JP5682217B2 - Surface coated drill with excellent wear resistance and chip evacuation - Google Patents

Surface coated drill with excellent wear resistance and chip evacuation Download PDF

Info

Publication number
JP5682217B2
JP5682217B2 JP2010229403A JP2010229403A JP5682217B2 JP 5682217 B2 JP5682217 B2 JP 5682217B2 JP 2010229403 A JP2010229403 A JP 2010229403A JP 2010229403 A JP2010229403 A JP 2010229403A JP 5682217 B2 JP5682217 B2 JP 5682217B2
Authority
JP
Japan
Prior art keywords
drill
tip
layer
coated
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010229403A
Other languages
Japanese (ja)
Other versions
JP2012030346A (en
Inventor
田中 耕一
耕一 田中
田中 裕介
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010229403A priority Critical patent/JP5682217B2/en
Priority to CN201110194062.7A priority patent/CN102371379B/en
Publication of JP2012030346A publication Critical patent/JP2012030346A/en
Application granted granted Critical
Publication of JP5682217B2 publication Critical patent/JP5682217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、ドリル本体の先端部外周に切屑排出溝が形成されるとともに、この切屑排出溝のドリル回転方向を向く内周面の先端に切刃が設けられ、主として金属材よりなる加工物に穴明け加工をするのに用いられるドリルに関するものである。   In the present invention, a chip discharge groove is formed on the outer periphery of the tip of the drill body, and a cutting edge is provided at the tip of the inner peripheral surface of the chip discharge groove facing the drill rotation direction. The present invention relates to a drill used for drilling.

このようなドリルとしては、軸線を中心として該軸線回りにドリル回転方向に回転される概略円柱状のドリル本体の先端側が切刃部とされ、この切刃部の外周に一対の切屑排出溝が、軸線に関して互いに対称となるように、該切刃部の先端面、すなわちドリル本体の先端逃げ面から後端側に向かうに従い軸線回りにドリル回転方向の後方側に捩れる螺旋状に形成され、これらの切屑排出溝の内周面のうちドリル回転方向を向く部分の先端側の前記先端逃げ面との交差稜線部に切刃が形成された、いわゆる2枚刃のソリッドドリルが知られている。従って、このようなソリッドドリルでは、前記切屑排出溝内周面のドリル回転方向を向く部分の先端側がこの切刃のすくい面となり、切刃によって生成された切屑は、このすくい面から切屑排出溝の内周面を摺接しつつ、該切屑排出溝の捩れによって後端側に送り出されて排出されることとなる。そして、さらにこのようなドリルでは、ドリル本体の耐摩耗性の向上のために種々の方法が採用されている。   As such a drill, the tip side of a substantially cylindrical drill body rotated about the axis in the rotation direction of the drill is a cutting blade portion, and a pair of chip discharge grooves are formed on the outer periphery of the cutting blade portion. In order to be symmetrical with respect to the axis, the tip of the cutting edge, that is, a spiral that twists toward the rear side in the drill rotation direction around the axis as it goes from the tip flank of the drill body toward the rear end, A so-called two-blade solid drill is known in which a cutting edge is formed at an intersecting ridge line portion with the tip flank on the tip side of the inner circumferential surface of these chip discharge grooves facing the rotation direction of the drill. . Therefore, in such a solid drill, the tip side of the inner peripheral surface of the chip discharge groove facing the drill rotation direction is the rake face of the cutting blade, and the chips generated by the cutting blade are transferred from the rake face to the chip discharge groove. While being in sliding contact with the inner peripheral surface of the metal, it is sent to the rear end side by the twist of the chip discharge groove and discharged. Further, in such a drill, various methods are employed for improving the wear resistance of the drill body.

例えば、特許文献1においては、一般式(M,Al)(C,N)(Mは、4,5,6族元素、Siおよび希土類元素から選ばれる少なくとも1種の金属元素を示す。)で表される被覆層を2層積層し、前記被覆層のうち、基体表面に被覆された第1被覆層は、層厚が0.1〜1μmで平均結晶径が0.01〜0.1μmの粒状結晶にて構成され、前記被覆層のうち、第1被覆層の表面に被覆された第2被覆層は、層厚が0.5〜5μmで前記基体に対して垂直な方向に成長した柱状結晶からなり、該柱状結晶の前記基体に対して平行な方向の平均結晶幅が0.05〜0.3μmであり、かつ、前記第2被覆層の平均結晶幅が前記第1被覆層の平均結晶径より大きい表面被覆工具が開示されている。   For example, in Patent Document 1, represented by the general formula (M, Al) (C, N) (M represents at least one metal element selected from Group 4, 5, 6 elements, Si, and rare earth elements). Two coating layers represented are laminated, and among the coating layers, the first coating layer coated on the substrate surface has a layer thickness of 0.1 to 1 μm and an average crystal diameter of 0.01 to 0.1 μm. The second coating layer composed of granular crystals and coated on the surface of the first coating layer is a columnar shape having a layer thickness of 0.5 to 5 μm and growing in a direction perpendicular to the substrate. An average crystal width of the columnar crystal in a direction parallel to the base body is 0.05 to 0.3 μm, and an average crystal width of the second coating layer is an average of the first coating layer A surface coated tool larger than the crystal diameter is disclosed.

また、特許文献2においては、5〜50nmの厚さの粒状TiN層の上に1〜8μmの厚さの柱状TiCN層を形成した表面被覆切削工具が開示されている。   Patent Document 2 discloses a surface-coated cutting tool in which a columnar TiCN layer having a thickness of 1 to 8 μm is formed on a granular TiN layer having a thickness of 5 to 50 nm.

また、特許文献3においては、切刃の外周端から後端側に向けて切刃の外径Dに対して3D以内の長さの範囲まで硬質被膜を被覆したドリルが開示されている。   Patent Document 3 discloses a drill in which a hard coating is applied to a length within 3D with respect to the outer diameter D of the cutting edge from the outer peripheral end to the rear end side of the cutting edge.

また、特許文献4においては、ドリル本体の先端部の表面には硬質被膜を被覆し、さらに切屑排出溝の内周面には、硬質被膜を被覆した後にポリッシュ加工を施したドリルが開示されている。   Patent Document 4 discloses a drill in which a hard coating is applied to the surface of the tip of the drill body, and the inner peripheral surface of the chip discharge groove is coated with a hard coating and then polished. Yes.

また、特許文献5においては、硬質被覆層のうち、切屑排出溝の領域を研磨し母材を露出したドリルが開示されている。   Patent Document 5 discloses a drill in which a chip discharge groove region of a hard coating layer is polished to expose a base material.

国際公開第2007/111301号パンフレットInternational Publication No. 2007/111301 Pamphlet 特開平6−108254号公報JP-A-6-108254 特開2003−275909号公報JP 2003-275909 A 特開2003−275910号公報JP 2003-275910 A 特開平8−174341号公報JP-A-8-174341

近年のドリル加工装置のFA化はめざましく、加えてドリル加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の深穴用ドリル加工が要求される傾向にあるが、前記従来表面被覆ドリルにおいては、各種の鋼や鋳鉄を通常条件下でドリル加工した場合に特段の問題は生じないが、耐摩耗性が必要とされるとともに切屑がドリルの切屑排出溝につまり易い、高送り・乾式の深穴用ドリル加工に用いた場合には、切屑排出溝に切屑がつまり易く、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a dramatic increase in the use of FA for drilling equipment, and in addition, there is a strong demand for labor saving, energy saving, cost reduction, and efficiency for drilling, and accordingly, for high-efficiency deep holes such as high feed and high cutting. Although there is a tendency to require drilling, the conventional surface-coated drill does not cause any particular problems when various steels and cast irons are drilled under normal conditions, but wear resistance is required. At the same time, when used for drilling for high-feed, dry-type deep holes, where chips are easily clogged in the drill chip discharge groove, chips are easily clogged in the chip discharge groove, resulting in a relatively short service life. This is the current situation.

そこで、本発明者らは、前述のような観点から、高送り・乾式の深穴用ドリル加工に用いられた場合にも優れた耐摩耗性と切屑排出性を示し表面被覆ドリルの長寿命化を図るべく、ドリル表面を、例えば、(Ti1−xAl)N{但し、は原子比で、≦x≦0.6}の成分系からなる硬質被覆層で構成するとともに、該硬質被膜層の結晶粒組織に着目し鋭意研究を行った結果、次のような知見を得た。
In view of the above, the present inventors, from the above viewpoint, show excellent wear resistance and chip evacuation even when used in high-feed, dry-type deep hole drilling, extending the life of surface-coated drills. In order to achieve this, the drill surface is composed of, for example, a hard coating layer composed of a component system of (Ti 1-x Al x ) N { where x is an atomic ratio and 0 ≦ x ≦ 0.6}, As a result of intensive studies focusing on the crystal grain structure of the hard coating layer, the following findings were obtained.

(a)硬質被覆層として、例えば(Ti1−xAl)N{但し、は原子比で、≦x≦0.6}の成分系からなる層の形成を、例えば、図1の概略説明図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置にドリル基体を装着し、例えば、
工具基体温度:360℃以上450℃以下
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:8kW以上13kW以下
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:7kW以上10kW以下
反応ガス流量:窒素(N)ガス 80sccm以上100sccm以下
放電ガス:アルゴン(Ar)ガス 40sccm以上50sccm以下
ドリル基体に印加する直流バイアス電圧:+3V以上+10V以下
という特定の条件下で、かつ、ドリル基体上での成膜速度がドリル基体の先端からの距離に沿って漸次増加するように調整された成膜条件で反応性蒸着形成した場合、この結果形成された硬質被覆層を備えた表面被覆ドリルは、従来の表面被覆ドリルに比して、高速・乾式の深穴加工において、すぐれた耐摩耗性および切屑排出性を示すことを見出した。
(A) As the hard coating layer, for example, (Ti 1-x Al x ) N { where x is an atomic ratio and 0 ≦ x ≦ 0.6} is formed, for example, as shown in FIG. A drill base is mounted on an ion plating apparatus using a pressure gradient type Ar plasma gun, which is one type of physical vapor deposition apparatus shown in the schematic explanatory diagram.
Tool substrate temperature: 360 ° C. or higher and 450 ° C. or lower ,
Evaporation source 1: metal Ti,
Plasma gun discharge power with respect to the evaporation source 1: 8 kW or more 13kW less,
Evaporation source 2: Metal Al,
Plasma gun discharge power with respect to the evaporation source 2: 7 kW or more 10kW less,
Reaction gas flow rate: Nitrogen (N 2 ) gas 80 sccm or more and 100 sccm or less ,
Discharge gas: Argon (Ar) gas 40 sccm or more and 50 sccm or less ,
DC bias voltage applied to the drill base: +3 V or more and +10 V or less ,
This is the result of reactive deposition when the deposition rate is adjusted so that the deposition rate on the drill base increases gradually along the distance from the tip of the drill base. It has been found that the surface-coated drill having the hard coating layer is superior in wear resistance and chip evacuation in high-speed and dry-type deep hole drilling as compared with the conventional surface-coated drill.

(b)前記硬質被覆層の断面組織を透過型電子顕微鏡で観察したところ、図2の断面斜視図に示すように、層厚方向の縦断面においては、ドリル先端部で、ドリル基体表面に対して直立方向に成長した柱状晶の結晶粒が形成され、また、結晶粒の平均アスペクト比が、ドリル先端からドリル基体の長さ方向に沿ってドリル直径の5倍の長さまでの領域において、ドリル先端から後方に向けて、1以上100以下の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることを確認した。
(B) The cross-sectional structure of the hard coating layer was observed with a transmission electron microscope. As shown in the cross-sectional perspective view of FIG. In the region where the columnar crystal grains grown in the upright direction are formed, and the average aspect ratio of the crystal grains is from the tip of the drill to the length of 5 times the drill diameter along the length of the drill base. from the tip to the rear, gradually decreases in a range of 1 to 100, inclusive, and 2 times the average aspect ratio of the average aspect ratio from the drill tip in the 0.01 times the position of the diameter at 5 times the position of the diameter It was confirmed that this is the case.

(c)そして、表面被覆ドリルの硬質被覆層を、前記結晶粒組織を持つ硬質被覆層(以下、粒径制御層)で構成すると以下のような効果を発揮する。すなわち、逃げ面の先端部は高熱・高負荷がかかるため、柱状晶の皮膜にて構成し、高い耐摩耗性を実現する。さらに、切屑排出溝のうち、熱的・力学的負荷が大きい先端部には耐摩耗性を実現する柱状晶を、一方、切屑が送られにくくなる後方部には低すべり抵抗を長期間にわたり維持する粒状晶を導入し、かつ、それらが切屑排出溝に沿って漸次変化することで長時間に亘り切屑を排出する機構を実現し、高速・乾式の深穴加工においても耐摩耗性を維持したまま切屑排出性を高めることができることを見出したのである。 (C) When the hard coating layer of the surface coating drill is composed of the hard coating layer having the crystal grain structure (hereinafter referred to as a particle size control layer), the following effects are exhibited. That is, since the tip of the flank is subjected to high heat and high load, it is composed of a columnar crystal film to achieve high wear resistance. Furthermore, in the chip discharge groove, the columnar crystal that realizes wear resistance is provided at the tip part where the thermal and mechanical loads are large, while the low slip resistance is maintained for a long time in the rear part where the chip is difficult to be sent. Introducing granular crystals that gradually change along the chip discharge grooves, realizing a mechanism for discharging chips over a long period of time, and maintaining wear resistance even in high-speed, dry deep hole machining It was found that the chip discharging performance can be improved.

本発明は、前記知見に基づいてなされたものであって、
「(1)超硬合金焼結体あるいは立方晶窒化硼素焼結体あるいはサーメットあるいは高速度鋼からなるドリル基体の上に、直接または中間層を介し、最表面に粒径制御層として(Ti1−xAl)N{但し、は原子比で、≦x≦0.6}の成分系からなる層厚0.2μm以上5μm以下の硬質被覆層が存在する表面被覆ドリルにおいて、
前記ドリル先端部の逃げ面の皮膜断面の結晶粒形状を観察したとき、粒径制御層を構成する結晶粒が幅10nm以上100nm以下、高さ0.2μm以上1.5μm以下の柱状晶からなり、かつ、
前記ドリルの切屑排出溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、被膜断面の結晶粒形状を観察した際、粒径制御層を構成する結晶粒の平均アスペクト比が、ドリル先端から後方に向けて、1以上100以下の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることを特徴とする優れた耐摩耗性と切屑排出性を長期に亘り発揮する表面被覆ドリル。
(2)前記粒径制御層の層厚が、最もドリル先端に近い位置から後方にかけて、0.2μm以上5.0μm以下の範囲で漸次増加することを特徴とする(1)に記載の表面被覆ドリル。
(3)前記中間層が、Tiの窒化物または炭化物、炭窒化物、またはTiとAlからなる複合窒化物、TiとAlとSiからなる複合窒化物、CrとAlからなる複合窒化物のうち、いずれかの単層または複数の層からなる積層構造を有し、層厚5μm以下であることを特徴とする(1)または(2)に記載の表面被覆ドリル。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) A cemented carbide sintered body, a cubic boron nitride sintered body, a cermet, or a drill base made of high-speed steel is directly or via an intermediate layer as a particle size control layer (Ti 1 -x Al x) N {where, x is an atomic ratio, 0 ≦ x ≦ 0.6} in the surface-coated drills thickness 0.2 [mu] m or more 5μm or less of the hard coating layer is present comprising a component system,
When observing the grain shape of the film cross section of the clearance surface of the drill point, the following 100nm grain width 10 nm or more that constitute the grain diameter control layer, the following columnar crystals height 0.2 [mu] m or more 1.5μm And consisting of
The crystal grains constituting the grain size control layer when the crystal grain shape of the cross section of the coating is observed in a region from the tip to the length of 5 times the diameter along the length of the drill base in the chip discharge groove of the drill the average aspect ratio is, from the drill tip to the rear, and gradually decreases in the range of 1 to 100, inclusive, and 5 times the position of the average aspect ratio of diameter from the drill tip in the 0.01 times the position of the diameter A surface-coated drill that exhibits excellent wear resistance and chip evacuation over a long period of time, characterized by having an average aspect ratio of 2 times or more.
(2) the layer thickness of the grain diameter control layer, to the rear from a position closest to the drill tip, the surface having the constitution that gradually increases in a range of 0.2 [mu] m or more 5.0μm or less (1) Covered drill.
(3) Among the nitrides or carbides of Ti, carbonitrides, composite nitrides composed of Ti and Al, composite nitrides composed of Ti, Al and Si, and composite nitrides composed of Cr and Al The surface-coated drill according to (1) or (2), wherein the surface-coated drill has a laminated structure composed of any single layer or a plurality of layers and has a layer thickness of 5 μm or less. "
It has the characteristics.

本発明について、以下に説明する。
なお、以下の説明においては、「α以上β以下」という表現を、「α〜β」と略記する。
The present invention will be described below.
In the following description, the expression “α to β” is abbreviated as “α to β”.

本発明の表面被覆ドリルの硬質被覆層を構成する粒径制御層において、ドリル先端部の逃げ面の皮膜断面の結晶粒形状を観察した時、粒径制御層を構成する結晶粒が幅10〜100nm、高さ0.2〜1.5μmの柱状晶とする。ここで、幅が10nm未満では強度維持が困難であり、100nmを超えると粗大になり欠損の原因となるため、幅は10〜100nmと定めた。また、高さが0.2μm未満では耐摩耗性が足りず、1.5μmを超えると残留応力による欠損が生じやすくなり、十分な工具性能を発揮できないため、高さは0.2〜1.5μmと定めた。また、組成を(Ti1−xAl)Nとした時の組成比x(但し、原子比)の値が0.6を超えると結晶構造が変化し所望の構造を得られないため、xの値を0.6以下と定めた。
そして、本発明者らは、粒径制御層を蒸着形成するための数多くの試験を行った結果、圧力勾配型プラズマガンを用いて、Arプラズマを原料が入ったハースに照射して蒸発させ、基板上に皮膜を物理蒸着させる反応性蒸着法を用いて、ドリル基体上での成膜速度がドリル基体の先端からの距離に沿って漸次増加するように調整された成膜条件で反応性蒸着を行うと、ドリルの切屑排出溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、被膜断面の結晶粒形状を観察した際、図2に示す通り、ドリル先端部では、粒径制御層が、幅10〜100nm、高さが層厚相当となる高アスペクト比の柱状晶によって構成される一方で、例えば、ドリル基体の切屑排出溝のうち、ドリル先端から直径の5倍の位置においては、粒径制御層が、アスペクト比の低い粒状の結晶粒によって構成されており、かつ、そのアスペクト比がドリル先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、1〜100の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることを見出した。
In the grain size control layer constituting the hard coating layer of the surface-coated drill of the present invention, when the crystal grain shape of the film cross section of the flank surface of the drill tip is observed, the grain constituting the grain size control layer has a width of 10 to 10. The columnar crystals are 100 nm and 0.2 to 1.5 μm in height. Here, if the width is less than 10 nm, it is difficult to maintain the strength, and if it exceeds 100 nm, the width becomes coarse and causes defects, so the width is determined to be 10 to 100 nm. Further, if the height is less than 0.2 μm, the wear resistance is insufficient, and if it exceeds 1.5 μm , defects due to residual stress are likely to occur and sufficient tool performance cannot be exhibited, so the height is 0.2 to 1. It was set to 5 μm. Further, when the composition ratio x (however, the atomic ratio) when the composition is (Ti 1-x Al x ) N exceeds 0.6, the crystal structure changes and a desired structure cannot be obtained. Was determined to be 0.6 or less.
And, as a result of conducting numerous tests for forming a particle size control layer, the present inventors used a pressure gradient type plasma gun to irradiate a hearth containing raw materials to evaporate, Reactive vapor deposition under reactive film deposition conditions adjusted so that the film deposition rate on the drill base gradually increases along the distance from the tip of the drill base using a reactive vapor deposition method that physically deposits the film on the substrate When the crystal grain shape of the coating cross section is observed in the region from the tip to the length of 5 times the diameter along the length of the drill base in the chip discharge groove of the drill, as shown in FIG. At the drill tip, the particle size control layer is composed of columnar crystals having a high aspect ratio with a width of 10 to 100 nm and a height corresponding to the layer thickness. For example, in the chip discharge groove of the drill base, the drill tip To 5 times the diameter In particular, the grain size control layer is composed of granular crystal grains having a low aspect ratio, and the aspect ratio is in a region from the tip of the drill to the length of 5 times the diameter along the length of the drill base. It was found that the average aspect ratio at a position 0.01 times the diameter from the drill tip was more than twice the average aspect ratio at a position 5 times the diameter. .

なお、ここでいう「アスペクト比」とは、個々の結晶粒の測定された最大径を示す線分である長辺の値を、長辺に対して垂直方向の最小径を示す短辺の値で除した値である。
また、「先端からドリル基体の長さに沿って直径の5倍の長さまでの領域」とは、ドリルの中心軸と平行にドリル切れ刃部先端を起点に後方すなわちシャンクの方向へ計測して、ドリルの中心軸に垂直な平面内の最大直径の5倍の長さまでの領域をいう。
また、結晶粒の「幅」とは粒径制御層を断面から観察した際に、ドリル基材と略平行に、膜厚の2分の1の高さに引いた長さ10μmの線分が結晶粒界によって区分される、線分の両端を除いた区分のそれぞれの長さの平均値を指す。
また、結晶粒の「高さ」とは粒径制御層を断面から観察した際に、ドリル基材と略平行な線分に対して垂直に、0.1μmの間隔で引いた10本の、長さ膜厚相当の線分が結晶粒界によって区分される、各線分の両端を除いた区分のそれぞれの長さの平均値を指す。
なお、「アスペクト比がドリル先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、1〜100の範囲で漸次減少する」とは、特定位置を中心として幅1mmの領域の中の任意の点において前記内容により定義された数値が、特定位置からドリル先端方向へ少なくとも5mmを超えて離れた位置を中心として幅1mmの領域の中の任意の点において同様に定義された数値よりも小さいこと、を指す。すなわち、前記条件を満たすならば、例えば、前記幅1mmの領域中で結晶粒のアスペクト比が漸次減少していなくとも、本発明の範囲を外れるものではない。
As used herein, “aspect ratio” refers to the value of the long side that is the line segment indicating the measured maximum diameter of each crystal grain, and the value of the short side that indicates the minimum diameter in the direction perpendicular to the long side. The value divided by.
In addition, the “region from the tip to the length of 5 times the diameter along the length of the drill base” is measured in the direction of the back, that is, in the direction of the shank, starting from the tip of the drill cutting edge parallel to the center axis of the drill. , A region up to 5 times the maximum diameter in a plane perpendicular to the center axis of the drill.
Further, the “width” of the crystal grain is a line segment having a length of 10 μm drawn to a height of one half of the film thickness substantially parallel to the drill base when the grain size control layer is observed from the cross section. It means the average value of the length of each section, excluding both ends of the line segment, divided by grain boundaries.
In addition, the “height” of the crystal grains means that 10 grains drawn at an interval of 0.1 μm perpendicular to a line segment substantially parallel to the drill base when the grain size control layer is observed from a cross section. This refers to the average value of the lengths of the segments excluding both ends of each line segment, in which the line segments corresponding to the length film thickness are segmented by the crystal grain boundaries.
Note that “the aspect ratio gradually decreases in the range of 1 to 100 in the region from the tip of the drill to the length of 5 times the diameter along the length of the drill base” means a region having a width of 1 mm around the specific position. The numerical value defined by the above-mentioned content at any point in the circle is similarly defined at any point in the region having a width of 1 mm centering on a position away from the specific position by at least 5 mm toward the drill tip. It is smaller than the numerical value. That is, as long as the above condition is satisfied, for example, even if the aspect ratio of the crystal grains is not gradually decreased in the region having a width of 1 mm, it does not depart from the scope of the present invention.

本発明の表面被覆ドリルは、超硬合金焼結体あるいは立方晶窒化硼素焼結体あるいはサーメットあるいは高速度鋼からなるドリル基体の上に直接またはTiの窒化物または炭化物、炭窒化物、またはTiとAlからなる複合窒化物、TiとAlとSiからなる複合窒化物、CrとAlからなる複合窒化物のうち、いずれかの単層または複数の層からなる積層構造を有する層厚5μm以下の中間層を介し、最表面に粒径制御層として(Ti1−xAl)N{但し、は原子比で、≦x≦0.6}の成分系からなる層厚0.2〜5μmの硬質被覆層が存在する表面被覆ドリルであって、ドリル先端部の逃げ面の皮膜断面の結晶粒形状を観察したとき、粒径制御層を構成する結晶粒が幅10〜100nm、高さ0.2〜1.5μmの柱状晶からなり、かつ、
ドリルの切屑排出溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、被膜断面の結晶粒形状を観察した際、粒径制御層を構成する結晶粒の平均アスペクト比が、ドリル先端から後方に向けて、1〜100の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることから、優れた耐摩耗性と切屑排出性が実現できる。
The surface-coated drill according to the present invention is directly or directly on a drill base made of cemented carbide sintered body, cubic boron nitride sintered body, cermet or high-speed steel, Ti nitride or carbide, carbonitride, or Ti. And a composite nitride composed of Ti, Al and Si, a composite nitride composed of Cr and Al, and a layered structure composed of any single layer or a plurality of layers, and having a layer thickness of 5 μm or less via an intermediate layer, as the grain diameter control layer on the outermost surface (Ti 1-x Al x) N { where, x is an atomic ratio, 0 ≦ x ≦ 0.6} thickness 0.2 consisting of component systems A surface-coated drill having a hard coating layer of 5 μm, and when the crystal grain shape of the film cross section of the flank face of the drill tip is observed, the crystal grains constituting the grain size control layer are 10 to 100 nm in width and height 0.2-1.5 μm columnar crystals Rannahli and,
When the crystal grain shape of the cross section of the coating is observed in the region from the tip to the length of 5 times the diameter along the length of the drill base in the chip discharge groove of the drill, The average aspect ratio gradually decreases in the range of 1 to 100 from the drill tip to the rear, and the average aspect ratio at a position 0.01 times the diameter from the drill tip is an average at a position five times the diameter. Since it is more than twice the aspect ratio, excellent wear resistance and chip discharge can be realized.

本発明の表面被覆ドリルの硬質被覆層(粒径制御層)を蒸着形成するための圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示す。The schematic diagram of the ion plating apparatus using the pressure gradient type Ar plasma gun for carrying out vapor deposition formation of the hard coating layer (particle size control layer) of the surface coating drill of the present invention is shown. 本発明の表面被覆ドリルの硬質被覆層(粒径制御層)の断面斜視図を示す。The cross-sectional perspective view of the hard coating layer (particle size control layer) of the surface coating drill of this invention is shown.

つぎに、本発明の表面被覆ドリルを実施例により具体的に説明する。   Next, the surface-coated drill of the present invention will be specifically described with reference to examples.

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製のドリル基体D−1〜D−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 1 is added to the compounding composition shown in FIG. 1, and a wax is further added, followed by ball mill mixing in acetone for 24 hours, drying under reduced pressure, and then press-molding into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round sintered body for forming a tool base is formed, and further, a diameter x length of the groove forming part is 8 mm x 48 mm and a twist angle is 30 degrees by grinding from the round bar sintered body. WC-based cemented carbide drill with two-blade shape Body D-1 to D-4 were prepared, respectively.

ついで、これらのドリル基体D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、図1の概略図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、
工具基体温度:360〜450℃、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:8〜13kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:7〜10kW、
反応ガス流量:窒素(N)ガス 80〜100sccm、
放電ガス:アルゴン(Ar)ガス 40〜50sccm、
ドリル基体に印加する直流バイアス電圧:+3〜+10V、
という特定の条件(表2)下、ドリル基体上での成膜速度がドリル基体の先端からの距離に沿って漸次増加するように調整する目的で、ドリル基体を、例えば、図1に示すように、ドリル基体の先端部を水平から上方に向け、かつ、ハース載置平面の鉛直方向の軸に対して、25度の角度を保ったまま自転させると同時に、該鉛直方向の軸を回転中心軸として公転させながら反応性蒸着をして、表3に示される組成および組織を有する改質粒径制御層を形成した本発明表面被覆ドリル1〜13をそれぞれ製造した。
Next, the cutting blades of these drill bases D-1 to D-4 are honed, ultrasonically cleaned in acetone, and dried, with one type of physical vapor deposition apparatus shown in the schematic diagram of FIG. Attached to an ion plating device using a certain pressure gradient type Ar plasma gun,
Tool substrate temperature: 360 to 450 ° C.
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 8 to 13 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 7 to 10 kW,
Reaction gas flow rate: Nitrogen (N 2 ) gas 80-100 sccm,
Discharge gas: Argon (Ar) gas 40-50 sccm,
DC bias voltage applied to the drill base: +3 to +10 V,
For the purpose of adjusting the film formation rate on the drill base to gradually increase along the distance from the tip of the drill base under the specific conditions (Table 2), the drill base is, for example, as shown in FIG. In addition, the tip of the drill base is rotated from the horizontal to the upper side while maintaining the angle of 25 degrees with respect to the vertical axis of the hearth mounting plane, and at the same time, the vertical axis is rotated at the center of rotation. Reactive vapor deposition was performed while revolving as a shaft, and surface-coated drills 1 to 13 of the present invention each having a modified particle size control layer having the composition and structure shown in Table 3 were produced.

また、比較の目的で、前記ドリル基体D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置にドリル基体の全域に亘って均一な硬質被覆層が形成する目的で、ドリル基体を、ハース載置平面と平行を保ったまま自転させる(図示せず)と同時に、該鉛直方向の軸を回転中心軸として公転させながら反応性蒸着をして、ドリル基体D−1〜D−4の表面に、表4に示される均一な組成および組織を有する従来層を形成した比較表面被覆ドリル1〜11をそれぞれ製造した。   For the purpose of comparison, the surface of the drill base D-1 to D-4 is subjected to honing, ultrasonically cleaned in acetone and dried, and the pressure gradient type Ar plasma gun shown in FIG. For the purpose of forming a uniform hard coating layer over the entire area of the drill base in the ion plating apparatus utilizing the above, the drill base is rotated while being kept parallel to the hearth mounting plane (not shown), Reactive vapor deposition was performed while revolving around the vertical axis as a rotation axis, and conventional layers having the uniform composition and structure shown in Table 4 were formed on the surfaces of the drill bases D-1 to D-4. Comparative surface-coated drills 1 to 11 were produced.

つぎに、前記本発明表面被覆ドリル1〜13および比較表面被覆ドリル1〜11について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、SCMN439の板材、
切削速度: 80m/min.、
送り: 0.25mm/rev.、
穴深さ: 20mm、
の条件での合金鋼の乾式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、50m/min.および0.12mm/rev.)、
を行い、先端切刃面の逃げ面摩耗幅が0.3mmに至るまで、若しくは工具の欠損に至るまでの穴あけ加工数を測定した。この測定結果を表3、4にそれぞれ示した。
Next, for the surface-coated drills 1 to 13 and the comparative surface-coated drills 1 to 11 of the present invention,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, SCMN439 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.25 mm / rev. ,
Hole depth: 20mm,
A dry high speed drilling test of alloy steel under the conditions of (normal cutting speed and feed are 50 m / min. And 0.12 mm / rev., Respectively),
Then, the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm, or until the tool chipped. The measurement results are shown in Tables 3 and 4, respectively.

Figure 0005682217
Figure 0005682217

Figure 0005682217
Figure 0005682217

Figure 0005682217
Figure 0005682217

Figure 0005682217
Figure 0005682217

この結果得られた本発明表面被覆ドリル1〜13の硬質被覆層を構成する改質粒径制御層、さらに、比較表面被覆ドリル1〜11の硬質被覆層を構成する従来層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the composition of the modified particle size control layer constituting the hard coating layer of the surface-coated drills 1 to 13 of the present invention and the conventional layer constituting the hard coating layer of the comparative surface-coated drills 1 to 11 were transmitted. When measured by energy dispersive X-ray analysis using a scanning electron microscope, each showed substantially the same composition as the target composition.

また、前記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表3、4に示される結果から、本発明表面被覆ドリルは、ドリル先端部の逃げ面の被膜断面の結晶粒形状を観察した時、粒径制御層を構成する結晶粒が幅10〜100nm、高さ0.2〜1.5μmの柱状晶からなり、かつ、ドリルの切屑排出溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、被膜断面の結晶粒形状を観察した際、粒径制御層を構成する結晶粒の平均アスペクト比が、ドリル先端から後方に向けて、1〜100の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることから、優れた耐摩耗性と切屑排出性が実現できる。
これに対して、硬質被覆層を構成する結晶粒の平均アスペクト比が、ドリル先端から後方に向けて変化しない従来層を有する比較表面被覆ドリルにおいては、切屑排出性が十分でないために、チッピング、欠損、剥離の発生等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3 and 4, when the surface-coated drill of the present invention observed the crystal grain shape of the coating cross section of the flank of the drill tip, the crystal grains constituting the grain size control layer had a width of 10 to 100 nm, A crystal having a cross-section of the coating in a region of a columnar crystal having a height of 0.2 to 1.5 μm, and in a chip discharge groove of the drill from the tip to a length of 5 times the diameter along the length of the drill base. When the grain shape was observed, the average aspect ratio of the crystal grains constituting the grain size control layer gradually decreased in the range of 1 to 100 from the drill tip to the rear, and the diameter of the average grain ratio from the drill tip to 0. Since the average aspect ratio at the position of 01 times is twice or more of the average aspect ratio at the position of 5 times the diameter, excellent wear resistance and chip discharge performance can be realized.
On the other hand, in the comparative surface-coated drill having a conventional layer in which the average aspect ratio of the crystal grains constituting the hard coating layer does not change from the drill tip to the rear, the chip dischargeability is not sufficient, It is clear that the service life is reached in a relatively short time due to the occurrence of defects and peeling.

前述のように、本発明の表面被覆ドリルは、硬質被覆層(粒径制御層)を構成する結晶粒の平均アスペクト比が、ドリル先端から後方に向けて、1〜100の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることから、優れた切屑排出性を備えており、そして、この優れた切屑排出性は、高送り・乾式の深穴用ドリル加工条件においても、長期間にわたり高い耐摩耗性を維持するものである。   As described above, in the surface-coated drill of the present invention, the average aspect ratio of the crystal grains constituting the hard coating layer (grain size control layer) gradually decreases in the range of 1 to 100 from the drill tip to the rear. In addition, since the average aspect ratio at a position 0.01 times the diameter from the drill tip is more than twice the average aspect ratio at a position 5 times the diameter, it has excellent chip evacuation, and This excellent chip discharging property maintains high wear resistance over a long period of time even in high feed / dry drilling conditions for deep holes.

Claims (3)

超硬合金焼結体あるいは立方晶窒化硼素焼結体あるいはサーメットあるいは高速度鋼からなるドリル基体の上に、直接または中間層を介し、最表面に粒径制御層として(Ti1−xAl)N{但し、は原子比で、≦x≦0.6}の成分系からなる層厚0.2μm以上5μm以下の硬質被覆層が存在する表面被覆ドリルにおいて、
前記ドリル先端部の逃げ面の皮膜断面の結晶粒形状を観察したとき、粒径制御層を構成する結晶粒が幅10nm以上100nm以下、高さ0.2μm以上1.5μm以下の柱状晶からなり、かつ、
前記ドリルの切屑排出溝のうち、先端からドリル基体の長さに沿って直径の5倍の長さまでの領域において、被膜断面の結晶粒形状を観察した際、粒径制御層を構成する結晶粒の平均アスペクト比が、ドリル先端から後方に向けて、1以上100以下の範囲で漸次減少し、かつ、ドリル先端部から直径の0.01倍の位置における平均アスペクト比が直径の5倍の位置における平均アスペクト比の2倍以上であることを特徴とする優れた耐摩耗性と切屑排出性を長期に亘り発揮する表面被覆ドリル。
On the drill base made of cemented carbide sintered body, cubic boron nitride sintered body, cermet or high speed steel, directly or through an intermediate layer, the outermost surface has a grain size control layer (Ti 1-x Al x ) N {where, x is an atomic ratio, 0 ≦ x ≦ 0.6} in the surface-coated drills thickness 0.2 [mu] m or more 5μm or less hard coating layer comprising a component system are present,
When observing the grain shape of the film cross-section of the flank of the drill point, the following 100nm grain width 10 nm or more that constitute the grain diameter control layer, the following columnar crystals height 0.2 [mu] m or more 1.5μm And consisting of
The crystal grains constituting the grain size control layer when the crystal grain shape of the cross section of the coating is observed in a region from the tip to the length of 5 times the diameter along the length of the drill base in the chip discharge groove of the drill the average aspect ratio is, from the drill tip to the rear, and gradually decreases in the range of 1 to 100, inclusive, and 5 times the position of the average aspect ratio of diameter from the drill tip in the 0.01 times the position of the diameter A surface-coated drill that exhibits excellent wear resistance and chip evacuation over a long period of time, characterized by having an average aspect ratio of 2 times or more.
前記粒径制御層の層厚が、最もドリル先端に近い位置から後方にかけて、0.2μm以上5.0μm以下の範囲で漸次増加することを特徴とする請求項1に記載の表面被覆ドリル。 2. The surface-coated drill according to claim 1, wherein the layer thickness of the particle size control layer gradually increases in a range of 0.2 μm or more and 5.0 μm or less from the position closest to the tip of the drill to the rear. 前記中間層が、Tiの窒化物または炭化物、炭窒化物、またはTiとAlからなる複合窒化物、TiとAlとSiからなる複合窒化物、CrとAlからなる複合窒化物のうち、いずれかの単層または複数の層からなる積層構造を有し、層厚5μm以下であることを特徴とする請求項1または2に記載の表面被覆ドリル。
The intermediate layer is any one of Ti nitride or carbide, carbonitride, composite nitride composed of Ti and Al, composite nitride composed of Ti, Al and Si, and composite nitride composed of Cr and Al. The surface-coated drill according to claim 1, wherein the surface-coated drill has a laminated structure composed of a single layer or a plurality of layers, and has a layer thickness of 5 μm or less.
JP2010229403A 2010-07-09 2010-10-12 Surface coated drill with excellent wear resistance and chip evacuation Expired - Fee Related JP5682217B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010229403A JP5682217B2 (en) 2010-07-09 2010-10-12 Surface coated drill with excellent wear resistance and chip evacuation
CN201110194062.7A CN102371379B (en) 2010-07-09 2011-07-07 The surface coated drill of mar proof and chip discharge excellence

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010156518 2010-07-09
JP2010156518 2010-07-09
JP2010229403A JP5682217B2 (en) 2010-07-09 2010-10-12 Surface coated drill with excellent wear resistance and chip evacuation

Publications (2)

Publication Number Publication Date
JP2012030346A JP2012030346A (en) 2012-02-16
JP5682217B2 true JP5682217B2 (en) 2015-03-11

Family

ID=45844400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229403A Expired - Fee Related JP5682217B2 (en) 2010-07-09 2010-10-12 Surface coated drill with excellent wear resistance and chip evacuation

Country Status (1)

Country Link
JP (1) JP5682217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344204B2 (en) 2012-03-05 2013-11-20 三菱マテリアル株式会社 Surface coated cutting tool
JP6090063B2 (en) * 2012-08-28 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833288B2 (en) * 1994-10-04 2006-10-11 住友電工ハードメタル株式会社 Coated hard alloy
JP3864284B2 (en) * 2002-03-15 2006-12-27 三菱マテリアル株式会社 Drill
JP2003275909A (en) * 2002-03-22 2003-09-30 Mitsubishi Materials Corp Drill
JP2003275910A (en) * 2002-03-22 2003-09-30 Mitsubishi Materials Corp Drill
JP4142955B2 (en) * 2003-01-14 2008-09-03 京セラ株式会社 Surface coated cutting tool
JP2005297145A (en) * 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp Surface-coated end mill and surface-coated drill
KR100600573B1 (en) * 2004-06-30 2006-07-13 한국야금 주식회사 Coating materials for a cutting tool/an abrasion resistance tool
JP4960149B2 (en) * 2007-05-29 2012-06-27 京セラ株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JP2012030346A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5344204B2 (en) Surface coated cutting tool
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5223743B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5440353B2 (en) Surface coated cutting tool
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP2015066644A (en) Surface-coated cutting tool with hard coating layer showing excellent wear resistance and chipping resistance in high-speed cutting work
JP5590332B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP6198002B2 (en) A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting.
JP5454788B2 (en) Surface coated cutting tool
JP5459618B2 (en) Surface coated cutting tool
JP5672444B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP2013116551A (en) Surface-coated tool excellent in oxidation resistance and wear resistance
JP2016064470A (en) Surface coat cutting tool excellent in chipping resistance and wear resistance
JP5892331B2 (en) Surface coated drill with excellent lubrication and wear resistance
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440350B2 (en) Surface coated cutting tool
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2016165788A (en) Surface-coated cutting tool
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP5499862B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP5861983B2 (en) Surface coated tool with excellent oxidation resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R150 Certificate of patent or registration of utility model

Ref document number: 5682217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees