum oxide (Al 2 O) having a titanium carbonitride (TiCN) layer and an α-type crystal structure. 3 ) In a cutting tool in which layers are sequentially formed, a backscattered electron diffraction image using a field emission scanning microscope (FE-SEM) with the surface of the αAl 2 O 3 layer as a mirror surface on the rake face The crystal orientation of each crystal of the aluminum oxide layer is specified from the (EBSD) analysis, and a color map is created based on the crystal orientation , and the (0, 0, 0, 1) plane, (1, 0, -1, 0) When it is confirmed whether the crystal orientation of the plane or the (0,1, -1,0) plane is more oriented , 50 to 90 area% is a coarse particle having a major axis of 1 μm to 3 μm, 0 to 20 area% Is longer than 0.5μm and smaller than 1μm Medium particles, 10 to 50 area% are composed of fine particles having a major axis of 0.05 μm to 0.5 μm, and 80 area% or more of the coarse particles are in the (0, 0, 0, 1) plane crystal orientation. And 50% by area or more of the fine particles are (1, 0,
It is characterized by being oriented in the crystal orientation of the (1,0) plane.

ここで、前記中粒子が存在する場合にはそのうちの50面積%以上が(0,1,−1,0)面に配向していることが望ましい。
Here, in the case where the medium particles are present, it is desirable that 50% by area or more thereof is oriented in the (0, 1, -1, 0) plane.

本発明の切削工具によれば、Al層を構成する結晶がα型Al結晶であって粗粒子と微粒子が混在した構成からなり、かつ、粗粒子と微粒子の配向結晶面を適正化することによって、αAl層の耐溶着性を向上させ、かつ、αAl層の剥離を抑制できる結果、切削工具の耐剥離性を向上させることができる。 According to the cutting tool of the present invention, the crystal constituting the Al 2 O 3 layer is an α-type Al 2 O 3 crystal and has a configuration in which coarse particles and fine particles are mixed, and the oriented crystal plane of the coarse particles and fine particles. by optimizing the, to improve adhesion resistance of the alpha Al 2 O 3 layer, and results that can suppress separation of alpha Al 2 O 3 layer, it is possible to improve the peeling resistance of the cutting tool.

また、前記中粒子が存在する場合にはそのうちの50面積%以上の粒子の結晶配向が(0,1,−1,0)面に配向していることによって、αAl層の耐溶着性をさらに向上させることができる。 Further, when the medium particles are present, the crystal orientation of 50% by area or more of the particles is oriented in the (0, 1, −1, 0) plane, so that the αAl 2 O 3 layer is resistant to welding. The property can be further improved.

本発明の切削工具の好適例であるスローアウェイチップの一例についての概略斜視図である。It is a schematic perspective view about an example of the throw away tip which is a suitable example of the cutting tool of this invention. 図1のスローアウェイチップの断面についての模式図である。It is a schematic diagram about the cross section of the throw away tip of FIG. 図2のスローアウェイチップについて、Al層を表面に露出させた状態で電界放出型走査顕微鏡(FE−SEM)を用いて後方散乱電子回折像(EBSD)解析からAl層の各結晶の結晶方位を特定し、これに基づいて作成したカラーマップである。With respect to the throw-away tip in FIG. 2, the Al 2 O 3 layer was exposed from a backscattered electron diffraction image (EBSD) analysis using a field emission scanning microscope (FE-SEM) with the Al 2 O 3 layer exposed on the surface. It is the color map which specified the crystal orientation of each crystal and was created based on this.

本発明の切削工具の好適例であるスローアウェイチップ(以下、チップと略す。)の一例についての概略斜視図である図1、およびその断面についての模式図である図2に基づいて説明する。図1によれば、チップ1は主面をすくい面11および着座面(図示せず)、側面を逃げ面12とし、すくい面11と逃げ面12の交差稜線部に切刃13を有する形状からなる。そして、図2に示すように、チップ1は、基体2の表面に、TiN層3と、TiCN層4と、α型結晶構造を有するAl層(以下、単にαAl層と称す。)6とが形成された被覆層8を被覆した構成からなる。 A description will be given based on FIG. 1 which is a schematic perspective view of an example of a throw-away tip (hereinafter abbreviated as a tip) which is a preferred example of the cutting tool of the present invention, and FIG. 2 which is a schematic diagram of a cross section thereof. According to FIG. 1, the chip 1 has a shape having a rake face 11 and a seating face (not shown) as main surfaces, a side face as a flank face 12, and a cutting edge 13 at a cross ridge line portion between the rake face 11 and the flank face 12. Become. As shown in FIG. 2, the chip 1 has a TiN layer 3, a TiCN layer 4, an Al 2 O 3 layer having an α-type crystal structure (hereinafter simply referred to as an αAl 2 O 3 layer) on the surface of the base 2. And a coating layer 8 on which 6 is formed.

ここで、本発明によれば、αAl層6を表面に露出させて、鏡面となるように加工した状態で電界放出型走査顕微鏡(FE−SEM)を用いて後方散乱電子回折像(EBSD)解析からαAl層6の各結晶の結晶方位を特定し、これに基づいてカラーマップを作成して、(0,0,0,1)面、(1,0,−1,0)面または(0,1,−1,0)面のいずれの結晶方位に、より配向しているかを確認したとき、図3のようなマップとなる。すなわち、αAl結晶のうちの50〜90面積%、好ましくは60〜80面積%、特に60〜70面積%が長径1μm〜3μmよりなる粗粒子21からなり、0〜20面積%、好ましくは、0〜10面積%、特に0〜1面積%が長径0.5μmより大きく1μmより小さい中粒子23からなり、10〜50面積%、好ましくは20〜40面積%、特に、30〜40面積%が長径0.05μm〜0.5μmの微粒子22からなる構成となる。そして、粗粒子21のうちの80面積%以上、特に90面積%以上が(0,0,0,1)面に配向し、かつ、微粒子22のうちの50面積%以上、特に80面積%以上が(1,0,−1,0)面に配向している。 Here, according to the present invention, the backscattered electron diffraction image (FE-SEM) is used with a field emission scanning microscope (FE-SEM) in a state in which the αAl 2 O 3 layer 6 is exposed on the surface and processed to be a mirror surface. The crystal orientation of each crystal of the αAl 2 O 3 layer 6 is specified from the EBSD) analysis, and a color map is created based on this, and the (0, 0, 0, 1) plane, (1, 0, -1, When it is confirmed whether the crystal orientation of the (0) plane or the (0, 1, -1, 0) plane is more oriented, a map as shown in FIG. 3 is obtained. That is, 50 to 90 area%, preferably 60 to 80 area%, particularly 60 to 70 area% of αAl 2 O 3 crystal is composed of coarse particles 21 having a major axis of 1 μm to 3 μm, and 0 to 20 area%, preferably Consists of medium particles 23 having a major axis larger than 0.5 μm and smaller than 1 μm, and 10 to 50 area%, preferably 20 to 40 area%, especially 30 to 40 area%. % Is composed of fine particles 22 having a major axis of 0.05 μm to 0.5 μm. Further, 80 area% or more, particularly 90 area% or more of the coarse particles 21 are oriented in the (0, 0, 0, 1) plane, and 50 area% or more, particularly 80 area% or more of the fine particles 22. Are oriented in the (1, 0, -1, 0) plane.

すなわち、αAl層6を構成するαAl結晶が粗粒子と微粒子が混在する粗微混粒構造からなり、かつこれらの粒子の結晶方位が上記所定の方向にあることによって、αAl層6の被削材に対する耐溶着性を向上できると共に、αAl層6の耐剥離性を向上させることができる。 That is, the αAl 2 O 3 crystal constituting the αAl 2 O 3 layer 6 has a coarse / fine mixed structure in which coarse particles and fine particles are mixed, and the crystal orientation of these particles is in the predetermined direction. The welding resistance of the 2 O 3 layer 6 to the work material can be improved, and the peel resistance of the αAl 2 O 3 layer 6 can be improved.

ここで、粗粒子21の含有量が50面積%未満もしくは90面積%より大きくなると、αAl層6の密着力が弱くなり、αAl層に剥離が発生してしまう。また、微粒子22の含有比率が10面積%未満になるかもしくは50面積%より大きくなると、αAl層6に十分な密着力を付与させることができなくなる。さらに、中粒子23の含有量が10面積%より多い場合にもαAl層に剥離が発生しやすくなる。 Here, when the content of the coarse particles 21 is less than 50 area% or greater than 90 area%, the adhesion of the αAl 2 O 3 layer 6 becomes weak, and peeling occurs in the αAl 2 O 3 layer. Further, when the content ratio of the fine particles 22 is less than 10 area% or greater than 50 area%, the αAl 2 O 3 layer 6 cannot be provided with sufficient adhesion. Further, even when the content of the medium particles 23 is more than 10 area%, the αAl 2 O 3 layer is easily peeled off.

また、粗粒子21の(0,0,0,1)面配向が80%未満だと耐溶着性が低下する。一方、微粒子22の(1,0,−1,0)面配向となる粒子が50%未満であると、αAl層6の密着力が不十分となり、膜剥離が発生しやすくなってしまう。 Further, if the (0, 0, 0, 1) plane orientation of the coarse particles 21 is less than 80%, the welding resistance is lowered. On the other hand, when the particles having the (1,0, -1, 0) plane orientation of the fine particles 22 are less than 50%, the adhesion of the αAl 2 O 3 layer 6 becomes insufficient, and film peeling tends to occur. End up.

ここで、αAl層6を構成する結晶の粒径、および各結晶の結晶方位を測定する方法について説明する。測定面はすくい面11のうちの着座面に平行な部分とし、αAl層6の上面から0.2μmの深さ以内の深さだけ研磨した鏡面とする。このとき、被覆層8の表面がαAl層6でなく、TiNのように他の層が被覆している場合には、被覆層8を着座面と平行に研磨加工してαAl層6を露出させた面を測定面とする。αAl層6が露出している場合には上面から0.2μmの深さ以内の深さだけ研磨した鏡面を測定面とする。 Here, a method for measuring the grain size of the crystals constituting the αAl 2 O 3 layer 6 and the crystal orientation of each crystal will be described. The measurement surface is a portion of the rake surface 11 parallel to the seating surface, and is a mirror surface polished by a depth within 0.2 μm from the upper surface of the αAl 2 O 3 layer 6. At this time, when the surface of the coating layer 8 is not the αAl 2 O 3 layer 6 but is covered with another layer such as TiN, the coating layer 8 is polished in parallel with the seating surface to obtain the αAl 2 O The surface where the three layers 6 are exposed is taken as the measurement surface. When the αAl 2 O 3 layer 6 is exposed, a mirror surface polished by a depth within 0.2 μm from the upper surface is used as the measurement surface.

測定装置は、電界放出型走査電子顕微鏡(FE−SEM)を用い、これに後方散乱電子回折像(EBSD:Electron Backscatter diffrection PatternまたはEBSPとも呼ばれる。)システムが組み込まれた装置を用いる。そして、この装置を用いて後方散乱電子回折像(EBSD)を作成し、そのデータを解析して結晶方位データを算出し、この結晶方位データに基づいてカラーマッピング図を作成する。カラーマッピングにおいては、αAl層6の(0,0,0,1)面、(1,0,−1,0)面、(0,1,−1,0)面をそれぞれ異なる色に指定してマッピングすることにより、視覚的に各結晶の配向状態を認識することができる。 As a measuring apparatus, a field emission scanning electron microscope (FE-SEM) is used, and an apparatus in which a backscattered electron diffraction image (also called EBSD: Electron Backscatter Diffrection Pattern or EBSD) system is incorporated is used. Then, a backscattered electron diffraction image (EBSD) is created using this apparatus, the data is analyzed to calculate crystal orientation data, and a color mapping diagram is created based on the crystal orientation data. In color mapping, the (0, 0, 0, 1) plane, (1, 0, -1, 0) plane, and (0, 1, -1, 0) plane of the αAl 2 O 3 layer 6 have different colors. By specifying and mapping, it is possible to visually recognize the orientation state of each crystal.

本発明においては、各結晶に対して最も長く引ける対角線を長軸として、1〜3μmを粗粒子21、0.5μmより大きく1μmより小さい中粒子23、0.05〜0.5μmを微粒子22と区分する。そして、粗粒子の各結晶について結晶方位を特定し、(0,0
,0,1)面の結晶方位を示す色を呈している結晶の面積を粗粒子21の総面積で割り、
(0,0,0,1)面に配向している粒子の割合を算出する。同様に微粒子22の(1,0,−1,0)面に配向する色を呈している結晶の割合、中粒子23の(0,1,−1,0)面の結晶方位への配向を示す色を呈している結晶の割合を算出する。
In the present invention, the longest diagonal line with respect to each crystal is the major axis, 1 to 3 μm are coarse particles 21, medium particles 23 that are larger than 0.5 μm and smaller than 1 μm, and 0.05 to 0.5 μm are fine particles 22. Break down. Then, the crystal orientation is specified for each crystal of the coarse particles, and (0,0
, 0, 1) the area of the crystal exhibiting a color indicating the crystal orientation of the plane is divided by the total area of the coarse particles 21;
The ratio of particles oriented in the (0, 0, 0, 1) plane is calculated. Similarly the particles 22 (1,0, -1,0) proportion of crystals exhibits a color oriented in plane, the medium particles 23 (0,1, -1,0) the orientation of the crystal orientation of the surface The ratio of crystals exhibiting the indicated color is calculated.

なお、測定に際しては、観察する画像の倍率は7,500倍として15μm四方のカラーマッピングにて分析する。また、このカラーマッピングを3視野について行い、これらの測定値の平均値を測定値とする。   In the measurement, the magnification of the image to be observed is 7,500, and analysis is performed by color mapping of 15 μm square. Further, this color mapping is performed for three visual fields, and the average value of these measured values is taken as the measured value.

ここで、本発明によれば、αAl層6において、中粒子23の存在比率が20面積%以下であることが、αAl層6の密着力を向上させることができるために望ましい。つまり、中粒子23の含有量を20面積%以下として、αAl層6の結晶状態を粗微混粒の組織とすることによってαAl層6の付着力を高めることができる。 Here, according to the present invention, in the αAl 2 O 3 layer 6, the presence ratio of the medium particles 23 is 20 area% or less, so that the adhesion of the αAl 2 O 3 layer 6 can be improved. desirable. That is, the content of the medium particles 23 as 20 area% or less, it is possible to increase the adhesion of alpha Al 2 O 3 layer 6 by the alpha Al 2 O 3 layer 6 in the crystalline state of the crude fine mixed grain tissue.

なお、中粒子23が存在する場合であっても、中粒子23のうちの50面積%以上、特に、80面積%以上の粒子の結晶配向が(0,1,−1,0)面に配向していることが、αAl層6の被削材に対する耐溶着性が向上するため望ましい。 Even in the case where the medium particles 23 are present, the crystal orientation of the particles of 50 area% or more, particularly 80 area% or more of the medium particles 23 is oriented in the (0, 1, -1, 0) plane. This is desirable because the welding resistance of the αAl 2 O 3 layer 6 to the work material is improved.

一方、TiCN層4は、高い硬度と靭性を有するため、工具1の耐摩耗性および耐欠損性を向上させることができる。特に、筋状結晶構造をなす筋状TiCN結晶とすることにより、工具1の耐摩耗性および耐欠損性を向上させることができる。また、幅の狭い筋状TiCN結晶にて構成されるTiCN層の上に、幅の広い結晶構造をなす筋状のTiCN結晶からなるTiCN層を設けることによって、αAl層6の密着力をさらに向上させることができるため望ましい。 On the other hand, since the TiCN layer 4 has high hardness and toughness, the wear resistance and fracture resistance of the tool 1 can be improved. In particular, by using a streak TiCN crystal having a streak crystal structure, the wear resistance and fracture resistance of the tool 1 can be improved. Further, by providing a TiCN layer made of a streak-like TiCN crystal having a wide crystal structure on a TiCN layer composed of a narrow streak-like TiCN crystal, the adhesion force of the αAl 2 O 3 layer 6 is provided. Can be further improved.

さらに、αAl層6とTiCN層4との間には、Ti、Al、炭素および窒素を主成分とする中間層5が設けられている。特に、中間層5は、αAl層6と接する下層として酸素を15〜25原子%含有し、かつ、厚みが0.5〜30nmからなることが、αAl層6の密着力を向上させることができるため望ましい。 Further, an intermediate layer 5 mainly composed of Ti, Al, carbon, and nitrogen is provided between the αAl 2 O 3 layer 6 and the TiCN layer 4. In particular, the intermediate layer 5, oxygen containing 15 to 25 atomic% as a lower layer in contact with the alpha Al 2 O 3 layer 6, and the thickness is from 0.5~30nm is, adhesion of alpha Al 2 O 3 layer 6 Can be improved, which is desirable.

また、αAl層6の上層にTiN層を形成した場合には、被覆層表面の摺動性、外観等の調整が可能となる。すなわち、TiN層は金色を呈するため、切削工具1を使用したときに表層が摩耗して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できるため望ましい。なお、表層はTiN層に限定されるものではなく、摺動性を高めるためにDLC(ダイヤモンドライクカーボン)層やCrN層を形成する場合もある。表層をなすTiN層の厚みは2.0μm以下であることが望ましく、かかる表層の剥離強度がαAl層6の剥離強度よりも低いことが使用の有無を目視で確認しやすくなる点で望ましい。 Further, when a TiN layer is formed on the αAl 2 O 3 layer 6, it is possible to adjust the slidability, appearance, etc. of the surface of the coating layer. That is, since the TiN layer exhibits a gold color, it is desirable that when the cutting tool 1 is used, it is easy to determine whether the surface layer is worn and used, and the progress of wear can be easily confirmed. The surface layer is not limited to the TiN layer, and a DLC (diamond-like carbon) layer or a CrN layer may be formed in order to improve slidability. The thickness of the TiN layer constituting the surface layer is desirably 2.0 μm or less, and the fact that the peel strength of the surface layer is lower than the peel strength of the αAl 2 O 3 layer 6 makes it easy to visually check whether it is used or not. desirable.

さらに、TiCN層4と基体2との間に下地層として配設されるTiN層3は、基体2の成分が被覆層8に拡散することを抑制する効果がある。   Further, the TiN layer 3 disposed as a base layer between the TiCN layer 4 and the substrate 2 has an effect of suppressing the diffusion of the components of the substrate 2 into the coating layer 8.

なお、切削工具1の基体2は、炭化タングステン(WC)と、所望により周期表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)等の鉄属金属からなる結合相にて結合させた超硬合金や、Ti基サーメット、またはSi、Al、ダイヤモンド、立方晶窒化ホウ素(cBN)等のセラミックスのいずれかが好適に使用できる。中でも、基体2は、超硬合金またはサーメットからなることが耐欠損性および耐摩耗性の点で望ましい。
(製造方法)
ここで、本発明の切削工具を作製する方法の一例について説明する。
The base 2 of the cutting tool 1 is a hard phase composed of tungsten carbide (WC) and, if desired, at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table. Cemented carbide in which a binder phase composed of an iron group metal such as cobalt (Co) and / or nickel (Ni) is bonded, Ti-based cermet, Si 3 N 4 , Al 2 O 3 , diamond, cubic crystal Any ceramic such as boron nitride (cBN) can be suitably used. Among these, it is desirable that the substrate 2 is made of cemented carbide or cermet in terms of fracture resistance and wear resistance.
(Production method)
Here, an example of a method for producing the cutting tool of the present invention will be described.

まず、基体2となる硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体2を作製する。そして、上記基体2の表面に所望によって研磨加工や切刃部のホーニング加工を施す。   First, metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powders such as metal carbides, nitrides, carbonitrides, oxides, etc. that can form a hard alloy to be the base 2 by firing, press molding, casting After forming into a predetermined tool shape by a known molding method such as molding, extrusion molding, cold isostatic pressing, etc., the substrate 2 made of the hard alloy described above is fired in a vacuum or non-oxidizing atmosphere. Make it. Then, the surface of the base 2 is subjected to polishing or honing of the cutting edge as desired.

次に、その表面に化学気相蒸着(CVD)法によって表面被覆層を成膜する。
まず、反応ガス組成として四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜940℃、8〜50kPaの条件で下地層であるTiN層3を成膜する。
Next, a surface coating layer is formed on the surface by chemical vapor deposition (CVD).
First, a mixed gas composed of 0.5 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 10 to 60% by volume of nitrogen (N 2 ) gas, and the balance of hydrogen (H 2 ) gas is prepared as a reaction gas composition. Then, it is introduced into the reaction chamber, and a TiN layer 3 as a base layer is formed in the chamber under conditions of 800 to 940 ° C. and 8 to 50 kPa.

次に、反応ガス組成として、体積%で四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを10〜60体積%、アセトニトリル(CHCN)ガスを0.1〜3.0体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を780〜880℃、5〜25kPaにてTiCN層4を成膜する。 Next, as a reaction gas composition, titanium tetrachloride (TiCl 4 ) gas is 0.5 to 10% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, and acetonitrile (CH 3 CN) gas is 0% by volume. A mixed gas composed of 0.1 to 3.0% by volume and the remainder consisting of hydrogen (H 2 ) gas was prepared and introduced into the reaction chamber, and the TiCN layer 4 was formed at a film formation temperature of 780 to 880 ° C. and 5 to 25 kPa. Form a film.

ここで、上記成膜条件のうち、反応ガス中のアセトニトリルガスの割合が0.1〜0.4体積%に調整すること、および成膜温度を780℃〜880℃とすることが、断面観察において下側部分が微細な筋状晶をなすTiCN層(MT−TiCN層)を形成できるために望ましい。   Here, of the above film forming conditions, the ratio of acetonitrile gas in the reaction gas is adjusted to 0.1 to 0.4% by volume, and the film forming temperature is set to 780 ° C. to 880 ° C. In this case, the TiCN layer (MT-TiCN layer) in which the lower portion forms fine streak crystals is desirable.

また、TiCN層4の上側部分の成膜条件として、四塩化チタン(TiCl)ガスを2.5〜4体積%、メタン(CH)ガスを0.1〜10体積%、窒素(N)ガスを0〜15体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、5〜40kPaとすることが望ましい。 Further, as film formation conditions for the upper portion of the TiCN layer 4, titanium tetrachloride (TiCl 4 ) gas is 2.5 to 4 % by volume, methane (CH 4 ) gas is 0.1 to 10% by volume, nitrogen (N 2 It is desirable that a mixed gas consisting of 0 to 15% by volume of gas and the remainder of hydrogen (H 2 ) gas is prepared and introduced into the reaction chamber, and the chamber is 950 to 1100 ° C. and 5 to 40 kPa.

その後、中間層5を下記a工程にて成膜する。具体的な条件としては、まず、四塩化チタン(TiCl)ガスを1〜5体積%、メタン(CH)ガスを4〜10体積%、窒素(N)ガスを10〜30体積%、一酸化炭素(CO)ガスを4〜10体積%、残りが水素(H)ガスからなる混合ガスを調整する。これらの混合ガスを調整して反応チャンバ内に導入し、チャンバ内を950〜1100℃、ガス圧5〜40kPa、成膜時間を20〜60分とする(a−1工程)。 Thereafter, the intermediate layer 5 is formed in the following step a. As specific conditions, first, titanium tetrachloride (TiCl 4 ) gas is 1 to 5% by volume, methane (CH 4 ) gas is 4 to 10% by volume, nitrogen (N 2 ) gas is 10 to 30% by volume, A mixed gas composed of 4 to 10% by volume of carbon monoxide (CO) gas and the balance of hydrogen (H 2 ) gas is prepared. These mixed gases are adjusted and introduced into the reaction chamber, and the inside of the chamber is set to 950 to 1100 ° C., the gas pressure is set to 5 to 40 kPa, and the film formation time is set to 20 to 60 minutes (step a-1).

次に、二酸化炭素(CO)ガスを1〜3体積%、残りが窒素(N)ガスとし、この混合ガスを反応チャンバ内に導入し、反応チャンバ内の温度を950〜1100℃、圧力を5〜40kPaにして、処理時間を10〜60分として前記a−1工程で成膜された部分を酸化する処理を行う(a−2工程)。 Next, carbon dioxide (CO 2 ) gas is 1 to 3% by volume, and the remainder is nitrogen (N 2 ) gas. This mixed gas is introduced into the reaction chamber, the temperature in the reaction chamber is set to 950 to 1100 ° C., pressure Is set to 5 to 40 kPa, and the treatment time is set to 10 to 60 minutes to oxidize the portion formed in the step a-1 (step a-2).

このa−1工程とa−2工程によって中間層5を極薄く形成できる。形成された中間層5は適正な酸素量を有するが、これが、この後に成膜されるAl層を構成する結晶がα型Al結晶となり、α型Al結晶の成長を本発明の範囲内とするために必要である。 The intermediate layer 5 can be formed extremely thin by the steps a-1 and a-2. The formed intermediate layer 5 has an appropriate amount of oxygen. This is because the crystals constituting the Al 2 O 3 layer to be formed later are α-type Al 2 O 3 crystals, and the α-type Al 2 O 3 crystals are formed. It is necessary for the growth to be within the scope of the present invention.

そして、上記a工程にて形成された中間層5の表面に、水素(H)ガスをキャリアガスとして塩化アルミニウム(AlCl)を流すことによってαAl層6の核形成を行う(b工程)。本発明によれば、この核形成処理工程(b工程)を下記2つの工程に分けて行う。すなわち、まず、三塩化アルミニウム(AlCl)ガスを2.0〜5.0体積%、残りが水素(H)ガスからなる混合ガスを用いて、この混合ガスを反応チャンバ内に導入し、反応チャンバ内の温度を950〜1100℃、圧力を5〜40kPa、処理時間を5〜10分として成膜を行う。これによって、中間層5の表面部分にαAl層6の粗粒子の核が生成する(b−1工程)。次に、AlClガスの量を0.5〜1.5体積%として、反応チャンバ内の温度を950〜1100℃、圧力を5〜40kPa、処理時間を1〜4分として成膜を行う。これによってαAlの微粒子の核が生成する(b−2工程)。このように粗粒子の核を生成させた後に微粒子の核を生成させることによって、αAl粒子が粗粒子と微粒子との2種類の粒径群からなるとともに結晶の方位を特定の方向に制御したαAl層6を作製することができる。 Then, nucleation of the αAl 2 O 3 layer 6 is performed by flowing aluminum chloride (AlCl 3 ) using hydrogen (H 2 ) gas as a carrier gas on the surface of the intermediate layer 5 formed in the step a (b). Process). According to the present invention, this nucleation process step (step b) is performed in the following two steps. That is, first, using a mixed gas composed of 2.0 to 5.0% by volume of aluminum trichloride (AlCl 3 ) gas and the remaining hydrogen (H 2 ) gas, this mixed gas is introduced into the reaction chamber, Film formation is performed at a temperature in the reaction chamber of 950 to 1100 ° C., a pressure of 5 to 40 kPa, and a processing time of 5 to 10 minutes. Thereby, nuclei of coarse particles of the αAl 2 O 3 layer 6 are generated on the surface portion of the intermediate layer 5 (step b-1). Next, the AlCl 3 gas amount is set to 0.5 to 1.5% by volume, the temperature in the reaction chamber is set to 950 to 1100 ° C., the pressure is set to 5 to 40 kPa, and the processing time is set to 1 to 4 minutes. As a result, nuclei of αAl 2 O 3 fine particles are generated (step b-2). By generating the nuclei of the fine particles after generating the nuclei of the coarse particles in this way, the αAl 2 O 3 particles are composed of two types of particle size groups of the coarse particles and the fine particles, and the crystal orientation is set in a specific direction. A controlled αAl 2 O 3 layer 6 can be produced.

そして、引き続き、αAl層6を成膜する。αAl層6の成膜方法としては、三塩化アルミニウム(AlCl)ガスを0.5〜3.0体積%、塩化水素(HCl)ガスを1.0〜3.0体積%、二酸化炭素(CO)ガスを1.0〜5.0体積%、硫化水素(HS)ガスを0.2〜0.4体積%、残りが水素(H)ガスからなる混合ガスを用い、950〜1050℃、5〜10kPaとすることが望ましい。 Subsequently, an αAl 2 O 3 layer 6 is formed. As a method for forming the αAl 2 O 3 layer 6, aluminum trichloride (AlCl 3 ) gas is 0.5 to 3.0% by volume, hydrogen chloride (HCl) gas is 1.0 to 3.0% by volume, dioxide dioxide. A mixed gas composed of 1.0 to 5.0% by volume of carbon (CO 2 ) gas, 0.2 to 0.4% by volume of hydrogen sulfide (H 2 S) gas, and the remainder consisting of hydrogen (H 2 ) gas is used. 950-1050 ° C., 5-10 kPa is desirable.

また、所望により、表層(TiN層等)を成膜する。具体的な成膜条件は、反応ガス組成として四塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを5〜60体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を960〜1100℃、10〜85kPaとすればよい。 If desired, a surface layer (TiN layer or the like) is formed. Specific film forming conditions are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10% by volume, nitrogen (N 2 ) gas is 5 to 60% by volume, and the remainder is hydrogen (H 2 ) gas. The mixed gas consisting of the above may be adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 960 to 1100 ° C. and 10 to 85 kPa.

そして、所望により、成膜した被覆層3表面の少なくとも切刃部を研磨加工する。この研磨加工により、切刃部が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた工具となる。   Then, if desired, at least the cutting edge portion on the surface of the formed coating layer 3 is polished. By this polishing process, the cutting edge portion is processed smoothly, the welding of the work material is suppressed, and the tool is further excellent in fracture resistance.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120412)に成形した後、脱バインダ処理を施し、0.5〜100Paの真空中、1400℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にてすくい面側について刃先処理(Rホーニング)を施した。   A metal cobalt (Co) powder with an average particle diameter of 1.2 μm is added to and mixed with tungsten carbide (WC) powder with an average particle diameter of 1.5 μm at a ratio of 6% by mass, and the cutting tool shape ( After forming into CNMA12041), a binder removal treatment was performed, followed by firing at 1400 ° C. for 1 hour in a vacuum of 0.5 to 100 Pa to produce a cemented carbide. Furthermore, the cutting edge process (R honing) was given to the rake face side by brushing to the manufactured cemented carbide.

次に、上記超硬合金に対して、CVD法により、TiClガスを2.0体積%、Nガスを33体積%、残りがHガスからなる混合ガスを反応チャンバ内に導入し、チャンバ内を880℃、16kPaとして下地層のTiN層を0.1μm成膜し、次に、TiClガスを2.5体積%、Nガスを23体積%、CHCNガスを0.4体積%、残りがHガスからなる混合ガスを反応チャンバ内に導入し、チャンバ内を865℃、9kPaとして平均結晶幅が0.3μmの筋状TiCN層を5μm成膜し、続いて、TiClガスを2.5体積%、Nガスを10体積%、CHCNガスを0.9体積%、残りがHガスからなる混合ガスを反応チャンバ内に導入し、チャンバ内を865℃、9kPaとして平均結晶幅が0.8μmの筋状TiCN層を0.5μm成膜した。その後、表1の条件の工程を表2に示す順に成膜して、中間層を15nm、αAl層を4.5μmおよび最表層のTiN層を0.5μm成膜した。そして、被覆層の表面をすくい面側から30秒間ブラシ加工して試料No.1〜20の切削工具を作製した。 Next, a mixed gas composed of 2.0% by volume of TiCl 4 gas, 33% by volume of N 2 gas, and the remainder of H 2 gas is introduced into the reaction chamber by CVD, with respect to the cemented carbide, The inside of the chamber was 880 ° C. and 16 kPa, and a TiN layer of 0.1 μm was formed as a base layer. Next, TiCl 4 gas was 2.5 vol%, N 2 gas was 23 vol%, and CH 3 CN gas was 0.4 vol. A mixed gas consisting of volume% and the remainder of H 2 gas was introduced into the reaction chamber, and a streaked TiCN layer having an average crystal width of 0.3 μm was formed at 865 ° C. and 9 kPa in the chamber, followed by TiCl. A mixed gas consisting of 2.5% by volume of 4 gases, 10% by volume of N 2 gas, 0.9% by volume of CH 3 CN gas, and the remaining H 2 gas was introduced into the reaction chamber, and the inside of the chamber was 865 ° C. 9 kPa and the average crystal width is 0.8 A 0.5 μm thick TiCN layer having a thickness of 0.5 μm was formed. Thereafter, the steps under the conditions shown in Table 1 were formed in the order shown in Table 2, and the intermediate layer was formed to 15 nm, the αAl 2 O 3 layer was formed to 4.5 μm, and the outermost TiN layer was formed to 0.5 μm. Then, the surface of the coating layer was brushed for 30 seconds from the rake face side, and sample No. 1 to 20 cutting tools were produced.

得られた工具について、主面を研磨加工し、αAl層が表面から0.2μm以内の深さだけ研磨された鏡面状態で露出するように研磨加工した。そして、この研磨面に対して電界放出型走査電子顕微鏡(FE−SEM)を用いてEBSD解析からαAl層を構成する各αAl結晶の粒径、粗粒子、微粒子、中粒子の存在割合、および各結晶の結晶方位を測定した。なお、測定には上記EBSD解析からαAl層の各結晶の結晶方位を特定したデータに基づいて作成したカラーマッピングを用いた。ここで、カラーマッピング像においては、酸化アルミニウム層の(0,0,0,1)面を赤色、(1,0,−1,0)面を青色、(0,1,−1,0)面を緑色として示した。 About the obtained tool, the main surface was polished and polished so that the αAl 2 O 3 layer was exposed in a mirror surface state polished by a depth of 0.2 μm or less from the surface. Then, the particle size, coarse particles, fine particles, and medium particles of each αAl 2 O 3 crystal constituting the αAl 2 O 3 layer from EBSD analysis using a field emission scanning electron microscope (FE-SEM) on this polished surface And the crystal orientation of each crystal were measured. Incidentally, using the color mappings created based on the data identifying the crystal orientation of the crystal of alpha Al 2 O 3 layer from the EBSD analysis for the measurement. Here, in the color mapping image, the (0, 0, 0, 1) plane of the aluminum oxide layer is red, the (1, 0, -1, 0) plane is blue, and (0, 1, -1, 0). The surface is shown as green.

そして、全ての粗粒子に対して、(0,0,0,1)面の赤色になっている粒子を特定して粗粒子の総面積で割り、粗粒子のうちの(0,0,0,1)面に配向している結晶の割合を算出した。同様に微粒子の(1,0,−1,0)面に配向している結晶の割合、中粒子の(0,1,−1,0)面に配向している結晶の割合を算出した。このとき、測定する画像の倍率は7,500倍とし、15μm四方を1視野として3視野について測定を行い
、これらの測定値の平均値を各結晶の測定値とした。結果は表3に示した。
Then, for all the coarse particles, the (0, 0, 0, 1) face red particles are specified and divided by the total area of the coarse particles, and (0, 0, 0 1) The ratio of crystals oriented in the plane was calculated. Similarly the particles (1,0, -1,0) proportion of crystals oriented in the plane of the medium particles (0,1, -1,0) and calculating the ratio of crystal oriented in the plane. At this time, the magnification of the image to be measured was 7,500 times, the measurement was performed for three visual fields with one 15 μm square as one visual field, and the average value of these measured values was taken as the measured value of each crystal. The results are shown in Table 3.

そして、この切削工具を用いて下記の条件により、断続切削試験を行い、耐欠損性を評価した。
被削材 :ダクタイル鋳鉄8本溝入りスリーブ材(FCD700)
工具形状:CNMA120412
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:1.0mm
その他 :水溶性切削液使用
評価項目: 摩耗量が0.3mmとなった時の切削時間を測定した。また、切削直後、切削時間3分経過した後の切刃の状態をそれぞれ観察した。結果は表4に示した。
And the intermittent cutting test was done on condition of the following using this cutting tool, and fracture resistance was evaluated.
Work Material: Ductile Iron 8 Slotted Sleeve Material (FCD700)
Tool shape: CNMA120204
Cutting speed: 300 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 1.0mm
Others: Use of water-soluble cutting fluid Evaluation item: The cutting time when the amount of wear was 0.3 mm was measured. Moreover, the state of the cutting blade was observed immediately after cutting and after 3 minutes of cutting time. The results are shown in Table 4.

表1〜4より、試料No.9〜20では、切刃のαAl層が早期に剥離したため、摩耗の進行が早まり、十分な工具寿命を得ることができなかった。 From Tables 1-4, sample No. In Nos. 9 to 20, since the αAl 2 O 3 layer of the cutting edge peeled off early, the progress of wear was accelerated and a sufficient tool life could not be obtained.

これに対して、本発明のαAl層を成膜した試料1〜8では、切削評価においてαAl層の剥離や切刃チッピング、被削材の溶着が抑制され、耐摩耗性が優れた切削性能を有するものであった。 On the other hand, in samples 1 to 8 in which the αAl 2 O 3 layer of the present invention was formed, peeling of the αAl 2 O 3 layer, chipping of the cutting edge, and welding of the work material were suppressed in cutting evaluation, and wear resistance Has excellent cutting performance.

1 切削工具
2 基体
3 窒化チタン(TiN)層
4 炭窒化チタン(TiCN)層
5 中間層
6 α型結晶構造を有する酸化アルミニウム層(αAl層)
8 被覆層
11 すくい面
12 逃げ面
13 切刃
21 粗粒子
22 微粒子
23 中粒子
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Base | substrate 3 Titanium nitride (TiN) layer 4 Titanium carbonitride (TiCN) layer 5 Intermediate layer 6 Aluminum oxide layer (αAl 2 O 3 layer) having α-type crystal structure
8 Coating layer 11 Rake face 12 Flank face 13 Cutting edge 21 Coarse particles 22 Fine particles 23 Medium particles

Claims (2)

すくい面と逃げ面との交差稜線部が切刃を構成し、基体表面に、炭窒化チタン層とα型結晶構造を有する酸化アルミニウム層とを順に形成してなる切削工具において、前記すくい面において前記酸化アルミニウム層の表面を鏡面とした状態で電界放出型走査顕微鏡(FE−SEM)を用いて後方散乱電子回折像(EBSD)解析から前記酸化アルミニウム層の各結晶の結晶方位を特定し、これに基づいてカラーマップを作成して、(0,0,0,1)面、(1,0,−1,0)面または(0,1,−1,0)面のいずれの結晶方位に、より配向しているかを確認したとき、50〜90面積%が長径1μm〜3μmの粗粒子、0〜20面積%が長径0.5μmより大きくて1μmより小さい中粒子、10〜50面積%が長径0.05μm〜0.5μmの微粒子で構成され、かつ、前記粗粒子のうちの80面積%以上が(0,0,0,1)面の結晶方位に配向しているとともに、前記微粒子のうちの50面積%以上が(1,0,−1,0)面の結晶方位に配向していることを特徴とする切削工具。 In the cutting tool in which the intersecting ridge line portion of the rake face and the flank face constitutes a cutting edge, and a titanium carbonitride layer and an aluminum oxide layer having an α-type crystal structure are sequentially formed on the substrate surface, The crystal orientation of each crystal of the aluminum oxide layer is determined from backscattered electron diffraction image (EBSD) analysis using a field emission scanning microscope (FE-SEM) with the surface of the aluminum oxide layer as a mirror surface. A color map is created based on the above, and the crystal orientation of the (0, 0, 0, 1) plane, (1, 0, -1, 0) plane, or (0, 1, -1, 0) plane is set. When the orientation is confirmed , 50 to 90 area% is a coarse particle having a major axis of 1 μm to 3 μm, 0 to 20 area% is a middle particle having a major axis larger than 0.5 μm and smaller than 1 μm, 10 to 50 area% Is the major axis 0.05μm ~ 0.5μ And 80 area% or more of the coarse particles are oriented in the (0, 0, 0, 1) plane crystal orientation, and 50 area% or more of the fine particles are ( A cutting tool characterized by being oriented in the crystal orientation of the (1, 0, -1, 0) plane. 前記中粒子が存在する場合には、前記中粒子のうちの50面積%以上が(0,1,−1,0)面の結晶方位に配向していることを特徴とする請求項1に記載の切削工具。   2. When the medium particles are present, 50% by area or more of the medium particles are oriented in a (0, 1, -1, 0) plane crystal orientation. Cutting tools.
JP2009055858A 2009-03-10 2009-03-10 Cutting tools Active JP5383259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055858A JP5383259B2 (en) 2009-03-10 2009-03-10 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055858A JP5383259B2 (en) 2009-03-10 2009-03-10 Cutting tools

Publications (2)

Publication Number Publication Date
JP2010207946A JP2010207946A (en) 2010-09-24
JP5383259B2 true JP5383259B2 (en) 2014-01-08

Family

ID=42968697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055858A Active JP5383259B2 (en) 2009-03-10 2009-03-10 Cutting tools

Country Status (1)

Country Link
JP (1) JP5383259B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311940B1 (en) * 2015-08-28 2019-02-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
KR102027028B1 (en) 2015-08-28 2019-09-30 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated cutting tool
JP6507457B2 (en) * 2016-01-08 2019-05-08 住友電工ハードメタル株式会社 Method of manufacturing surface coated cutting tool
US11241743B2 (en) 2017-06-29 2022-02-08 Kyocera Corporation Coated tool, cutting tool, and method for manufacturing machined product
WO2020079894A1 (en) 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 Cutting tool
KR102531904B1 (en) * 2018-10-15 2023-05-11 스미또모 덴꼬오 하드메탈 가부시끼가이샤 cutting tool
EP3871814A4 (en) * 2019-02-19 2021-09-08 Sumitomo Electric Hardmetal Corp. Cutting tool
JP7274107B2 (en) * 2021-04-12 2023-05-16 株式会社タンガロイ coated cutting tools

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
EP1905870A3 (en) * 2006-09-27 2008-05-14 Seco Tools Ab Alumina layer with enhanced texture

Also Published As

Publication number Publication date
JP2010207946A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5111600B2 (en) Surface covering member and cutting tool
JP5383259B2 (en) Cutting tools
JP4711714B2 (en) Surface coated cutting tool
JP5841170B2 (en) Coated tool
JP5890594B2 (en) Coated tool
JP5317722B2 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
JP5902865B2 (en) Coated tool
KR20120128595A (en) Surface-coated cutting tool and manufacturing method thereof
JP5683190B2 (en) Surface covering member
JP5918457B1 (en) Coated tool
JP2012196726A (en) Cutting tool
JP2010253594A (en) Surface coated tool
JP2012144766A (en) Coated member
JP4142955B2 (en) Surface coated cutting tool
JP6522985B2 (en) Coated tools
JP2015085417A (en) Coated tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP5898394B1 (en) Coated tool
JP4845490B2 (en) Surface coated cutting tool
CN113165083B (en) Coated cutting tool and cutting tool provided with same
JP6130204B2 (en) Cutting tools
JP3347031B2 (en) Titanium carbide coated tool
JP4936741B2 (en) Surface coating tools and cutting tools
JP5822780B2 (en) Cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150