JP2003275910A - Drill - Google Patents

Drill

Info

Publication number
JP2003275910A
JP2003275910A JP2002081975A JP2002081975A JP2003275910A JP 2003275910 A JP2003275910 A JP 2003275910A JP 2002081975 A JP2002081975 A JP 2002081975A JP 2002081975 A JP2002081975 A JP 2002081975A JP 2003275910 A JP2003275910 A JP 2003275910A
Authority
JP
Japan
Prior art keywords
drill
chip discharge
inner peripheral
peripheral surface
discharge groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002081975A
Other languages
Japanese (ja)
Inventor
Katsuyuki Suzuki
克征 鈴木
Masaharu Takiguchi
正治 滝口
Masayuki Mabuchi
雅行 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002081975A priority Critical patent/JP2003275910A/en
Publication of JP2003275910A publication Critical patent/JP2003275910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill free of breakage or the like by preventing occurrence of chip clogging even in the drill with a long cutting blade portion 2. <P>SOLUTION: This drill is provided with a chip evacuation slot 5 formed on an outer periphery of a tip part of a drill body 1 and a cutting edge 7 formed on an intersectional ridge line part between a rake face formed on an inner peripheral surface 6 of the chip evacuation slot 5 and a tip flank 4 of the drill body 1. The drill body 1 is coated with a hard film 11 on its surface of the tip part, and the inner peripheral surface 6 of the chip evacuation slot 5 is subjected to polish processing after being coated with the hard film 11. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ドリル本体の先端
部外周に切屑排出溝が形成されるとともに、この切屑排
出溝のドリル回転方向を向く内周面の先端に切刃が設け
られ、主として金属材よりなる加工物に穴明け加工をす
るのに用いられるドリルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly includes a chip discharge groove formed on the outer periphery of the tip of a drill body, and a cutting blade provided on the tip of the inner peripheral surface of the chip discharge groove facing the direction of rotation of the drill. The present invention relates to a drill used for drilling a workpiece made of a metal material.

【0002】[0002]

【従来の技術】このようなドリルとしては、軸線を中心
として該軸線回りにドリル回転方向に回転される概略円
柱状のドリル本体の先端側が切刃部とされ、この切刃部
の外周に一対の切屑排出溝が、軸線に関して互いに対称
となるように、該切刃部の先端面、すなわちドリル本体
の先端逃げ面から後端側に向かうに従い軸線回りにドリ
ル回転方向の後方側に捩れる螺旋状に形成され、これら
の切屑排出溝の内周面のうちドリル回転方向を向く部分
の先端側の上記先端逃げ面との交差稜線部に切刃が形成
された、いわゆる2枚刃のソリッドドリルが知られてい
る。従って、このようなソリッドドリルでは、上記切屑
排出溝内周面のドリル回転方向を向く部分の先端側がこ
の切刃のすくい面となり、切刃によって生成された切屑
は、このすくい面から切屑排出溝の内周面を摺接しつ
つ、該切屑排出溝の捩れによって後端側に送り出されて
排出されることとなる。そして、さらにこのようなドリ
ルでは、ドリル本体の耐摩耗性の向上のために上記切刃
部の表面全体にTiNやTiCN等の硬質被膜を被覆す
ることが行われている。
2. Description of the Related Art As such a drill, the tip side of a substantially cylindrical drill body which is rotated around the axis in the drill rotation direction is used as a cutting edge portion, and a pair of cutting edges is provided on the outer periphery of the cutting edge portion. A spiral that twists backward in the direction of rotation of the drill around the axis as it goes from the tip end surface of the cutting edge part, that is, the tip flank of the drill body toward the rear end side, so that the chip discharge grooves of are symmetrical with respect to the axis. So-called two-flute solid drill in which the cutting edge is formed in the ridge line intersecting with the tip flank on the tip side of the inner peripheral surface of the chip discharge groove facing the drill rotation direction. It has been known. Therefore, in such a solid drill, the tip side of the portion of the inner circumferential surface of the chip discharge groove facing the drill rotation direction is the rake face of this cutting blade, and the chips generated by the cutting blade are the chip discharge groove from this rake face. While slidably contacting the inner peripheral surface of the chip, the chip discharge groove is twisted so that it is sent out to the rear end side and discharged. Further, in such a drill, a hard coating such as TiN or TiCN is coated on the entire surface of the cutting edge portion in order to improve the wear resistance of the drill body.

【0003】[0003]

【発明が解決しようとする課題】ところで、近年このよ
うなソリッドのドリルにおいては、上記切刃の外径Dに
対してその切刃部の長さが10×D〜20×D、場合に
よっては25×Dにも及ぶものを用いて、従来はガンド
リルによって行われていた深穴の加工を、加工効率の向
上のためにこのようなソリッドドリルにより行うことが
多くなってきているが、このような切刃部長さが長くて
深穴加工を行うドリルでは、切刃によって生成された切
屑が上記切屑排出溝を通って排出される長さも長くなっ
てしまい、切屑詰まりが生じやすいという問題がある。
そして、さらに上述のように切刃部の表面全体に硬質被
膜を被覆したドリルでは、この切屑排出溝の内周面にも
該切刃部の全長に渡って硬質被膜が被覆されてしまうと
ころ、かかる硬質被膜は、その表面粗さが2〜4μmと
比較的粗く、そのような硬質被膜が被覆された切屑排出
溝の内周面を摺接しながら切屑が後端側に送り出される
ことにより、切屑排出抵抗が増大して切屑詰まりが一層
生じやすくなる。その一方で、切刃部長さが長くなるこ
とによってドリル本体の剛性や強度は損なわれがちとな
るため、上述のようなドリルにおいては、切屑詰まりに
よるドリルの折損が頻発してしまうおそれがあった。
By the way, in recent years, in such a solid drill, the length of the cutting edge portion is 10 × D to 20 × D with respect to the outer diameter D of the cutting edge, depending on the case. With the use of up to 25 × D, deep holes that were conventionally performed by gun drills are now more often performed by such solid drills in order to improve machining efficiency. With a drill that has a long cutting edge length and performs deep hole drilling, there is a problem that chips generated by the cutting blade are also discharged through the chip discharging groove for a long length, which easily causes chip clogging. .
Then, in the drill coated with a hard coating on the entire surface of the cutting edge portion as described above, where the hard coating is also coated over the entire length of the cutting edge portion on the inner peripheral surface of the chip discharging groove, Such a hard coating has a relatively rough surface roughness of 2 to 4 μm, and the chips are fed to the rear end side while slidingly contacting the inner peripheral surface of the chip discharge groove coated with such a hard coating, thereby cutting chips. Ejection resistance increases and chip clogging becomes more likely to occur. On the other hand, since the rigidity and strength of the drill body tends to be impaired due to the increased length of the cutting edge portion, in the above-described drill, breakage of the drill due to clogging of chips may frequently occur. .

【0004】本発明は、このような背景の下になされた
もので、上述のような切刃部の長いドリルにおいても、
切屑詰まりの発生を防いで折損等の生じることのないド
リルを提供することを目的としている。
The present invention has been made under such a background, and even in the drill having a long cutting edge portion as described above,
It is an object of the present invention to provide a drill that prevents clogging of chips and prevents breakage and the like.

【0005】[0005]

【課題を解決するための手段】上記課題を解決してこの
ような目的を達成するために、本発明は、ドリル本体の
先端部外周に切屑排出溝を形成し、この切屑排出溝の内
周面に形成されたすくい面と上記ドリル本体の先端逃げ
面との交差稜線部に切刃を形成するとともに、上記ドリ
ル本体の先端部の表面には硬質被膜を被覆し、さらに上
記切屑排出溝の内周面には、この硬質被膜を被覆した後
にポリッシュ加工を施したことを特徴とする。従って、
このようなドリルにおいては、表面粗さの粗い硬質被膜
を被覆した後に、切屑排出溝の内周面がポリッシュ加工
されてその表面が滑らかにされるので、切屑が摺接する
際の摩擦抵抗が少なく、スムーズに後端側に押し出され
て排出されるため、切屑詰まりが生じることがない。
In order to solve the above problems and to achieve such an object, the present invention forms a chip discharge groove on the outer periphery of the tip of a drill body, and the inner circumference of the chip discharge groove. While forming a cutting edge on the ridge portion where the rake face formed on the surface and the tip flank of the drill body, the surface of the tip portion of the drill body is coated with a hard coating, and further the chip discharge groove The inner peripheral surface is characterized by being coated with this hard coating and then subjected to polishing. Therefore,
In such a drill, after coating a hard coating with rough surface roughness, the inner peripheral surface of the chip discharge groove is polished and the surface is made smooth, so frictional resistance when the chips are in sliding contact is small. Since it is smoothly pushed to the rear end side and discharged, clogging of chips does not occur.

【0006】ここで、このようなポリッシュ加工は、ダ
イヤモンドペースト等の研磨剤を塗布したブラシによっ
て切屑排出溝の内周面を磨くことにより行われるが、こ
うしてポリッシュ加工が施された上記切屑排出溝の内周
面の表面粗さは、この切屑排出溝の延びる方向において
は0.5〜1.5μmの範囲に、内周面の周方向におい
ては1.0〜2.0μmの範囲にされるのが望ましい。
これは、表面粗さが上記範囲を上回るほど大きいと切屑
の摺接による摩擦低減効果が少なく、逆にこの範囲を下
回るほど表面粗さを小さくするには多大な時間と労力と
を要するからである。また、ポリッシュ加工が施された
上記切屑排出溝の内周面の表面粗さは、この切屑排出溝
の延びる方向に測った表面粗さが、上記内周面の周方向
に測った表面粗さよりも滑らかとされるのが望ましい。
Here, such polishing is performed by polishing the inner peripheral surface of the chip discharge groove with a brush coated with an abrasive such as diamond paste. The chip discharge groove thus polished is thus processed. The surface roughness of the inner peripheral surface is in the range of 0.5 to 1.5 μm in the extending direction of the chip discharge groove, and in the range of 1.0 to 2.0 μm in the peripheral direction of the inner peripheral surface. Is desirable.
This is because if the surface roughness is larger than the above range, the friction reducing effect due to the sliding contact of chips is small, and conversely, if the surface roughness is smaller than this range, it takes a lot of time and labor to reduce the surface roughness. is there. Further, the surface roughness of the inner peripheral surface of the chip discharge groove that has been subjected to polishing is such that the surface roughness measured in the extending direction of the chip discharge groove is more than the surface roughness measured in the circumferential direction of the inner peripheral surface. It is also desirable to be smooth.

【0007】[0007]

【発明の実施の形態】図1ないし図3は、本発明の一実
施形態を示すものである。本実施形態のドリルは、その
ドリル本体1が超硬合金等の硬質材料によって軸線Oを
中心とした概略円柱状をなし、その先端側(図1および
図2において左側)が切刃部2とされるとともに、後端
側(図1において右側)はシャンク部3とされている。
そして、この切刃部2の外周には、該ドリル本体1先端
の先端逃げ面4から後端側に向けてシャンク部3の直前
まで、軸線O方向に後方に向かうに従いドリル回転方向
Tの後方側に螺旋状に捩れる一対の切屑排出溝5,5が
軸線Oに関して互いに対称となるように形成され、この
切屑排出溝5の内周面6のうち先端のドリル回転方向T
側を向く部分がすくい面とされて、このすくい面と上記
先端逃げ面4との交差稜線部に切刃7が形成されてい
る。
1 to 3 show an embodiment of the present invention. In the drill of the present embodiment, the drill body 1 is made of a hard material such as cemented carbide and has a substantially cylindrical shape centered on the axis O, and its tip side (left side in FIGS. 1 and 2) is the cutting edge portion 2. The rear end side (right side in FIG. 1) is a shank portion 3.
Then, on the outer periphery of the cutting edge portion 2, from the tip flank 4 of the tip of the drill body 1 toward the rear end side to just before the shank portion 3, as it goes backward in the axis O direction, the rear side in the drill rotation direction T A pair of chip discharge grooves 5 and 5 spirally twisted to the side are formed so as to be symmetrical with respect to the axis O, and the tip end of the inner peripheral surface 6 of the chip discharge groove 5 is in the drill rotation direction T.
A portion facing the side is a rake face, and a cutting edge 7 is formed at a ridge line portion where the rake face and the tip flank 4 intersect.

【0008】なお、この切刃部2の軸線O方向の長さ
は、本実施形態では、切刃7の外周端が軸線O回りにな
す円の直径すなわち切刃7の外径Dに対して10×D以
上、場合によっては20×D以上、あるいは25×D以
上とされている。さらにまた、ドリル本体1には、その
後端から先端側に向けて一対の切削油剤の供給路8,8
が、切屑排出溝5,5を避けるように螺旋状に形成され
ていて、上記先端逃げ面4に開口させられている。
In the present embodiment, the length of the cutting edge portion 2 in the direction of the axis O is relative to the diameter of the circle formed by the outer peripheral end of the cutting edge 7 around the axis O, that is, the outer diameter D of the cutting edge 7. It is set to 10 × D or more, and in some cases 20 × D or more, or 25 × D or more. Furthermore, in the drill body 1, a pair of cutting oil supply paths 8 and 8 are provided from the rear end toward the front end.
However, it is formed in a spiral shape so as to avoid the chip discharge grooves 5 and 5, and is opened to the tip flank 4.

【0009】また、この切刃部2の周方向に切屑排出溝
5,5の間の外周面には、そのドリル回転方向T側にお
いて螺旋状に捩れた切屑排出溝5との交差稜線部に、マ
ージン部9が形成されている。このマージン部9は、そ
の外周面が上記切刃7の外径Dと等しい外径の断面円弧
状をなし、周方向に小さな一定幅で切刃部2の全長に渡
って切屑排出溝5に沿うように延設されている。さら
に、このマージン部9のドリル回転方向T後方側には、
該マージン部9の上記外周面に対して一段ドリル本体1
の内周側に後退するようにして、小さな外径の断面円弧
状をなす外周逃げ面10が形成されている。なお、上記
切刃6やマージン部9および外周逃げ面10も、切屑排
出溝5,5と同様に軸線Oに関して対称に一対ずつ形成
されている。また、これらマージン部9や外周逃げ面1
0にはバックテーパが与えられていてもよい。
Further, on the outer peripheral surface between the chip discharge grooves 5 and 5 in the circumferential direction of the cutting edge portion 2, at a ridge line portion intersecting with the chip discharge groove 5 which is spirally twisted on the drill rotation direction T side. , A margin portion 9 is formed. The outer peripheral surface of the margin portion 9 has an arcuate cross-section with an outer diameter equal to the outer diameter D of the cutting blade 7, and is provided in the chip discharge groove 5 over the entire length of the cutting blade portion 2 with a small constant width in the circumferential direction. It is extended along. Further, on the rear side of the margin portion 9 in the drill rotation direction T,
The one-step drill body 1 with respect to the outer peripheral surface of the margin portion 9
An outer peripheral flank 10 having a small outer diameter and having an arcuate cross section is formed so as to recede toward the inner peripheral side. The cutting edge 6, the margin portion 9 and the outer peripheral flank 10 are also formed in a pair symmetrically with respect to the axis O, similarly to the chip discharge grooves 5 and 5. In addition, these margin portions 9 and outer flanks 1
A back taper may be given to 0.

【0010】さらに、このように構成された切刃部2の
表面には、該切刃部2の全長に渡って硬質被膜11が被
覆されている。この硬質被膜11としては、例えばTi
C、TiN、TiCN、TiAlNの1種または複数種
を被覆することが挙げられ、その表面粗さは被覆したま
まの状態において上述のように2〜4μmとされてい
る。そして、こうして硬質被膜11が被覆された切刃部
2の表面のうち、上記切屑排出溝5の内周面6には、例
えばダイヤモンド粒子を含んだペーストをブラシに塗布
して該内周面6を磨いたりすることにより、図1ないし
図3に網掛けをして示したようにポリッシュ加工が施さ
れており、これによって該内周面6の表面粗さは、硬質
被膜11が被覆されたままの上記先端逃げ面4やマージ
ン部9の外周面、あるいは外周逃げ面10における硬質
被膜11の上記表面粗さよりも小さく、すなわち滑らか
にされている。
Further, a hard coating 11 is coated on the surface of the cutting edge portion 2 thus constructed over the entire length of the cutting edge portion 2. As the hard coating 11, for example, Ti
Coating with one or more of C, TiN, TiCN, and TiAlN can be mentioned, and the surface roughness is 2 to 4 μm as described above in the state of being coated. Then, of the surfaces of the cutting edge portion 2 coated with the hard coating 11 in this way, the inner peripheral surface 6 of the chip discharge groove 5 is coated with a paste containing, for example, diamond particles on a brush to form the inner peripheral surface 6. The surface of the inner peripheral surface 6 is coated with a hard coating 11 by polishing the inner peripheral surface 6 by polishing or polishing the inner peripheral surface 6 as shown in FIG. 1 to FIG. It is smaller than the surface roughness of the hard coating 11 on the outer peripheral surface of the tip flank 4 or the margin portion 9 as it is, or on the outer peripheral flank 10, that is, it is made smooth.

【0011】しかも、本実施形態では、この切屑排出溝
5の内周面6の表面粗さは、螺旋状に捩れた切屑排出溝
5が延びる方向、すなわちこの螺旋に沿った方向に測っ
た表面粗さの方が、この内周面6の周方向すなわち上記
螺旋に直交する方向に沿って測った表面粗さよりも小さ
く、つまりより滑らかとなるようにされている。さら
に、こうしてポリッシュ加工された切屑排出溝5の内周
面6における表面粗さは、上記切屑排出溝5が延びる方
向においては0.5〜1.5μmの範囲に、また内周面
6の周方向においては1.0〜2.0μmの範囲にされ
ている。なお、このように切屑排出溝5が延びる方向の
表面粗さを内周面6の周方向よりも小さく滑らかにする
には、例えばポリッシュ加工の際の上記ブラシを主に切
屑排出溝5に沿って移動させて内周面6を磨くようにす
ればよい。
Moreover, in this embodiment, the surface roughness of the inner peripheral surface 6 of the chip discharge groove 5 is measured in the direction in which the chip discharge groove 5 twisted in a spiral extends, that is, in the direction along the spiral. The roughness is smaller than the surface roughness measured along the circumferential direction of the inner peripheral surface 6, that is, the direction orthogonal to the spiral, that is, smoother. Further, the surface roughness of the inner peripheral surface 6 of the chip discharge groove 5 thus polished is in the range of 0.5 to 1.5 μm in the direction in which the chip discharge groove 5 extends, and the circumference of the inner peripheral surface 6 is also increased. In the direction, the range is 1.0 to 2.0 μm. In order to make the surface roughness in the direction in which the chip discharge groove 5 extends smaller and smoother than the circumferential direction of the inner peripheral surface 6 as described above, for example, the brush during polishing is mainly used along the chip discharge groove 5. The inner peripheral surface 6 may be polished by moving it.

【0012】従って、このように構成されたドリルにお
いては、切刃7によって生成された切屑が、上記ポリッ
シュ加工された切屑排出溝5の内周面6に摺接しながら
排出されるため、摩擦抵抗が少なく、切屑詰まりを生じ
たりすることなく円滑に切屑を加工穴から排出すること
が可能となる。このため、上述のような深孔を加工する
場合においても、かかる切屑詰まりによってドリル本体
1に折損が生じたりすることが無く、確実かつ安定した
穴明け加工を行うことが可能となる。また、このように
切屑排出時の抵抗が少ないことから、上記構成のドリル
によれば、穴明け加工時のドリル本体1の回転駆動力を
低減させることもでき、一層安定した深穴の穴明けを促
すことが可能となる。しかも、ポリッシュ加工されたと
はいえ、切屑排出溝5の内周面6は上述のような硬質被
膜11によって被覆されているので、切屑の摺接によっ
て摩耗することが少なく、またこのポリッシュ加工が施
された切屑排出溝5の内周面6以外の切刃部2の表面に
は被覆されたままの硬質被膜11が残されているため、
従来と変わらず耐摩耗性の高いドリルを提供することが
できる。
Therefore, in the thus constructed drill, the chips generated by the cutting blade 7 are discharged while slidingly contacting the inner peripheral surface 6 of the polished chip discharge groove 5, so that the friction resistance is increased. It is possible to smoothly discharge chips from the processed hole without causing chip clogging. Therefore, even when the deep hole as described above is processed, the drill body 1 is not broken due to the clogging of the chips, and reliable and stable drilling can be performed. Further, since the resistance when discharging chips is small as described above, the drill having the above-described configuration can reduce the rotational driving force of the drill body 1 during drilling, and thus more stable drilling of deep holes. Can be encouraged. Moreover, even though it is polished, since the inner peripheral surface 6 of the chip discharge groove 5 is covered with the hard coating 11 as described above, it is less likely to wear due to sliding contact of chips, and the polishing process is not performed. Since the hard coating 11 that remains coated remains on the surface of the cutting edge portion 2 other than the inner peripheral surface 6 of the chip discharge groove 5 that has been cut,
It is possible to provide a drill having high wear resistance as in the past.

【0013】さらに、本実施形態では、このポリッシュ
加工が施された切屑排出溝5の内周面6の表面粗さが、
切屑排出溝が螺旋状に延びる方向においては0.5〜
1.5μmの範囲とされるとともに、この内周面6の周
方向においては1.0〜2.0μmの範囲とされ、しか
も前者が後者よりも滑らかとなるように、すなわち表面
粗さが小さくされている。従って、ポリッシュ加工が施
された切屑排出溝5内でも、切屑は、その内周面6の周
方向よりも該切屑排出溝5が延びる方向に案内されるよ
うにして流出することとなる。このため、加工物の材種
によって弦巻状の切屑が生成される場合は勿論、細かい
チップ状の切屑が生成される場合でも、本実施形態のド
リルによれば、かかる切屑を切屑排出溝5内や加工穴内
に滞留させることなく確実に排出することが可能とな
る。なお、これらの表面粗さが上記範囲よりも大きく、
すなわち表面が粗いと、上述のような良好な切屑排出性
が得られなくなるおそれがある一方、この範囲よりも小
さな表面粗さとなるように内周面6を滑らかに仕上げる
には多大な労力と時間とを要し、その割に切屑排出性の
著しい向上は認められなくなって却って非効率的となる
おそれがあるため、上記範囲とされるのが望ましい。
Further, in this embodiment, the surface roughness of the inner peripheral surface 6 of the chip discharge groove 5 subjected to this polishing is
0.5 ~ in the direction in which the chip discharge groove extends spirally
It is set to a range of 1.5 μm and is set to a range of 1.0 to 2.0 μm in the circumferential direction of the inner peripheral surface 6, and the former is smoother than the latter, that is, the surface roughness is small. Has been done. Therefore, even in the chip discharge groove 5 that has been subjected to the polishing process, the chips flow out while being guided in the direction in which the chip discharge groove 5 extends rather than the circumferential direction of the inner peripheral surface 6. Therefore, according to the drill of the present embodiment, not only when the chip-shaped chips are generated depending on the material type of the work piece but also when the chip-shaped chips are generated, the chips in the chip discharge groove 5 are removed. It is possible to surely discharge it without retaining it in the processed hole. Incidentally, these surface roughness is larger than the above range,
That is, if the surface is rough, it may not be possible to obtain the good chip discharge performance as described above. On the other hand, it takes a lot of labor and time to finish the inner peripheral surface 6 smoothly so that the surface roughness becomes smaller than this range. However, there is a possibility that the chip discharging property will not be significantly improved and the efficiency may be rather reduced. Therefore, the above range is preferable.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
切刃部の長さが長くて深穴を加工するような場合でも、
切刃部の摩耗は防ぎつつも切屑排出性の向上を図ること
ができ、切屑詰まりによってドリル本体が折損するよう
な事態を防いで、円滑かつ安定した穴明け加工を行うこ
とが可能となる。
As described above, according to the present invention,
Even if you are processing a deep hole due to the long cutting edge,
It is possible to improve the chip discharge performance while preventing wear of the cutting edge portion, prevent a situation where the drill body is broken due to clogging of chips, and perform smooth and stable drilling.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態を示すドリル本体1の側
面図である。
FIG. 1 is a side view of a drill body 1 showing an embodiment of the present invention.

【図2】 図1に示す実施形態の切刃部2先端側の拡大
側面図である。
FIG. 2 is an enlarged side view of a tip side of a cutting blade portion 2 of the embodiment shown in FIG.

【図3】 図1に示す実施形態を先端側からみた拡大正
面図である。
FIG. 3 is an enlarged front view of the embodiment shown in FIG. 1 seen from the tip side.

【符号の説明】[Explanation of symbols]

1 ドリル本体 2 切刃部 4 先端逃げ面 5 切屑排出溝 6 切屑排出溝4の内周面 7 切刃 11 硬質被膜 O ドリル本体1の軸線 T ドリル回転方向 D 切刃7の外径 1 drill body 2 cutting edge 4 Tip flank 5 Chip discharge groove 6 Inner peripheral surface of chip discharge groove 4 7 cutting edge 11 Hard coating O Drill body 1 axis T drill rotation direction D Cutting edge 7 outer diameter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝口 正治 岐阜県安八郡神戸町大字横井字中新田1528 番地 三菱マテリアル株式会社岐阜製作所 内 (72)発明者 馬渕 雅行 岐阜県安八郡神戸町大字横井字中新田1528 番地 三菱マテリアル株式会社岐阜製作所 内 Fターム(参考) 3C037 CC06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shoji Takiguchi             1528, Nakashinden, Yokoi, Kobe-cho, Anpachi-gun, Gifu Prefecture             Address Mitsubishi Materials Corporation Gifu Factory             Within (72) Inventor Masayuki Mabuchi             1528, Nakashinden, Yokoi, Kobe-cho, Anpachi-gun, Gifu Prefecture             Address Mitsubishi Materials Corporation Gifu Factory             Within F term (reference) 3C037 CC06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ドリル本体の先端部外周に切屑排出溝が
形成され、この切屑排出溝の内周面に形成されたすくい
面と上記ドリル本体の先端逃げ面との交差稜線部に切刃
が形成されるとともに、上記ドリル本体の先端部の表面
には硬質被膜が被覆され、さらに上記切屑排出溝の内周
面には、この硬質被膜が被覆された後にポリッシュ加工
が施されていることを特徴とするドリル。
1. A chip discharge groove is formed on the outer periphery of the tip of the drill body, and a cutting edge is provided at the ridge line intersecting with the rake face formed on the inner peripheral surface of the chip discharge groove and the flank of the tip of the drill body. Along with the formation, the surface of the tip of the drill body is coated with a hard coating, and further, the inner peripheral surface of the chip discharge groove is coated with the hard coating and then polished. Characteristic drill.
【請求項2】 上記ポリッシュ加工が施された上記切屑
排出溝の内周面の表面粗さが、この切屑排出溝の延びる
方向において0.5〜1.5μmの範囲とされているこ
とを特徴とする請求項1に記載のドリル。
2. The surface roughness of the inner circumferential surface of the polished chip discharge groove is in the range of 0.5 to 1.5 μm in the extending direction of the chip discharge groove. The drill according to claim 1.
【請求項3】 上記ポリッシュ加工が施された上記切屑
排出溝の内周面の表面粗さが、この内周面の周方向にお
いて1.0〜2.0μmの範囲とされていることを特徴
とする請求項1または請求項2に記載のドリル。
3. The surface roughness of the inner peripheral surface of the chip discharge groove subjected to the polishing is in the range of 1.0 to 2.0 μm in the circumferential direction of the inner peripheral surface. The drill according to claim 1 or claim 2.
【請求項4】 上記ポリッシュ加工が施された上記切屑
排出溝の内周面の表面粗さは、この切屑排出溝の延びる
方向に測った表面粗さが、上記内周面の周方向に測った
表面粗さよりも滑らかとされていることを特徴とする請
求項1ないし請求項3のいずれかに記載のドリル。
4. The surface roughness of the inner peripheral surface of the polished chip discharge groove is measured in the extending direction of the chip discharge groove, and is measured in the circumferential direction of the inner peripheral surface. The drill according to any one of claims 1 to 3, wherein the drill has a smoother surface roughness.
JP2002081975A 2002-03-22 2002-03-22 Drill Pending JP2003275910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081975A JP2003275910A (en) 2002-03-22 2002-03-22 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081975A JP2003275910A (en) 2002-03-22 2002-03-22 Drill

Publications (1)

Publication Number Publication Date
JP2003275910A true JP2003275910A (en) 2003-09-30

Family

ID=29206654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081975A Pending JP2003275910A (en) 2002-03-22 2002-03-22 Drill

Country Status (1)

Country Link
JP (1) JP2003275910A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233851A (en) * 2009-07-21 2009-10-15 Mitsubishi Materials Corp Grooved tool
JP2012030346A (en) * 2010-07-09 2012-02-16 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance and chip discharging characteristics
CN102371379A (en) * 2010-07-09 2012-03-14 三菱综合材料株式会社 Surface Covering Drill Having Excellent Abrasion Resistance And Swarf Extraction Performance
US20130121778A1 (en) * 2011-11-15 2013-05-16 Kennametal, Inc. Manufacturing of holemaking tools
US20160325363A1 (en) * 2014-04-23 2016-11-10 Korloy Inc. Cutting tool having partially-removed film formed thereon
US11376675B2 (en) 2014-04-23 2022-07-05 Korloy Inc. Cutting tool having partially-removed film formed thereon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233851A (en) * 2009-07-21 2009-10-15 Mitsubishi Materials Corp Grooved tool
JP2012030346A (en) * 2010-07-09 2012-02-16 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance and chip discharging characteristics
CN102371379A (en) * 2010-07-09 2012-03-14 三菱综合材料株式会社 Surface Covering Drill Having Excellent Abrasion Resistance And Swarf Extraction Performance
CN102371379B (en) * 2010-07-09 2016-01-27 三菱综合材料株式会社 The surface coated drill of mar proof and chip discharge excellence
US20130121778A1 (en) * 2011-11-15 2013-05-16 Kennametal, Inc. Manufacturing of holemaking tools
US9358626B2 (en) * 2011-11-15 2016-06-07 Kennametal Inc. Manufacturing of holemaking tools
US20160325363A1 (en) * 2014-04-23 2016-11-10 Korloy Inc. Cutting tool having partially-removed film formed thereon
US11141801B2 (en) 2014-04-23 2021-10-12 Korloy Inc. Cutting tool having partially-removed film formed thereon
US11376675B2 (en) 2014-04-23 2022-07-05 Korloy Inc. Cutting tool having partially-removed film formed thereon

Similar Documents

Publication Publication Date Title
JP4652413B2 (en) Spiral tap
US20080089753A1 (en) Drill
JP6268809B2 (en) drill
JPWO2018221737A1 (en) Rotary tool
JP2003025125A (en) Drill
JP2003275910A (en) Drill
JP3985713B2 (en) Drill
JP2000198011A (en) Twist drill
JP3933044B2 (en) Drill
JP2018176360A (en) Rotary cutting type drilling tool
JP5614198B2 (en) drill
JP2003275909A (en) Drill
JP4370966B2 (en) Grooved tool
JP2003225816A (en) Drill
JP2006326752A (en) Drill
JP2002172506A (en) Covered twist drill
JP2003266224A (en) Drill
JP3835327B2 (en) Drill and manufacturing method thereof
JP2005169600A (en) Drill
JP2006136965A (en) Drill and drilling method
JPS6012649Y2 (en) deep hole machining tool
JP2001341020A (en) Drilling tool
JP2005186247A (en) Twist drill
JP2001341019A (en) Twist drill
JP2001300810A (en) Twist drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040323

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060405

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A02 Decision of refusal

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A02