JP2003225816A - Drill - Google Patents

Drill

Info

Publication number
JP2003225816A
JP2003225816A JP2002022219A JP2002022219A JP2003225816A JP 2003225816 A JP2003225816 A JP 2003225816A JP 2002022219 A JP2002022219 A JP 2002022219A JP 2002022219 A JP2002022219 A JP 2002022219A JP 2003225816 A JP2003225816 A JP 2003225816A
Authority
JP
Japan
Prior art keywords
cutting edge
drill
radius
axis
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022219A
Other languages
Japanese (ja)
Other versions
JP3783629B2 (en
Inventor
Kazuya Yanagida
一也 柳田
Takeshi Inoue
武 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002022219A priority Critical patent/JP3783629B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to US10/105,411 priority patent/US6916139B2/en
Priority to EP02006673A priority patent/EP1275458A1/en
Priority to EP07005036.4A priority patent/EP1923157B1/en
Priority to EP10181031.5A priority patent/EP2366478B1/en
Priority to KR1020020017632A priority patent/KR100643677B1/en
Priority to CNB021198160A priority patent/CN1223428C/en
Publication of JP2003225816A publication Critical patent/JP2003225816A/en
Application granted granted Critical
Publication of JP3783629B2 publication Critical patent/JP3783629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To secure strength particularly in the outer circumferential end side of a cutting edge 5 while suppressing the deterioration of sharpness of the whole of the cutting edge 5, and prevent the shortening of a tool life due to wear and breakage even in a harsh machining condition such as high-speed dry cutting. <P>SOLUTION: In a drill, a chip discharge groove 3 extending toward a rear end side is formed in the tip part outer circumference of a drill body 1 rotated around an axis O, and the cutting edge 5 is formed in a crossing ridgeline part between an inner wall face 4 facing the drill rotating direction of the chip discharge groove 3 and a tip flank relief 2 of the drill body 1. The cutting edge 5 is formed so that a rake angle γ in a cross section perpendicular to the cutting edge 5 is gradually increased from the inner circumference of the drill body 1 toward an outer circumference side until it reaches a transition point X on the cutting edge 5, and it is gradually decreased toward the outer circumference side from the transition point X. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に高速乾式切削
のような過酷な加工条件下でも円滑かつ安定した穴明け
加工が可能なドリルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drill capable of smooth and stable drilling even under severe working conditions such as high speed dry cutting.

【0002】[0002]

【従来の技術】軸線回りに回転されるドリル本体の先端
部外周に後端側に向けて延びる切屑排出溝が形成され、
この切屑排出溝のドリル回転方向を向く内壁面と上記ド
リル本体の先端逃げ面との交差稜線部に切刃が形成され
たドリルとしては、例えば従来より特許第267412
4号公報に記載されたものが知られている。また、上述
のような乾式あるいは微量の切削油剤しか用いない過酷
な加工条件に対応することを目的としたドリルとして
は、例えば特開2000−198011号公報に記載さ
れたようなものが提案されており、すなわちこの公報記
載のドリルでは、ドリル本体先端に形成される切刃の外
周側に、この切刃の中間部から角度をつけてドリル回転
方向に後退する外方コーナー切刃が形成されていて、こ
の外方コーナ切刃とドリル本体外周のマージン部との交
差角を鈍角にすることができるため、上述のような加工
条件でも切刃の外周端に欠けが生じたりするのを防ぐこ
とが可能となる。
2. Description of the Related Art A chip discharge groove extending toward the rear end is formed on the outer periphery of the tip of a drill body rotated around an axis.
As a drill in which a cutting edge is formed at the ridge line intersecting the inner wall surface of the chip discharge groove facing the direction of rotation of the drill and the flank of the tip of the drill main body, for example, Japanese Patent No. 267412 has hitherto been known.
The one described in Japanese Patent Publication No. 4 is known. Further, as a drill intended to cope with the severe machining conditions using the dry type or a very small amount of cutting oil as described above, for example, a drill disclosed in Japanese Patent Laid-Open No. 2000-198011 has been proposed. In other words, in the drill described in this publication, on the outer peripheral side of the cutting edge formed at the tip of the drill body, an outer corner cutting edge is formed that recedes in the drill rotation direction at an angle from the middle part of the cutting edge. The outer corner cutting edge and the margin of the outer periphery of the drill body can have an obtuse angle, which prevents the outer edge of the cutting edge from being chipped even under the above processing conditions. Is possible.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
ドリルにおいては通常、上記切刃に直交する断面におけ
る該切刃のすくい角、すなわち切刃の直角すくい角は、
ドリル本体の上記軸線側すなわち内周側から外周側に向
かうに従い漸次大きくなるようにされており、これは、
上記2つの公報に提案されたドリルでも例外ではない
(例えば、後述するドリルE,F、および図11参
照。)。このため、切刃がドリル本体内周側のシンニン
グ部を除いて直線状に形成された前者の公報に記載のド
リルでは、上記すくい角は切刃の外周端において最大と
なり、逆に切刃の刃先角は最も小さくなるので、ドリル
本体の回転中心となる上記軸線から離れて最も切削速度
が大きくなるために上記乾式高速切削となる穴明け加工
にあっても最も過酷な状態となる切刃の外周端におい
て、その切刃強度を確保し難くなり、これにより切刃に
チッピングや欠けが生じる可能性が高く、また逃げ面摩
耗の進行も早いという問題が生じる。
By the way, in such a drill, the rake angle of the cutting edge in a cross section orthogonal to the cutting edge, that is, the right angle rake angle of the cutting edge is usually
It is designed to gradually increase from the axis side of the drill body, that is, from the inner peripheral side to the outer peripheral side.
The drills proposed in the above two publications are no exception (see, for example, drills E and F described later and FIG. 11). Therefore, in the drill described in the former publication in which the cutting edge is formed in a straight line except for the thinning portion on the inner peripheral side of the drill body, the rake angle is the maximum at the outer peripheral end of the cutting edge, and conversely of the cutting edge. Since the cutting edge angle is the smallest, the cutting speed becomes the most distant from the axis line that is the center of rotation of the drill body, and the cutting speed becomes the highest, so even in the drilling process that is the dry high-speed cutting At the outer peripheral edge, it becomes difficult to secure the strength of the cutting edge, which makes it highly likely that chipping or chipping will occur in the cutting edge, and that flank wear progresses rapidly.

【0004】一方、切刃の外周側にドリル回転方向に後
退する外側コーナー切刃を設けた後者の公報に記載のド
リルでは、この外側コーナー切刃で切刃の径方向すくい
角が負角側に大きくなる分だけ切刃の直角すくい角も小
さくなるが、このすくい角が外周側に向けて漸増させら
れていることには変わりはなく、従って上述のような過
酷な条件に対しても十分な切刃強度を確保するには切刃
の全長に亙ってすくい角を小さくしなければならない。
このため、切刃全体で切れ味が悪くなってしまって切削
抵抗の増大を招き、高速乾式切削のような過酷な切削条
件では摩耗の進行が著しくなって早期に寿命が費えた
り、場合によっては抵抗の増大によって過大なトルクが
作用してドリル本体の折損を招いたりするおそれすらあ
る。
On the other hand, in the drill described in the latter publication in which an outer corner cutting edge that retracts in the drill rotation direction is provided on the outer peripheral side of the cutting edge, in the outer corner cutting edge, the radial rake angle of the cutting edge is on the negative angle side. Although the right angle rake angle of the cutting edge becomes smaller as it increases, this rake angle is gradually increased toward the outer peripheral side, so it is sufficient even for the severe conditions described above. In order to secure a high cutting edge strength, the rake angle must be reduced over the entire length of the cutting edge.
For this reason, the cutting edge becomes less sharp, which leads to an increase in cutting resistance.In severe cutting conditions such as high-speed dry cutting, wear progresses markedly and the service life may be shortened in some cases. There is a possibility that excessive torque may be applied due to the increase in resistance and the drill body may be broken.

【0005】本発明は、このような背景の下になされた
もので、切刃全体の切れ味の悪化を抑えながらも特に切
刃の外周端側での強度を確保して、高速乾式切削等の過
酷な加工条件でも摩耗や折損による工具寿命の短縮を防
ぐことが可能なドリルを提供することを目的としてい
る。
The present invention has been made under such a background, and while suppressing the deterioration of the sharpness of the entire cutting edge, especially at the outer peripheral end side of the cutting edge, the strength is secured, and high speed dry cutting or the like is performed. It is an object of the present invention to provide a drill capable of preventing shortening of tool life due to wear and breakage even under severe machining conditions.

【0006】[0006]

【課題を解決するための手段】上記課題を解決して、こ
のような目的を達成するために、本発明は、軸線回りに
回転されるドリル本体の先端部外周に後端側に向けて延
びる切屑排出溝が形成され、この切屑排出溝のドリル回
転方向を向く内壁面と上記ドリル本体の先端逃げ面との
交差稜線部に切刃が形成されてなるドリルにおいて、上
記切刃を、この切刃に直交する断面におけるすくい角
が、上記ドリル本体の内周から外周側に向かうに従い漸
次増大させられて該切刃上の変移点に達し、この変移点
よりも外周側では外周側に向かうに従い上記すくい角が
漸次減少させられるようにしたことを特徴とする。従っ
て、このように構成されたドリルでは、上記変移点より
も内周側では切刃の直角すくい角が外周側に向かうに従
い大きくなるので、良好な切れ味を維持して切削抵抗を
低く抑えることができる一方、この変曲点よりも外周側
ではすくい角が減少させられるので刃先角は大きくな
り、これにより切刃強度を確保してチッピングや欠け、
逃げ面摩耗の早期の進行等を抑制することが可能とな
る。
In order to solve the above-mentioned problems and to achieve such an object, the present invention extends toward the rear end side on the outer periphery of the front end portion of a drill body rotated around an axis. In a drill in which a chip discharge groove is formed, and a cutting edge is formed at the ridge line intersecting the inner wall surface of the chip discharge groove that faces the drill rotation direction and the tip flank of the drill body, The rake angle in the cross section orthogonal to the blade is gradually increased from the inner circumference of the drill body toward the outer circumference to reach the transition point on the cutting edge, and on the outer circumference side from this transition point, the outer circumference is approached. It is characterized in that the rake angle is gradually reduced. Therefore, in the drill configured in this way, the right angle rake angle of the cutting edge on the inner peripheral side from the transition point increases as it goes to the outer peripheral side, so that it is possible to maintain good cutting performance and keep the cutting resistance low. On the other hand, the rake angle is reduced on the outer peripheral side of this inflection point, so the cutting edge angle is increased, which ensures cutting edge strength and chipping or chipping.
It is possible to suppress the early progress of flank wear and the like.

【0007】ここで、切刃の上記すくい角が内周から外
周側に向けて漸増傾向から漸減傾向へと変移する上記変
移点は、上記軸線から径方向外周側に向けて上記切刃の
回転半径の70〜90%の範囲内に位置させられるのが
望ましい。これは、この変移点が軸線から切刃の回転半
径の70%よりも内周側にあると、外周側に向けてすく
い角が漸減する切刃部分が長くなって切刃全体としての
切削抵抗を十分に抑えることができなくなるおそれがあ
るからであり、逆に変移点が軸線から切刃の回転半径の
90%よりも外周側にあると、このすくい角が漸減する
切刃部分が短すぎて外周側での切刃強度を確実に確保す
ることができなくなるおそれがあるからである。
Here, the transition point at which the rake angle of the cutting edge changes from the inner circumference toward the outer circumference from a gradually increasing tendency to a gradually decreasing tendency is the rotation of the cutting edge from the axis toward the radially outer circumference. It is preferably located within 70-90% of the radius. This is because if this transition point is located on the inner circumference side of the axis from 70% of the radius of gyration of the cutting edge, the rake angle gradually decreases toward the outer circumference, and the cutting edge portion becomes longer and the cutting resistance of the entire cutting edge increases. If the transition point is on the outer peripheral side from the axis of 90% of the turning radius of the cutting edge, the rake angle gradually decreases and the cutting edge is too short. This is because the cutting edge strength on the outer peripheral side may not be reliably ensured.

【0008】また、上記切刃の外周端側に、上記ドリル
回転方向に凸となる曲線状をなす凸曲線状切刃部が形成
されるとともに、この凸曲線状切刃部の内周側には、ド
リル回転方向の後方側に凹となる曲線状をなして上記凸
曲線状切刃部に滑らかに連なる凹曲線状切刃部を形成し
た場合には、上記凸曲線状切刃部の外周側、すなわちド
リル本体外周のマージン部との交差部ではその交差角を
大きくして切刃強度を一層向上させてチッピングや欠け
の発生を防止することができる一方、この凸曲線状切刃
部の内周側では上記凹曲線状切刃部から凸曲線状切刃部
にかけての切刃の外周端までが滑らかな曲線状に形成さ
れることとなるので、切刃がその中間部で角度をつけて
ドリル回転方向の後方側に後退している上記後者の公報
に記載されたドリルのように切刃の内外周で切屑が分断
されるようなことがなく、上記凹曲線状切刃部によって
切屑を内周側に巻き込むようにして十分にカールさせ、
円滑に処理することが可能となる。そして、さらにこの
場合には、上記変移点をこの凹曲線状切刃部と上記凸曲
線状切刃部との変曲部に位置させることにより、すくい
角が漸増傾向から漸減傾向へと変移することによってこ
の変移点で切刃に生じる応力を分散させることができ、
高速乾式切削における過酷な切削条件によりこの変移点
に応力が集中して損傷が生じるような事態をも防止する
ことが可能となる。
Further, a convex curved cutting edge portion having a curved shape which is convex in the drill rotation direction is formed on the outer peripheral end side of the cutting edge, and on the inner peripheral side of the convex curved cutting edge portion. Is the outer periphery of the convex curved cutting edge portion when a concave curved cutting edge portion is formed that is concave toward the rear side in the drill rotation direction and smoothly connects to the convex curved cutting edge portion. On the side, that is, at the intersection with the margin of the outer periphery of the drill body, the intersection angle can be increased to further improve the cutting edge strength and prevent chipping and chipping, while the convex curved cutting edge On the inner peripheral side, since the curved edge from the concave curved cutting edge portion to the outer peripheral edge of the cutting edge from the convex curved cutting edge portion is formed into a smooth curved shape, the cutting edge is angled at its intermediate portion. The drill described in the latter publication is retracted rearward in the direction of rotation of the drill. Without such chips in the inner periphery of the cutting edge is divided as sufficiently curled so as to involve the chip on the inner circumferential side by the concave-curved cutting edge,
It becomes possible to process smoothly. Further, in this case, the rake angle is changed from the gradually increasing tendency to the gradually decreasing tendency by arranging the transition point at the inflection portion between the concave curved cutting edge portion and the convex curved cutting edge portion. By this, the stress generated in the cutting edge at this transition point can be dispersed,
It is also possible to prevent a situation where stress is concentrated at this transition point and damage is caused by severe cutting conditions in high-speed dry cutting.

【0009】なお、このように内周から外周側に向けて
上記変移点の前後で漸増・漸減傾向に変移する上記切刃
のすくい角γは、上記軸線からの径方向外周側に向けて
の上記切刃の回転半径rの37.5%以上82.6%未
満の範囲の位置では、上記回転半径rに対するこの位置
の上記軸線からの半径の比率xについて次式1により近
似される角度yの±7°の範囲において、上記切刃の回
転半径rの82.6%以上100%までの範囲の位置で
は上記比率xについて次式2により近似される角度yの
±7°の範囲において、それぞれ変移させられるのが望
ましい。すなわち、この切刃のすくい角γが式1、2の
範囲を上回ると、切刃に刃先角が小さくなりすぎる部分
が生じて特に高速乾式切削ではその部分で切刃が損傷し
易くなるおそれがある一方、逆に式1、2の範囲を下回
ると、その部分で切削抵抗が増大して切刃の摩耗が促進
されたり過大なトルクが生じたりするおそれがある。ま
た、ドリル本体の少なくとも先端部の表面に、TiN、
TiCN、TiAlN等の硬質皮膜を被覆すれば、この
ドリル本体先端部の耐摩耗性の向上を図ってその寿命の
一層の延長を促すことができる。
Incidentally, the rake angle γ of the cutting edge which changes gradually from the inner circumference to the outer circumference in the gradual increase / decrease tendency before and after the transition point is measured from the axis toward the outer circumference in the radial direction. At a position in the range of 37.5% or more and less than 82.6% of the turning radius r of the cutting edge, an angle y approximated by the following formula 1 with respect to a ratio x of the radius from the axis of this position to the turning radius r is obtained. Within a range of ± 7 ° of the cutting edge, a range of 82.6% to 100% of the turning radius r of the cutting edge is within a range of ± 7 ° of an angle y approximated by the following equation 2 for the ratio x: It is desirable to be able to change each. That is, when the rake angle γ of this cutting edge exceeds the range of Expressions 1 and 2, there is a possibility that the cutting edge has a portion where the cutting edge angle becomes too small, and the cutting blade is likely to be damaged at that portion particularly in high-speed dry cutting. On the other hand, on the contrary, when the value is below the range of Expressions 1 and 2, there is a possibility that cutting resistance increases at that portion, wear of the cutting edge is promoted, or excessive torque is generated. In addition, TiN, at least on the surface of the tip of the drill body,
By coating a hard coating such as TiCN or TiAlN, the wear resistance of the tip of the drill body can be improved and the life of the drill body can be further extended.

【0010】[0010]

【数3】 [Equation 3]

【0011】[0011]

【数4】 [Equation 4]

【0012】[0012]

【発明の実施の形態】図1ないし図9は、本発明の一実
施形態を示すものである。本実施形態においてドリル本
体1は、超硬合金等の硬質材料により軸線Oを中心とし
た略円柱状に形成されており、その先端部には、先端逃
げ面2から後端側に向かうに従い一定の捩れ角でドリル
回転方向Tの後方側に捩れる一対の切屑排出溝3,3が
軸線Oに対して対称に形成されていて、これらの切屑排
出溝3,3のドリル回転方向T側を向く内壁面4,4と
上記先端逃げ面2との交差稜線部にそれぞれ切刃5,5
が形成されている。なお、このドリル本体1先端部に
は、その外周面や先端逃げ面2、切屑排出溝3に、Ti
N、TiCN、TiAlN等の硬質皮膜が被覆されてい
る。
1 to 9 show one embodiment of the present invention. In the present embodiment, the drill body 1 is formed of a hard material such as cemented carbide into a substantially cylindrical shape centered on the axis O, and its tip portion is constant from the tip flank 2 toward the rear end side. A pair of chip discharge grooves 3 and 3 which are twisted rearward in the drill rotation direction T at a twist angle of are formed symmetrically with respect to the axis O. The cutting edges 5 and 5 are respectively formed on the ridges where the inner wall surfaces 4 and 4 facing each other and the above flank 2 intersect.
Are formed. In addition, at the tip of the drill body 1, the outer peripheral surface, the tip flank 2, the chip discharge groove 3, Ti
A hard coating such as N, TiCN, TiAlN is coated.

【0013】ここで、上記内壁面4は、その外周側に位
置してマージン部6に交差し、軸線Oに直交する断面に
おいて図2に示すようにドリル回転方向Tに凸となる凸
曲線をなす第1の凸曲面部7と、この第1凸曲面部7の
内周側に位置して、上記断面においてドリル回転方向T
の後方側に凹む凹曲線状をなす第1凹曲面部8とから構
成されており、これら第1の凸凹曲面部7,8の断面が
なす上記凸凹曲線は接点P1において滑らかに接するよ
うに連ねられている。また、本実施形態では切屑排出溝
3のドリル回転方向T後方側を向く内壁面9も、その外
周側に位置してヒール部10に達し、上記断面がドリル
回転方向T後方側に凸となる凸曲線をなす第2凸曲面部
11と、この第2凸曲面部11の内周側に位置してその
断面がドリル回転方向T側に凹む凹曲線状をなす第2凹
曲面部12とから構成され、これら第2の凸凹曲面部1
1,12がなす上記凸凹曲線も接点P2において滑らか
に接するように連ねられるとともに、両内壁面4,9の
第1、第2凹曲面部8,12同士も、その断面がなす凹
曲線が接点P3において滑らかに接して連なるようにさ
れている。なお、上記マージン部6からドリル回転方向
T後方側に上記ヒール部10に至るランド部の外周面
は、マージン部6から一段内周側に後退した円筒面状に
形成されている。
Here, the inner wall surface 4 has a convex curve which is located on the outer peripheral side thereof, intersects with the margin portion 6, and is convex in the drill rotation direction T as shown in FIG. 2 in a cross section orthogonal to the axis O. The first convex curved surface portion 7 to be formed and the inner peripheral side of the first convex curved surface portion 7, and in the cross section, the drill rotation direction T
And a first concave curved surface portion 8 having a concave curved shape which is concave toward the rear side of the concave convex curved surface portion 7, and the convex and concave curved surfaces formed by the cross sections of the first convex and concave curved surface portions 7 and 8 are connected so as to be smoothly in contact with each other at a contact point P1. Has been. Further, in the present embodiment, the inner wall surface 9 of the chip discharge groove 3 facing the rear side in the drill rotation direction T is also positioned on the outer peripheral side thereof and reaches the heel portion 10, and the above-mentioned cross section is convex in the rear side in the drill rotation direction T. From the second convex curved surface portion 11 forming a convex curve and the second concave curved surface portion 12 located on the inner peripheral side of the second convex curved surface portion 11 and having a concave curved shape whose cross section is concave in the drill rotation direction T side. The second uneven curved surface portion 1 is configured.
The above-mentioned concave and convex curves formed by 1 and 12 are also connected so as to be in contact with each other smoothly at the contact point P2, and the concave curves formed by the cross sections of the first and second concave curved surface portions 8 and 12 of both inner wall surfaces 4 and 9 are contact points. At P3, they are smoothly contacted and continuous. The outer peripheral surface of the land portion, which extends from the margin portion 6 to the rear side in the drill rotation direction T to the heel portion 10, is formed in a cylindrical surface shape receding from the margin portion 6 toward the inner peripheral side by one step.

【0014】さらに、本実施形態では、上記断面におい
て、第1、第2の凸凹曲面部7,8,11,12がなす
凸凹曲線がそれぞれ点C1〜C4を中心とした半径R1
〜R4の円弧となるようにされており、このうち第1凸
曲面部7がなす凸円弧の中心C1は、この第1凸曲面部
7とマージン部6との交点すなわち上記内壁面4の外周
端13において該マージン部6に接する直線Q1よりも
内周側に位置させられるとともに、第2凸曲面部11が
なす円弧の中心C3は、上記外周端13が軸線O回りに
なす円と第2凸曲面部11がなす円弧の延長線との交点
14において上記円に接する直線Q2よりもやはり内周
側に位置させられている。従って、上記第1凸曲面部7
は、軸線Oと内壁面4の外周端13とを結ぶ第1仮想直
線S1よりもドリル回転方向T側に凸となって、この外
周端13における第1凸曲面部7の接線は、外周側に向
かうに従いドリル回転方向T後方側に延びるように第1
仮想直線S1に対して傾斜させられるとともに、この第
1仮想直線S1と直交する上記直線Q1とは鈍角をなし
て交差させられる。また、第2凸曲面部11も、ヒール
部10との交点と軸線Oとを結ぶ直線よりもドリル回転
方向T後方側に凸となるようにされている。一方、第
1、第2凹曲面部8,12がなす円弧の中心C2,C4
は、これらの円弧が接点P3で接していることから、両
者とも軸線Oからこの接点P3を通る直線の延長線上に
位置することとなる。さらに、この接点P3が切屑排出
溝3の溝底となることから、本実施形態では軸線Oを中
心としてこの接点P3を通る円がドリル本体1の芯厚円
となり、この芯厚円の直径すなわちドリル本体1の芯厚
dは、上記切刃5の外周端15が軸線O回りになす円の
直径すなわち切刃5の外径Dに対し、0.15×D〜
0.3×Dの範囲に設定されている。
Further, in the present embodiment, in the above-mentioned cross section, the convex-concave curves formed by the first and second convex-concave curved surface portions 7, 8, 11, 12 respectively have radii R1 centered on points C1 to C4.
The center C1 of the convex arc formed by the first convex curved surface portion 7 is the intersection of the first convex curved surface portion 7 and the margin portion 6, that is, the outer circumference of the inner wall surface 4. It is located on the inner circumference side of the straight line Q1 in contact with the margin portion 6 at the end 13, and the center C3 of the arc formed by the second convex curved surface portion 11 is the circle formed by the outer circumference end 13 around the axis O and the second. At the intersection 14 with the extension line of the arc formed by the convex curved surface portion 11, it is also positioned on the inner peripheral side of the straight line Q2 tangent to the circle. Therefore, the first convex curved surface portion 7
Is convex to the drill rotation direction T side with respect to the first virtual straight line S1 connecting the axis O and the outer peripheral end 13 of the inner wall surface 4, and the tangent line of the first convex curved surface portion 7 at the outer peripheral end 13 is the outer peripheral side. So that it extends toward the rear side of the drill rotation direction T toward
While being inclined with respect to the virtual straight line S1, the straight line Q1 orthogonal to the first virtual straight line S1 intersects the straight line Q1 at an obtuse angle. The second convex curved surface portion 11 is also convex toward the rear side in the drill rotation direction T with respect to the straight line connecting the intersection with the heel portion 10 and the axis O. On the other hand, the centers C2 and C4 of the arc formed by the first and second concave curved surface portions 8 and 12
Since these arcs are in contact with each other at the contact point P3, both of them are located on an extension line of a straight line passing through the contact point P3 from the axis O. Further, since the contact point P3 serves as the groove bottom of the chip discharge groove 3, in the present embodiment, the circle passing through the contact point P3 with the axis O as the center is the core thickness circle of the drill body 1, and the diameter of the core thickness circle, The core thickness d of the drill body 1 is 0.15 × D to the diameter of the circle formed by the outer peripheral end 15 of the cutting edge 5 around the axis O, that is, the outer diameter D of the cutting edge 5.
It is set in the range of 0.3 × D.

【0015】なお、第1凸凹曲面部7,8がなす凸凹曲
線の接点P1は、軸線Oを中心として上記切刃5の外径
Dの2/3の直径を有する円よりも外周側に位置させら
れており、より望ましくは軸線Oを中心として外径Dの
5/6の直径を有する円よりも外周側に位置させられ
る。また、第1凹曲面部8のドリル回転方向T後方側へ
の凹みの大きさは、上記第1仮想直線S1からの凹み量
L1が切刃5の外径Dに対して−0.06×D〜0の範
囲に設定されるとともに、第2凹曲面部12のドリル回
転方向T側への凹みの大きさは、上記断面において第1
仮想直線S1に軸線Oで直交する第2仮想直線S2から
の凹み量L2が−0.06×D〜0.06×Dの範囲と
なるように設定されている。ただし、これらの凹み量L
1,L2は、それぞれ上記断面において第1、第2仮想
直線S1,S2に平行で第1、第2凹曲面部8,12が
なす凹曲線に接する直線と第1、第2仮想直線S1,S
2との間の距離とされており、かつ図2に示すように、
第1凹曲面部8の凹み量L1については第1仮想直線S
1からドリル回転方向T側を正、後方側を負とし、逆に
第2凹曲面部12の凹み量L2については第2仮想直線
S2からドリル回転方向T側を負、後方側を正としてい
る。従って、本実施形態においては、第1凹曲面部8の
全体が上記第1仮想直線S1よりもドリル回転方向T側
に位置することはない。
The contact point P1 of the convex-concave curve formed by the first convex-concave curved surface portions 7 and 8 is located on the outer peripheral side of the circle having the diameter of 2/3 of the outer diameter D of the cutting edge 5 about the axis O. More preferably, it is located on the outer peripheral side of a circle having a diameter of 5/6 of the outer diameter D about the axis O. Further, the size of the recess of the first recessed curved surface portion 8 toward the rear side in the drill rotation direction T is such that the recess amount L1 from the first virtual straight line S1 is −0.06 × with respect to the outer diameter D of the cutting edge 5. It is set in the range of D to 0, and the size of the recess of the second recessed curved surface portion 12 toward the drill rotation direction T is the first in the above cross section.
The dent amount L2 from the second virtual straight line S2 orthogonal to the virtual straight line S1 with the axis O is set to fall within the range of −0.06 × D to 0.06 × D. However, the amount of these recesses L
1 and L2 are straight lines parallel to the first and second virtual straight lines S1 and S2, respectively, and a straight line which is in contact with the concave curve formed by the first and second concave curved surface portions 8 and 12 and the first and second virtual straight lines S1 and S1, respectively. S
2 and the distance between the two, as shown in FIG.
Regarding the recess amount L1 of the first concave curved surface portion 8, the first virtual straight line S
1, the drill rotation direction T side is positive, the rear side is negative, and conversely, with respect to the recess amount L2 of the second concave curved surface portion 12, the drill rotation direction T side is negative and the rear side is positive from the second virtual straight line S2. . Therefore, in the present embodiment, the entire first concave curved surface portion 8 is not located on the drill rotation direction T side with respect to the first virtual straight line S1.

【0016】さらに、上記断面において第1、第2凸凹
曲面部7,8,11,12がなす円弧の半径R1〜R4
は、切刃5の外径Dに対し、第1凸曲面部7の半径R1
が0.1〜0.8×Dの範囲に、第1凹曲面部8の半径
R2が0.18〜0.35×Dの範囲に、第2凸曲面部
11の半径R3が0.1〜0.8×Dの範囲に、第2凹
曲面部12の半径R4が0.2〜0.5×Dの範囲に、
それぞれ設定されている。そして、本実施形態では、こ
のうち第2凹曲面部12の半径R4が、第1凹曲面部8
の半径R2よりも大きくされている。なお、こうして形
成された切屑排出溝3の溝幅比は、本実施形態では0.
8〜1.2:1の範囲とされている。
Further, in the above section, the radii R1 to R4 of the arc formed by the first and second curved surface portions 7, 8, 11, 12 are formed.
Is the radius R1 of the first convex curved surface portion 7 with respect to the outer diameter D of the cutting edge 5.
Is in the range of 0.1 to 0.8 × D, the radius R2 of the first concave curved surface portion 8 is in the range of 0.18 to 0.35 × D, and the radius R3 of the second convex curved surface portion 11 is 0.1. To 0.8 × D, the radius R4 of the second concave curved surface portion 12 is 0.2 to 0.5 × D,
Each is set. In this embodiment, the radius R4 of the second concave curved surface portion 12 is the first concave curved surface portion 8 among them.
Is larger than the radius R2. The groove width ratio of the chip discharge groove 3 thus formed is 0.
The range is 8 to 1.2: 1.

【0017】このような切屑排出溝3の上記内壁面4と
先端逃げ面2との交差稜線部に形成される切刃5におい
ては、この内壁面4が上記第1凸凹曲面部7,8によっ
て形成されることにより、その外周端15側には、ドリ
ル回転方向Tに凸となる曲線状をなす凸曲線状切刃部1
6が形成されてその後端側に上記第1凸曲面部7が連な
るとともに、この凸曲線状切刃部16の内周側には、ド
リル回転方向Tの後方側に凹となる曲線状をなして凸曲
線状切刃部16に滑らかに接して連なる凹曲線状切刃部
17が形成され、その後端側に上記第1凹曲面部8が連
なることになって、これら凸凹曲線状切刃部16,17
間で切刃5は軸線O方向先端視に緩やかに湾曲するS字
状を呈することとなる。ただし、この切刃5には、先端
逃げ面2が内周側から外周側に向かうに従いドリル本体
1の後端側に向けて傾斜させられることにより先端角が
付されており、これと切屑排出溝3が螺旋状に捩れてい
ることとから、この切刃5の凸凹曲線状切刃部16,1
7が軸線O方向先端視においてなす上記S字状の凸凹曲
線は、内壁面4の第1凸凹曲面部7,8が軸線Oに直交
する断面においてなす凸凹曲線が、内周側に向かうに従
いドリル回転方向T側に漸次ずれたような形状をなすこ
ととなる。従って、この軸線O方向先端視において上記
凸曲線状切刃部16は、その外周端15における接線
が、上記断面において第1凸曲面部7がなす凸曲線の外
周端13における接線よりも大きな傾斜で外周側に向か
うに従いドリル回転方向T後方側に延びるようにされる
とともに、マージン部6との交差角も第1凸曲面部7が
なす鈍角より大きくされ、これにより切刃5が上記外周
端15においてなす径方向すくい角αは負角側に設定さ
れる。
In the cutting edge 5 formed at the intersection ridge of the inner wall surface 4 of the chip discharge groove 3 and the tip flank 2 as described above, the inner wall surface 4 is formed by the first curved surface portions 7 and 8. By being formed, on the outer peripheral end 15 side thereof, a convex curved cutting edge portion 1 having a curved shape that is convex in the drill rotation direction T is formed.
6 is formed and the first convex curved surface portion 7 is connected to the rear end side thereof, and the inner peripheral side of the convex curved cutting edge portion 16 has a curved shape that is concave toward the rear side in the drill rotation direction T. The concave curved cutting edge portion 17 is formed so as to be in smooth contact with the convex curved cutting edge portion 16 and is continuous, and the first concave curved surface portion 8 is continuous at the rear end side thereof. 16, 17
In the meantime, the cutting edge 5 has an S-shape that gently curves when viewed from the front end in the direction of the axis O. However, the cutting edge 5 has a tip angle because the tip flank 2 is inclined toward the rear end side of the drill body 1 from the inner peripheral side toward the outer peripheral side. Since the groove 3 is spirally twisted, the concave and convex curved cutting edge portions 16 and 1 of the cutting edge 5 are formed.
The S-shaped concave-convex curve formed by 7 in the tip view in the direction of the axis O is a concave-convex curve formed by the first convex-concave curved surface portions 7 and 8 of the inner wall surface 4 in a cross section orthogonal to the axis O. The shape gradually shifts toward the rotation direction T side. Therefore, in the tip view in the direction of the axis O, the tangent line at the outer peripheral end 15 of the convex curved cutting edge portion 16 is larger than the tangent line at the outer peripheral end 13 of the convex curve formed by the first convex curved surface portion 7 in the cross section. And the crossing angle with the margin portion 6 is made larger than the obtuse angle formed by the first convex curved surface portion 7 as it goes toward the outer peripheral side toward the rear in the drill rotation direction T. The radial rake angle α formed at 15 is set to the negative angle side.

【0018】一方、切屑排出溝3の内壁面4,9の先端
側には、上記第1凹曲面部8の内周側から第2凹曲面部
12および第2凸曲面部11までの先端逃げ面2との交
差稜線部分を、ドリル本体1の後端側に向かうに従い切
屑排出溝3の内側に向けて切り欠くようにして、ヒール
部10に達するシンニング部18が形成されており、従
って切刃5の内周端側は、このシンニング部18と先端
逃げ面2との交差稜線部に形成されて、上記凹曲面状切
刃部17の内周端から先端逃げ面2の中心の上記軸線O
に向けて延びるシンニング切刃部19とされている。な
お、切刃5においてこのシンニング切刃部19と上記凹
曲線状切刃部17とが交差する部分は、軸線O方向先端
視にドリル回転方向Tに凸となる曲線または直線によっ
て滑らかに接続されている。
On the other hand, on the tip side of the inner wall surfaces 4 and 9 of the chip discharge groove 3, the tip escape from the inner peripheral side of the first concave curved surface portion 8 to the second concave curved surface portion 12 and the second convex curved surface portion 11. A thinning portion 18 reaching the heel portion 10 is formed by notching the ridge line portion intersecting with the surface 2 toward the rear end side of the drill body 1 toward the inside of the chip discharge groove 3, and thus the cutting portion 18 is formed. The inner peripheral end side of the blade 5 is formed at an intersecting ridge line portion between the thinning portion 18 and the tip flank 2, and the axis line of the center of the tip flank 2 from the inner peripheral end of the concave curved cutting edge portion 17 is formed. O
It is a thinning cutting edge portion 19 extending toward. In the cutting edge 5, the portion where the thinning cutting edge portion 19 and the concave curved cutting edge portion 17 intersect is smoothly connected by a curved line or a straight line which is convex in the drill rotation direction T when viewed from the tip of the axis O direction. ing.

【0019】ここで、このシンニング部18のうち、切
屑排出溝3の内壁面4,9に交差して先端側に延びる部
分は第1シンニング部20とされており、この第1シン
ニング部20は、ドリル回転方向T後方側を向く切屑排
出溝3の内壁面9と交差してヒール部10側に延びる部
分においては平面状に形成される一方、この内壁面9と
ドリル回転方向T側を向く内壁面4とが交差する部分、
すなわち上記第1、第2凹曲面部8,12の接点P3部
分から、先端逃げ面2の中心に向けて延びる部分は、図
3に示すようにこの先端逃げ面2の中心に向かう方向か
ら見た場合に凹曲面状の谷形をなすように形成されてお
り、その凹曲する谷底部21は、上記内壁面4,9に対
してドリル本体1の内周側に後退するように傾斜しつ
つ、切刃5の内周端すなわちシンニング切刃部19の内
周端に向けて先端側に延びるように形成されている。な
お、この第1シンニング部20の凹曲する谷底部21が
その断面においてなす凹曲線の曲率半径は、0.1〜
0.5mmの範囲に設定されている。なお、この谷底部2
1の断面がなす凹曲線の曲率半径は、後端側に向かうに
従い大きくなるようにされていてもよい。
Here, a portion of the thinning portion 18 that intersects the inner wall surfaces 4 and 9 of the chip discharge groove 3 and extends toward the tip side is referred to as a first thinning portion 20, and the first thinning portion 20 is formed. The portion extending to the heel portion 10 side intersecting the inner wall surface 9 of the chip discharge groove 3 facing the drill rotation direction T rear side is formed in a flat shape, while facing the inner wall surface 9 and the drill rotation direction T side. The part where the inner wall surface 4 intersects,
That is, the portion extending from the contact point P3 portion of the first and second concave curved surface portions 8 and 12 toward the center of the tip flank 2 is seen from the direction toward the center of the tip flank 2 as shown in FIG. In this case, it is formed to have a concave curved valley shape, and the concave valley bottom portion 21 is inclined so as to recede toward the inner peripheral side of the drill body 1 with respect to the inner wall surfaces 4 and 9. Meanwhile, it is formed so as to extend toward the tip side toward the inner peripheral end of the cutting blade 5, that is, the inner peripheral end of the thinning cutting blade portion 19. The radius of curvature of the concave curve formed by the concavely curved valley bottom portion 21 of the first thinning portion 20 is 0.1 to 0.1.
It is set within the range of 0.5 mm. In addition, this valley bottom 2
The radius of curvature of the concave curve formed by the cross section of 1 may be increased toward the rear end side.

【0020】さらに、この第1シンニング部20の最先
端の上記谷底部21が切刃5の内周端に達しようとする
部分には、この谷底部21に対してさらにドリル本体1
の内周側に後退するように一段傾斜しつつ切刃5内周端
側に向けて延びる谷形の第2シンニング部22が形成さ
れており、先端逃げ面2の中心の軸線O近傍においては
この第2シンニング部22が先端逃げ面2に交差してそ
の交差稜線部上に切刃5の内周端が形成される。ここ
で、この第2シンニング部22の谷底部の曲率半径は、
第1シンニング部20の谷底部21の曲率半径よりも小
さく、0.1mm未満とされており、場合によっては曲率
半径が0、すなわちこの谷底部が凹湾曲しないV字谷状
に形成されていてもよく、さらに第1シンニング部20
の谷底部21と同様にドリル本体1の後端側に向かうに
従い大きくなるようにされていてもよい。また、このよ
うに第1シンニング部20よりもさらに一段傾斜する第
2シンニング部22と先端逃げ面2との交差稜線部に切
刃5の内周端が形成されることにより、ドリル本体1先
端の一対の切刃5,5間の間隔すなわち先端逃げ面2の
中心に画成されるチゼルの幅は、第1シンニング部20
をそのまま先端逃げ面2に交差させて切刃5の内周端を
形成するのに比べて狭くなり、このチゼル幅は本実施形
態では0〜0.2mmの範囲とされていて、すなわちこれ
ら切刃5,5の内周端が軸線O上で一致するようにされ
ていてもよい。
Further, in the portion where the above-mentioned valley bottom portion 21 at the extreme end of the first thinning portion 20 is about to reach the inner peripheral edge of the cutting edge 5, the drill main body 1 is further added to the valley bottom portion 21.
A second valley-shaped thinning portion 22 that extends toward the inner peripheral end side of the cutting edge 5 while being inclined one step so as to recede toward the inner peripheral side is formed, and in the vicinity of the axis O at the center of the tip flank 2 The second thinning portion 22 intersects the tip flank 2 and the inner peripheral edge of the cutting edge 5 is formed on the intersecting ridge line portion. Here, the radius of curvature of the valley bottom of the second thinning portion 22 is
The radius of curvature is smaller than the radius of curvature of the valley bottom portion 21 of the first thinning portion 20 and less than 0.1 mm. In some cases, the radius of curvature is 0, that is, the valley bottom portion is formed in a V-shaped valley shape without concave curvature. Also, the first thinning section 20
Like the valley bottom portion 21 of the above, it may be formed so as to become larger toward the rear end side of the drill body 1. In addition, the inner peripheral edge of the cutting blade 5 is formed at the ridge line portion where the second thinning portion 22 and the tip flank 2 that are inclined further than the first thinning portion 20 in this way are formed, and thus the tip of the drill main body 1 is formed. The distance between the pair of cutting blades 5 and 5, that is, the width of the chisel defined at the center of the tip flank 2 is the first thinning portion 20.
Is narrower than that in which the inner peripheral end of the cutting edge 5 is formed by intersecting the tip flank 2 as it is, and this chisel width is in the range of 0 to 0.2 mm in the present embodiment. The inner peripheral ends of the blades 5 and 5 may be aligned on the axis O.

【0021】そして、さらにこの切刃5は、該切刃5に
直交する断面におけるそのすくい角γすなわち直角すく
い角が、ドリル本体1の内周から外周側に向かうに従い
漸次増大させられて該切刃5上の変移点Xに達し、この
変移点Xよりも外周側では外周側に向かうに従い漸次減
少させられるようにされている。すなわち、本実施形態
では、図4ないし図9に示すように上記すくい角γは、
切刃5上の1点において該切刃5に直交する断面をとっ
たとき、この切刃5に連なってすくい面となる上記内壁
面4の第1凸凹曲面部7,8が該断面においてなす曲線
が軸線Oを含んで上記1点を通る基準面に対し該1点に
おいてなす角度とされており、このすくい角γが図10
に線Yで示すように、上記1点が切刃5に沿ってドリル
本体1の内周側から外周側に向け移動したときには、該
切刃5上の所定の位置に設定された上記変移点Xに至る
まで漸次増大する傾向とされ、変移点Xで最大となり、
この変移点Xを越えてさらに外周側に移動したときには
変移してすくい角γが漸次減少する傾向となるようにさ
れている。
Further, the cutting edge 5 has a rake angle γ in a cross section orthogonal to the cutting edge 5, that is, a right angle rake angle, which is gradually increased from the inner circumference of the drill body 1 toward the outer circumference thereof. The transition point X on the blade 5 is reached, and the outer peripheral side of the transition point X is gradually reduced toward the outer peripheral side. That is, in this embodiment, as shown in FIGS. 4 to 9, the rake angle γ is
When a cross section orthogonal to the cutting edge 5 is taken at one point on the cutting edge 5, the first convex-concave curved surface portions 7 and 8 of the inner wall surface 4 which are continuous with the cutting edge 5 and serve as a rake surface are formed in the cross section. The curve is an angle formed at the one point with respect to the reference plane passing through the one point including the axis O, and this rake angle γ is shown in FIG.
As indicated by the line Y, when the one point moves from the inner peripheral side to the outer peripheral side of the drill body 1 along the cutting edge 5, the transition point set at a predetermined position on the cutting edge 5 It tends to gradually increase until reaching X, and becomes maximum at the transition point X,
When moving further to the outer peripheral side beyond the transition point X, there is a tendency for the rake angle γ to gradually decrease.

【0022】さらに、本実施形態ではこの変移点Xは、
切屑排出溝3の内壁面4の上記第1凸凹曲面部7,8が
軸線Oに直交する断面においてなす凸凹曲線の接点P1
を螺旋状の切屑排出溝4に沿って先端側に延長した位
置、すなわち図1に示すように切刃5の凹曲線状切刃部
16と凸曲線状切刃部17との変曲点周辺の変曲部に位
置させられている。因みに本実施形態では、上記変移点
Xは、ドリル本体1の軸線Oから径方向外周側に向け
て、この切刃5の回転半径r(=D/2)の82.6%
の位置(rに対する比率xが0.826の位置)に配設
され、図7に示すようにこの変移点Xで切刃5のすくい
角γは33°と最大となる。
Further, in this embodiment, this transition point X is
A contact point P1 of an irregular curve formed by the first curved surface portions 7 and 8 of the inner wall surface 4 of the chip discharge groove 3 in a cross section orthogonal to the axis O.
Is extended toward the tip side along the spiral chip discharge groove 4, that is, around the inflection point between the concave curved cutting edge portion 16 and the convex curved cutting edge portion 17 of the cutting edge 5 as shown in FIG. It is located in the inflection part of. Incidentally, in the present embodiment, the transition point X is 82.6% of the turning radius r (= D / 2) of the cutting edge 5 from the axis O of the drill body 1 toward the radially outer side.
7 (the ratio x to r is 0.826), and the rake angle γ of the cutting edge 5 reaches a maximum of 33 ° at this transition point X, as shown in FIG.

【0023】なお、切刃5が、本実施形態のように上記
凸凹曲線状切刃部16,17によってS字状に形成され
ている場合など曲線状である場合には、上記切刃5に直
交する断面は上記1点におけるこの曲線の接線に直交す
る断面をとればよい。また、上述のように先端逃げ面2
が内周側から外周側に向かうに従いドリル本体1の後端
側に向けて傾斜させられることにより切刃5に先端角が
付されている場合、この切刃5に直交する断面は上記1
点から後端側に向かうに従い内周側に向けて傾斜させら
れて軸線Oに斜交する面となる。さらに、切刃5の内周
端側にシンニング切刃部19が形成されている場合に
は、このシンニング切刃部19においてはすくい角γが
上述のように外周側に向かうに従い漸増する傾向となら
ずともよい。すなわち、上記すくい角γはこのシンニン
グ切刃部19を除いたドリル本体1の内周から外周側で
上述のような漸増・漸減傾向を呈すればよく、より具体
的には、ドリル本体1の上記芯厚dの大きさなどにもよ
るが、図10に示したように軸線Oからドリル本体1の
径方向外周側に向けて、切刃5の外周端15が軸線O回
りになす円の半径すなわち切刃5の回転半径r(=D/
2)の37.5%の位置、すなわち軸線Oから0.37
5×rの位置(比率xが0.375の位置)よりも外周
側でこのような傾向となればよい。
If the cutting edge 5 has a curved shape, such as the case where the cutting edge 5 is formed in the S shape by the uneven curved cutting edge portions 16 and 17 as in the present embodiment, the cutting edge 5 has a curved shape. The cross section orthogonal to each other may be a cross section orthogonal to the tangent to this curve at the above-mentioned one point. In addition, as described above, the tip flank 2
When the cutting blade 5 has a tip angle by being inclined toward the rear end side of the drill body 1 from the inner peripheral side toward the outer peripheral side, the cross section orthogonal to the cutting blade 5 has the above-mentioned 1
As it goes from the point toward the rear end side, the surface is inclined toward the inner peripheral side and obliquely intersects the axis O. Further, when the thinning cutting edge portion 19 is formed on the inner peripheral end side of the cutting edge 5, the rake angle γ in the thinning cutting edge portion 19 tends to gradually increase toward the outer peripheral side as described above. It doesn't have to be. That is, the rake angle γ may have the above-described gradual increase / decrease tendency from the inner circumference to the outer circumference of the drill body 1 excluding the thinning cutting edge portion 19. More specifically, Although depending on the size of the core thickness d and the like, as shown in FIG. 10, a circle formed by the outer peripheral end 15 of the cutting edge 5 around the axis O from the axis O toward the outer peripheral side in the radial direction of the drill body 1. Radius, that is, the turning radius r of the cutting edge 5 (= D /
2) 37.5% position, ie 0.37 from axis O
It suffices if such a tendency occurs on the outer peripheral side of the position of 5 × r (the position where the ratio x is 0.375).

【0024】従って、このように構成されたドリルにお
いては、上記切刃5に直交する断面における該切刃5の
すくい角(直角すくい角)γが、シンニング切刃部19
を除いたドリル本体1の内周から外周側に向かうに従い
漸次増大させられて該切刃5上の変移点Xに達するよう
にされているので、この変移点Xよりも内周側では、外
周側に向かうに従い軸線Oからの回転半径が大きくなる
ために切削速度が漸次増大して切削抵抗も大きくなるの
に対し、すくい角γも漸次大きくなってゆくため切刃5
の切れ味を高めてゆくことができ、増大する抵抗を抑え
ることができてドリル本体1に過大なトルクが作用する
のを防ぎ、ドリル本体1の折損や摩耗の進行を防止する
ことができる。その一方で、この変移点Xよりも外周側
では上記すくい角γは外周側に向かうに従い漸次減少さ
せられるようにされているので、切刃5の刃先角は逆に
漸次大きくなってゆくこととなり、このためドリル本体
1の最も外周側に位置して最大の切削抵抗が作用する切
刃5の外周端15側では、高い切刃強度を確保すること
ができ、この部分におけるチッピングや欠け、あるいは
逃げ面摩耗の早期の進行を防止することができる。この
ため、上記構成のドリルによれば、たとえ高速乾式切削
となるような過酷な加工条件においても、これら摩耗や
損傷によってドリル寿命が短縮されてしまうのを防ぐこ
とができ、長期に亙って安定かつ円滑な穴明け加工を行
うことが可能となる。しかも、本実施形態のドリルで
は、この切刃5を含めたドリル本体1の先端部にTi
N、TiCN、TiAlN等の硬質皮膜が被覆されてい
るので、ドリル本体1の耐摩耗性の向上を図ることがで
き、これによってもドリル寿命の一層の延長を促すこと
が可能となる。
Therefore, in the thus constructed drill, the rake angle (right angle rake angle) γ of the cutting edge 5 in the cross section orthogonal to the cutting edge 5 is the thinning cutting edge portion 19.
Since the drill body 1 is gradually increased from the inner circumference to the outer circumference to reach the transition point X on the cutting edge 5, the outer circumference is closer to the inner periphery than the transition point X. As the turning radius from the axis O increases toward the side, the cutting speed gradually increases and the cutting resistance also increases, while the rake angle γ also gradually increases, so the cutting edge 5 increases.
The sharpness of the drill body can be increased, the increasing resistance can be suppressed, an excessive torque is prevented from acting on the drill body 1, and breakage and progress of wear of the drill body 1 can be prevented. On the other hand, on the outer peripheral side of the transition point X, the rake angle γ is designed to be gradually reduced toward the outer peripheral side, so that the cutting edge angle of the cutting edge 5 is gradually increased conversely. Therefore, on the outer peripheral end 15 side of the cutting edge 5 located on the outermost peripheral side of the drill body 1 where the maximum cutting resistance acts, high cutting edge strength can be secured, and chipping or chipping at this portion, or It is possible to prevent early progress of flank wear. Therefore, according to the drill having the above configuration, it is possible to prevent the drill life from being shortened due to these abrasions and damages even under severe processing conditions such as high-speed dry cutting, and for a long period of time. It is possible to perform stable and smooth drilling. Moreover, in the drill of the present embodiment, the tip of the drill body 1 including the cutting edge 5 has Ti
Since the hard coating of N, TiCN, TiAlN or the like is coated, it is possible to improve the wear resistance of the drill body 1, and it is possible to further prolong the life of the drill.

【0025】なお、このように切刃5のすくい角γがド
リル本体1の内周から外周側に向けて漸増傾向から漸減
傾向へと変移する変移点Xは、これが切刃5上において
ドリル本体1の内周側に位置しすぎていると、この変移
点Xよりも内周側のすくい角γが外周側に向けて漸増傾
向となる部分が短くなりすぎ、逆にすくい角γが外周側
に向けて漸減傾向となる部分が長くなってしまうため、
上記構成を採ることによる切削抵抗の低減効果が十分に
奏功されなくなるおそれが生じる。しかしながら、かと
いってこの変移点Xが切刃5上においてドリル本体1の
外周側に位置しすぎていると、上記とは逆にすくい角γ
が外周側に向けて漸減傾向となる部分が短くなり、特に
高速乾式切削の場合において、最も大きな抵抗が作用す
る切刃5の外周端15側において十分な切刃強度を確保
することが困難となるおそれが生じる。このため、この
変移点Xの位置は、ドリル本体1の軸線Oから径方向外
周側に向けて、切刃5の回転半径rすなわち切刃5の外
径Dの1/2に対し、70〜90%の範囲内に位置させ
られるのが望ましい。
Incidentally, the transition point X at which the rake angle γ of the cutting edge 5 changes from the inner circumference of the drill body 1 toward the outer circumference side to gradually decrease from the gradual increase tendency to the gradual decrease tendency in this way is the rake angle γ on the cutting body 5. If the rake angle γ on the inner peripheral side of the transition point X is too large, the portion where the rake angle γ on the inner peripheral side gradually increases toward the outer peripheral side becomes too short, and conversely the rake angle γ becomes the outer peripheral side. Since the part that tends to gradually decrease toward
There is a possibility that the effect of reducing the cutting resistance by adopting the above configuration may not be sufficiently achieved. However, if the transition point X is located too close to the outer peripheral side of the drill body 1 on the cutting edge 5, contrary to the above, the rake angle γ
Is gradually reduced toward the outer peripheral side, and in the case of high speed dry cutting, it is difficult to secure sufficient cutting edge strength on the outer peripheral end 15 side of the cutting edge 5 where the greatest resistance acts. May occur. Therefore, the position of the transition point X is 70 to 70 with respect to 1/2 of the rotation radius r of the cutting edge 5, that is, the outer diameter D of the cutting edge 5 from the axis O of the drill body 1 toward the outer peripheral side in the radial direction. It is desirable to be located within 90%.

【0026】ところで、本実施形態では上述のように、
切刃5の外周端15側にドリル回転方向Tに凸となる曲
線状をなす凸曲線状切刃部16が形成されるとともに、
この凸曲線状切刃部16の内周側には逆にドリル回転方
向Tの後方側に凹となる曲線状をなして上記凸曲線状切
刃部16に滑らかに連なる凹曲線状切刃部17が形成さ
れている。このため、上記凸曲線状切刃部16の外周
側、すなわち最も大きな切削抵抗が作用する切刃5の外
周側では、切刃5の径方向すくい角が外周側に向かうに
従い漸次減少させられて負角側へ大きくされるために一
層確実に切刃強度を確保することができるとともに、特
にドリル本体1外周のマージン部6と切刃5との交差部
の角度を大きくすることができるので、この交差部にお
けるドリル本体1の強度を向上させてチッピングや欠け
の発生を防止することができる。その一方で、この凸曲
線状切刃部16とその内周側に形成される上記凹曲線状
切刃部17とは滑らかな連続して形成されているので、
例えば切刃がその中間部で角度をつけてドリル回転方向
の後方側に後退した外方コーナー切刃を有する上記特開
2000−198011号公報記載のドリルのように上
記中間部の内外周で切屑が分断されることがなく、凹曲
線状切刃部17によって切屑を内周側に巻き込むように
して十分にカールさせ、円滑に処理することが可能とな
る。
By the way, in the present embodiment, as described above,
On the outer peripheral end 15 side of the cutting blade 5, a convex curved cutting edge portion 16 having a curved shape that is convex in the drill rotation direction T is formed, and
On the inner peripheral side of the convex curved cutting edge portion 16, on the contrary, a concave curved curved cutting edge portion is formed which is concave toward the rear side in the drill rotation direction T and smoothly connects to the convex curved cutting edge portion 16. 17 are formed. Therefore, on the outer peripheral side of the convex curved cutting edge portion 16, that is, on the outer peripheral side of the cutting edge 5 on which the largest cutting resistance acts, the radial rake angle of the cutting edge 5 is gradually reduced toward the outer peripheral side. Since the cutting edge strength can be ensured more reliably because it is increased to the negative angle side, in particular, the angle of the intersection of the margin portion 6 and the cutting edge 5 on the outer periphery of the drill body 1 can be increased, It is possible to improve the strength of the drill body 1 at the intersection and prevent chipping or chipping. On the other hand, since the convex curved cutting edge portion 16 and the concave curved cutting edge portion 17 formed on the inner peripheral side thereof are formed smoothly and continuously,
For example, as in the drill described in JP 2000-198011 A, in which the cutting edge has an outer corner cutting edge that is angled at its intermediate portion and is retracted rearward in the direction of rotation of the drill, chips are formed on the inner and outer circumferences of the intermediate portion. Is not divided, and the concave curved cutting edge portion 17 allows the chips to be rolled up toward the inner peripheral side to be sufficiently curled and smoothly processed.

【0027】そして、さらに本実施形態では、このよう
に構成された切刃5の凹曲線状切刃部17とが凸曲線状
切刃部16とが滑らかに接して曲線が変曲する変曲点近
傍の変曲部に上記変移点Xが位置するようにされてい
て、この変曲部で切刃5の上記すくい角γが外周側に向
けて漸増傾向から漸減傾向へと変移するようにされてい
る。しかるに、このように切刃5のすくい角γが変移す
る部分では、該切刃5に作用する切削抵抗も外周側に向
けて漸減傾向から漸増傾向へと変移させられるため、こ
の切削抵抗による切刃5への応力も集中しがちであるの
に対し、本実施形態においてはこの変移点を上述のよう
に凹凸曲する切刃5の凸凹曲線状切刃部16,17が滑
らかに接する変曲部に位置させることにより、例えばこ
の変移点Xが凸曲線状切刃部16の回転方向Tに最も凸
となる部分に位置していたり、逆に凹曲線状切刃部17
の回転方向T後方側に最も凹んだ部分に位置していたり
した場合に比べ、かかる応力を分散させることができ
て、応力集中により変移点Xの近傍で切刃5に損傷が生
じたりするのを防止することが可能となる。
Further, in the present embodiment, the inflection in which the concave curved cutting edge portion 17 and the convex curved cutting edge portion 16 of the cutting edge 5 thus constructed are in smooth contact with each other to bend the curve. The transition point X is located at an inflection portion near the point, and the rake angle γ of the cutting edge 5 transitions from the gradually increasing tendency toward the outer peripheral side to the gradually decreasing tendency at the inflection portion. Has been done. However, at the portion where the rake angle γ of the cutting edge 5 changes in this way, the cutting resistance acting on the cutting edge 5 is also changed from the gradually decreasing tendency to the gradually increasing tendency toward the outer peripheral side. While stress on the blade 5 tends to concentrate, in the present embodiment, an inflection in which the concave-convex curved cutting edge portions 16 and 17 of the cutting edge 5 which has this transition point unevenly curved as described above makes a smooth contact. By arranging it at the portion, for example, this transition point X is located at the most convex portion in the rotational direction T of the convex curved cutting edge portion 16, or conversely, the concave curved cutting edge portion 17 is located.
In comparison with the case where the cutting edge 5 is located in the most recessed portion on the rear side in the rotation direction T, the stress can be dispersed, and the stress concentration causes damage to the cutting edge 5 in the vicinity of the transition point X. Can be prevented.

【0028】なお、このように変移点Xを切刃5の変曲
部に位置させる場合、本実施形態ではこの変曲部(変曲
点)が上記内壁面4の第1凸凹曲面部7,8の接点P1
の延長上に位置させられていて、このP1の位置が軸線
Oを中心として切刃5の外径Dの2/3の直径を有する
円よりも外周側、より望ましくは外径Dの5/6の直径
を有する円よりも外周側に位置させられるとされている
ので、これと上述した変移点Xの切刃5の回転半径rに
対する範囲とを勘案すると、この回転半径rに対して7
0〜83%の範囲内に位置させられるのがより一層望ま
しい。ただし、この変移点Xは必ずしも厳密に上記切刃
5の変曲点と一致させられている必要はなく、上述のよ
うに凸曲線状切刃部16の回転方向Tに最も凸となる部
分や凹曲線状切刃部17の回転方向T後方側に最も凹ん
だ部分に位置していたりしなければ、これらの部分の間
の上記変曲点の近傍に配設されていてもよい。
When the transition point X is located at the inflection portion of the cutting edge 5 in this way, in this embodiment, the inflection portion (inflection point) is the first uneven curved surface portion 7 of the inner wall surface 4. Contact P1 of 8
Is located on the extension side of a circle having a diameter of 2/3 of the outer diameter D of the cutting edge 5 about the axis O and more preferably 5 / of the outer diameter D. Since it is supposed to be positioned on the outer peripheral side of the circle having the diameter of 6, when considering this and the range of the transition point X with respect to the rotation radius r of the cutting edge 5, it is 7 with respect to this rotation radius r.
It is even more desirable to be located within the range of 0-83%. However, this transition point X does not necessarily have to be exactly coincident with the inflection point of the cutting edge 5, and as described above, the most convex portion in the rotational direction T of the convex curved cutting edge portion 16 or As long as it is not located at the most recessed portion on the rear side of the concave curved cutting edge portion 17 in the rotation direction T, it may be disposed in the vicinity of the inflection point between these portions.

【0029】さらに、本実施形態における切刃5の上記
すくい角γの変移は図10に線Yで示した通りである
が、本発明に係るドリルにおいては、この図10に示し
た線Aと線Bとで囲まれる範囲内ですくい角γが変移さ
せられるのが望ましく、これを近似式で表すと、上記軸
線Oからの径方向外周側に向けての上記切刃5の回転半
径rの37.5%以上82.6%未満の範囲の位置で
は、回転半径rに対するこの位置の上記軸線Oからの半
径の比率xについて次式1により近似される角度yの±
7°の範囲において、また上記切刃5の回転半径rの8
2.6%以上100%までの範囲の位置では上記比率x
について次式2により近似される角度yの±7°の範囲
において、それぞれ変移させられるのが望ましい。
Further, the change of the rake angle γ of the cutting edge 5 in the present embodiment is as shown by the line Y in FIG. 10, but in the drill according to the present invention, the line A shown in FIG. It is desirable that the rake angle γ be changed within a range surrounded by the line B. When this is expressed by an approximate expression, the turning radius r of the cutting edge 5 toward the outer peripheral side in the radial direction from the axis O is shown. At a position in the range of 37.5% or more and less than 82.6%, the ratio y of the radius from the axis O at this position to the radius of gyration r is approximated by ± 1 of the angle y approximated by the following equation 1.
In the range of 7 °, the turning radius r of the cutting edge 5 is 8
In the position within the range of 2.6% to 100%, the above ratio x
It is desirable that the displacement be performed in the range of ± 7 ° of the angle y approximated by the following Expression 2.

【0030】[0030]

【数5】 [Equation 5]

【0031】[0031]

【数6】 [Equation 6]

【0032】これは、すなわち、上述のように変移する
切刃5のすくい角γが上記式1、2で得られる角度yの
+7°の範囲を上回って、すくい角γが線Yに対し大き
くなりすぎると、このすくい角γが大きくなった部分で
切刃5の刃先角が小さくなりすぎ、特に高速乾式切削に
おいては切刃強度を十分に確保することができなくなっ
て切刃5に損傷が生じるおそれがあるからである。その
一方で、逆にすくい角γの変移が式1、2の角度yの−
7°の範囲を下回って、すくい角γが線Yに対し小さく
なりすぎると、切削抵抗の低減が確実に図られなくなっ
て切刃5の摩耗が促進されたり、過大なトルクが生じて
ドリル本体1の折損を招くおそれが生じる。このため、
上記切刃5のすくい角γは、上述のように式1、2の角
度yの±7°の範囲内とされるのが望ましいのである。
This means that the rake angle γ of the cutting edge 5 which is displaced as described above exceeds the range of + 7 ° of the angle y obtained by the above equations 1 and 2, and the rake angle γ is larger than the line Y. If it becomes too large, the cutting edge angle of the cutting edge 5 becomes too small at the portion where the rake angle γ becomes large, and in particular in high speed dry cutting, the cutting edge strength cannot be sufficiently secured and the cutting edge 5 is damaged. This is because it may occur. On the other hand, conversely, the deviation of the rake angle γ is − of the angle y of the equations 1 and 2.
If the rake angle γ becomes too small with respect to the line Y below the range of 7 °, the cutting resistance cannot be reliably reduced, the wear of the cutting edge 5 is promoted, and excessive torque is generated to cause the drill body. 1 may be broken. For this reason,
It is desirable that the rake angle γ of the cutting edge 5 be within the range of ± 7 ° of the angle y of the expressions 1 and 2 as described above.

【0033】ここで、次表1は、図10に線Yで示した
すくい角γの変移をなす本実施形態のドリルYと、すく
い角γの変移が式1、2の角度y+7°を上回るように
されたドリルA、逆にすくい角γの変移が式1、2の角
度y−7°を下回るようにされたドリルB、およびこれ
らに対する比較例として上述した特許第2674124
号公報に記載されたドリルEと特開2000−1980
11号公報に記載されたドリルFとで、それぞれ切削速
度vc=80,150m/minで穴明け加工を行った
場合の、ドリル寿命を比較したものである。また、図1
1は、図10と同様に本実施形態のドリルYにおける切
刃5の位置に対するすくい角γの変移を示す線Yと、比
較例の上記ドリルE,Fにおける切刃の位置に対するす
くい角(直角すくい角)の変移を示す線E,Fとをまと
めて表したものである。
Here, the following Table 1 shows the drill Y of the present embodiment which makes the transition of the rake angle γ shown by the line Y in FIG. 10, and the transition of the rake angle γ exceeds the angle y + 7 ° of the expressions 1 and 2. And the drill B whose displacement of the rake angle γ is smaller than the angle y-7 ° of the formulas 1 and 2, and the patent No. 2674124 described above as a comparative example for these.
And the drill E described in Japanese Patent Laid-Open No. 2000-1980
11 is a comparison of the drill life when drilling is performed at a cutting speed vc = 80 and 150 m / min with the drill F described in Japanese Patent Publication No. Also, FIG.
As in FIG. 10, reference numeral 1 denotes a line Y showing a change in the rake angle γ with respect to the position of the cutting edge 5 in the drill Y of the present embodiment, and rake angle (right angle with respect to the position of the cutting edge in the drills E and F of the comparative example). The lines E and F showing the change in the rake angle are collectively shown.

【0034】ここで、このときのドリルY,A,B,
E,Fはいずれも切刃の外径Dが8mmのものであり、S
50C材よりなる被削材に送り速度fr=0.2mm/rev
で穴深さld=25mmの貫通穴を明ける加工を行って、
その寿命に至るまでの切削長によりドリル寿命を比較し
た。なお、これらの加工は、当初乾式により行っていた
が、特にドリルE,Fでは切削速度vc=80m/mi
nでも比較に至る間もなく損傷が生じて加工が不能とな
ってしまったので、すべてのドリルについて水溶性切削
油剤を用いた湿式切削とした。また、表1の結果とし
て、○印で示されているのは切刃が正常摩耗を呈してい
て、しかも穴数4000(切削長にして約100m)を
加工してもさらに継続して使用可能であったものであ
り、△印は正常摩耗を呈してはいるが○印のものよりは
早期に寿命が費えたものであって、表中の括弧内は○印
のものによる上記加工穴数に対する穴明け可能であった
切削長を示している。一方、×印は、穴明け加工中に異
常摩耗が生じてその時点で寿命が費えたものであり、そ
の原因を合わせて記載してある。
Here, the drills Y, A, B, at this time,
Both E and F have an outer diameter D of the cutting edge of 8 mm, and S
Feed rate fr = 0.2 mm / rev for 50 C workpiece
With a hole depth of ld = 25mm
The drill life was compared by the cutting length up to that life. Note that these processes were initially performed by a dry method, but especially with the drills E and F, the cutting speed vc = 80 m / mi
Even in the case of n, damage occurred soon before comparison and machining became impossible, so that wet drilling using a water-soluble cutting fluid was performed for all drills. In addition, as a result of Table 1, what is indicated by ○ is that the cutting edge shows normal wear, and even if the number of holes is 4000 (the cutting length is about 100 m), it can be used continuously. The symbol Δ indicates normal wear, but the service life was earlier than that of the symbol ○. It shows the cutting length that could be drilled for. On the other hand, the mark "X" indicates that abnormal wear occurred during drilling and the life was consumed at that time, and the cause is also described.

【0035】[0035]

【表1】 [Table 1]

【0036】この表1の結果より、切削速度vc=80
m/minと小さいときでも、比較のドリルE,Fでは
その寿命が実施形態のドリルYやドリルAの70%程度
であり、切削速度vc=150m/minと大きくなっ
ては、肩部すなわち切刃の外周端とマージン部との交差
部分でのドリル本体の欠損や初期のドリル本体の折損に
よって早期に寿命が費えてしまった。ところが、これに
対して実施形態によるドリルYでは、切削速度vc=8
0m/minの場合は勿論、vc=150m/minの
高速切削の場合でも上記穴数では寿命に至ることはな
く、またすくい角γの変移が上記線Aを上回ったり線B
を下回ったりしているドリルA,Bでも、すくい角γが
外周側に向けて漸増傾向から漸減傾向に変移しているた
め、ドリルYよりは寿命は短いものの、ある程度の穴数
を加工可能なドリル寿命の延長を図ることができてい
る。因みに、実施形態のドリルYでは、上記と同じ課好
条件の穴明けを乾式で行っても、上記穴数までは欠損や
折損等の異常摩耗が生じることはなかった。
From the results shown in Table 1, the cutting speed vc = 80
Even when it is as small as m / min, the comparative drills E and F have a life of about 70% that of the drills Y and A of the embodiment, and when the cutting speed vc = 150 m / min is large, the shoulder portion, i.e. Due to the lack of the drill body at the intersection of the outer peripheral edge of the blade and the margin and the initial breakage of the drill body, the service life was consumed early. On the other hand, in the drill Y according to the embodiment, the cutting speed vc = 8
Not only in the case of 0 m / min, but also in the case of high-speed cutting of vc = 150 m / min, the above-mentioned number of holes does not reach the end of life, and the deviation of the rake angle γ exceeds the line A or the line B.
Even with drills A and B whose diameters are below the range, since the rake angle γ changes from the gradual increase tendency to the gradual decrease tendency toward the outer peripheral side, although the life is shorter than that of the drill Y, it is possible to machine a certain number of holes. The life of the drill can be extended. Incidentally, in the drill Y of the embodiment, even if the dry drilling was performed under the same favorable conditions as described above, abnormal wear such as chipping or breakage did not occur up to the number of holes.

【0037】なお、これらに加えて上記実施形態では、
切屑排出溝3の先端側にシンニング部18が形成されて
いて、これにより切刃5の内周端側は先端逃げ面2の中
心に向かうシンニング切刃部19とされており、このシ
ンニング切刃部19と上記凹曲線状切刃部17とが交差
する部分が両切刃部17,19に滑らかに連なる凸曲線
状または直線状とされるとともに、シンニング切刃部1
9に連なる第1シンニング部20は谷底部21が凹曲し
た谷形とされているので、切刃5の全長に亙って上述の
ような折曲点が形成されることはなく、しかもこのシン
ニング切刃部19によって生成された切屑の内周側部分
をも、図3に黒塗り矢線で示すように第1シンニング部
20の谷底部21断面がなす凹曲線に沿って内周側に巻
き込むようにカールさせることができる。このため、上
記凹曲線状切刃部17によって切屑が内周側に巻き込ま
れるのと相俟って、一層の切屑処理性の向上を図ること
ができ、特に難削材の加工において効果的である。な
お、本実施形態ではこの第1シンニング部20の谷底部
21がなす凹曲線の曲率半径を0.1〜0.5mmとして
いるが、これは、この曲率半径がこれよりも大きいと上
記切屑の内周側部分を十分に巻き込んでカールさせるこ
とができなくなるおそれがある一方、逆にこれよりも小
さいとこの切屑の内周側部分がシンニング部18内にお
いて詰まりを生じるおそれがあるからである。
In addition to these, in the above embodiment,
A thinning portion 18 is formed on the tip end side of the chip discharge groove 3, whereby the inner peripheral end side of the cutting edge 5 is a thinning cutting edge portion 19 that extends toward the center of the tip flank surface 2. A portion where the portion 19 and the concave curved cutting edge portion 17 intersect with each other is formed into a convex curved shape or a linear shape that smoothly connects to both cutting edge portions 17 and 19, and the thinning cutting edge portion 1
Since the first thinning portion 20 connected to 9 has a valley shape in which the valley bottom portion 21 is concavely curved, the above-mentioned bending point is not formed over the entire length of the cutting blade 5, and The inner peripheral side portion of the chips generated by the thinning cutting edge portion 19 is also moved to the inner peripheral side along a concave curve formed by the cross section of the valley bottom portion 21 of the first thinning portion 20 as shown by a black arrow in FIG. It can be curled so that it can be rolled up. Therefore, in combination with the fact that the concave curved cutting edge portion 17 causes the chips to be caught on the inner peripheral side, the chip disposability can be further improved, which is particularly effective in processing difficult-to-cut materials. is there. In the present embodiment, the radius of curvature of the concave curve formed by the valley bottom portion 21 of the first thinning portion 20 is set to 0.1 to 0.5 mm. This is because if the radius of curvature is larger than this, This is because it is possible that the inner peripheral side portion cannot be sufficiently rolled up and curled, while conversely, if it is smaller than this, the inner peripheral side portion of the chips may be clogged in the thinning portion 18.

【0038】また、このシンニング部18の先端には、
第1シンニング部20の上記谷底部21からさらに一段
傾斜して先端逃げ面2に達する第2シンニング部22が
形成されていて、この第2シンニング部22と先端逃げ
面2との交差稜線部上に切刃5の内周端が形成されてお
り、しかもこの第2シンニング部22の溝底の曲率半径
が0.1mm未満と上記谷底部21よりも小さくされてい
ることから、この切刃5の内周端はより内周側に配置さ
れることとなり、これによってチゼルの幅が0〜0.2
mmと極短い幅とされている。このため、当該ドリルが加
工物に食い付く際の食い付き性や直進安定性の向上を図
ってさらに安定かつ高精度の加工を行うことができると
ともに、ドリル本体1にその軸線方向に作用するスラス
ト力を抑えることことができて、ドリル駆動力の一層の
軽減を促すことも可能となる。しかも、このようにシン
ニング部18が切刃5の内周端に向けて傾斜の大きくな
る第1、第2の複数のシンニング部20,22によって
形成されることにより、先端の第2シンニング部22の
溝底に沿った断面におけるドリル本体1の先端角度は、
単一のシンニング部の溝底を同じチゼル幅となるように
傾斜させた場合に比べて大きくなるので、本実施形態に
よればこのドリル本体1先端の回転中心周辺における強
度も十分に確保して、食い付き時の衝撃的負荷などによ
っても損傷の生じることのないドリルを提供することが
できる。ただし、第1シンニング部20だけでドリル本
体1の食い付き性や直進安定性と強度とが確保できるの
であれば、第2シンニング部22はなくてもよい。
At the tip of the thinning portion 18,
A second thinning portion 22 is formed to reach the tip flank 2 by further inclining one step from the valley bottom portion 21 of the first thinning portion 20, and on the ridge line portion where the second thinning portion 22 and the tip flank 2 intersect. Since the inner peripheral edge of the cutting edge 5 is formed on the cutting edge 5 and the radius of curvature of the groove bottom of the second thinning portion 22 is less than 0.1 mm, which is smaller than that of the valley bottom portion 21, the cutting edge 5 The inner circumference end of the chisel is located closer to the inner circumference side, so that the width of the chisel is 0 to 0.2.
The width is very short, mm. Therefore, when the drill bites into the workpiece, the biting property and straight running stability can be improved to perform more stable and highly accurate machining, and the thrust acting on the drill body 1 in the axial direction thereof can be achieved. The force can be suppressed, and it becomes possible to promote further reduction of the drill driving force. Moreover, since the thinning portion 18 is formed by the first and second plurality of thinning portions 20 and 22 having a large inclination toward the inner peripheral edge of the cutting edge 5 in this manner, the second thinning portion 22 at the tip is formed. The tip angle of the drill body 1 in the cross section along the groove bottom of
Since the groove bottom of a single thinning portion becomes larger than that in the case where the groove bottom is inclined so as to have the same chisel width, according to the present embodiment, sufficient strength is secured around the rotation center of the tip of the drill body 1. It is possible to provide a drill that is not damaged by an impact load when biting. However, the second thinning portion 22 may be omitted as long as the biting property of the drill body 1 and the straight running stability and strength can be secured only by the first thinning portion 20.

【0039】一方、このような凸凹曲線状切刃部16,
17を備えた切刃5を形成するのに、本実施形態では、
切屑排出溝3のドリル回転方向Tを向く内壁面4にこれ
ら凸凹曲線状切刃部16,17にそれぞれ連なる第1凸
凹曲面部7,8を形成しており、従ってこの切刃5によ
って分断されることなく幅方向に連続して生成された切
屑は、全体的に内周側に巻き込まれて第1凹曲面部8に
摺接しつつ押し付けられることによりさらに小さくカー
ルさせられ、ドリル本体1の回転に伴い後端側に押し出
されて排出される。さらに、この第1凹曲面部7の内周
側には、ドリル回転方向T後方側を向く切屑排出溝3の
内壁面9の第2凹曲面部12が、この第1凹曲面部7と
滑らかに連なるように形成されており、この第2凹曲面
部12は第1凹曲面部8とは逆にドリル回転方向Tに凹
むように形成されているので、第1凹曲面部8によって
さらに小さくカールされた切屑の流れを阻害することな
く、上述のようにして円滑に排出される。しかも、本実
施形態ではこの第2凹曲面部12の外周側にやはり滑ら
かに連なるように第2凸曲面部11が形成されており、
従って切屑の流れがヒール部10側で阻害されることも
なく、またこのヒール部10におけるドリル本体1の強
度も確保することができる。
On the other hand, such an uneven curved cutting edge portion 16,
In order to form the cutting edge 5 provided with 17, in the present embodiment,
On the inner wall surface 4 of the chip discharge groove 3 which faces the drill rotation direction T, first concave and convex curved surface portions 7 and 8 which are respectively continuous with the concave and convex curved cutting edge portions 16 and 17 are formed, and are thus divided by the cutting edge 5. The chips that are continuously generated in the width direction without being rolled up are curled further by being rolled up on the inner peripheral side and pressed against the first concave curved surface portion 8 while slidingly contacted, and the rotation of the drill body 1 is increased. Along with that, it is pushed out to the rear end side and discharged. Further, on the inner peripheral side of the first concave curved surface portion 7, the second concave curved surface portion 12 of the inner wall surface 9 of the chip discharge groove 3 facing the rear side in the drill rotation direction T is smooth with the first concave curved surface portion 7. Since the second concave curved surface portion 12 is formed so as to be recessed in the drill rotation direction T contrary to the first concave curved surface portion 8, the second concave curved surface portion 12 is further reduced by the first concave curved surface portion 8. The curled chips are smoothly discharged as described above without obstructing the flow of the chips. Moreover, in the present embodiment, the second convex curved surface portion 11 is formed on the outer peripheral side of the second concave curved surface portion 12 so as to be smoothly continuous,
Therefore, the flow of chips is not blocked on the heel portion 10 side, and the strength of the drill body 1 at the heel portion 10 can be secured.

【0040】さらに本実施形態では、これら第1、第2
凹曲面部8,12の凹み量L1,L2を、第1凹曲面部
8については軸線Oと内壁面4の外周端13とを結ぶ第
1仮想直線S1から切刃5の外径Dに対して−0.06
×D〜0の範囲となるように(ただし、ドリル回転方向
T後方側が負)、また第2凹曲面部12については軸線
Oにおいて上記第1仮想直線S1と直交する第2仮想直
線S2から−0.06×D〜0.06×Dの範囲となる
ように(ただし、ドリル回転方向T側が負)それぞれ設
定されており、これにより切屑を強すぎず弱すぎずに第
1、第2凹曲面部8,12に摺接させて、適度なブレー
キング作用を与えることができる。このため、過大なブ
レーキング作用によって切屑が潰れて円滑な排出性が損
なわれたりドリル回転駆動力の増大を招いたりすること
なく、しかしながら確実に切屑をカールさせて処理する
ことができる。なお、このような作用効果をより確実に
奏功せしめるには、本実施形態のように軸線Oに直交す
る断面において、第1凹曲面部8がなす凹曲線(凹円
弧)の曲率半径R2は切刃5の外径Dに対して0.18
〜0.35×Dの範囲に、また第2凹曲面部12の曲率
半径R4は0.2〜0.5×Dの範囲に、それぞれ設定
されるのが望ましい。
Further, in the present embodiment, these first and second
With respect to the concave amounts L1 and L2 of the concave curved surface portions 8 and 12, from the first virtual straight line S1 connecting the axis O and the outer peripheral end 13 of the inner wall surface 4 to the outer diameter D of the cutting edge 5 in the first concave curved surface portion 8. -0.06
In order to be in the range of xD to 0 (however, the rear side of the drill rotation direction T is negative), and for the second concave curved surface portion 12 from the second virtual straight line S2 orthogonal to the first virtual straight line S1 at the axis O- It is set so as to fall within the range of 0.06 × D to 0.06 × D (however, the drill rotation direction T side is negative), so that the first and second concaves are not too weak and not too weak. It can be brought into sliding contact with the curved surface portions 8 and 12 to give an appropriate braking action. For this reason, the chips can be reliably curled and processed without causing the chips to be crushed by an excessive braking action to impair the smooth discharging property and to increase the drill rotation driving force. In order to more reliably bring out such an effect, the curvature radius R2 of the concave curve (concave arc) formed by the first concave curved surface portion 8 is cut in the cross section orthogonal to the axis O as in the present embodiment. 0.18 for outer diameter D of blade 5
It is desirable that the radius of curvature R4 of the second concave curved surface portion 12 be set to a range of 0.2 to 0.5 × D, respectively.

【0041】また、本実施形態では、これら第1、第2
凹曲面部8,12間においても、軸線Oに直交する断面
において第2凹曲面部12がなす凹曲線の曲率半径すな
わち上記半径R4が、第1凹曲面部8がなす凹曲線の曲
率半径すなわち上記半径R2よりも大きくなるようにさ
れており、従って切刃5によって生成された切屑を、ま
ず比較的小さな半径R2の第1凹曲面部8に摺接させる
ことにより、この切屑に十分な巻き癖をつけてカールさ
せるとともに、こうしてカールされた切屑を比較的大き
な半径R4の第2凹曲面部12側に流出させることによ
り、この第2凹曲面部12においては切屑があまり強く
押し付けられることがなくなり、より円滑な排出を促す
とともにドリル回転駆動力の一層の軽減を図ることがで
きる。しかも、これら第1、第2凹曲面部8,12がな
す凹曲線が、本実施形態では1の上記接点P3で接して
連続する凹曲線を描くようにされており、第1凹曲面部
8から第2凹曲面部12への切屑の流れをよりスムーズ
にして、一層円滑な切屑排出を促すことが可能となる。
Further, in the present embodiment, these first and second
Even between the concave curved surface portions 8 and 12, the radius of curvature of the concave curve formed by the second concave curved surface portion 12, that is, the radius R4 in the cross section orthogonal to the axis O, is the radius of curvature of the concave curve formed by the first concave curved surface portion 8, that is, It is designed to be larger than the radius R2, so that the chips generated by the cutting blade 5 are first slidably contacted with the first concave curved surface portion 8 having the relatively small radius R2, so that the chips are sufficiently wound. By curling with a habit and allowing the curled chips to flow out toward the second concave curved surface portion 12 side having a relatively large radius R4, the chips may be pressed too strongly in the second concave curved surface portion 12. It is possible to promote smoother discharge and further reduce the driving force for rotating the drill. Moreover, in the present embodiment, the concave curve formed by the first and second concave curved surface portions 8 and 12 is designed to draw a continuous concave curve in contact with the contact point P3 of 1. It becomes possible to make the flow of the chips from the second concave curved surface portion 12 smoother to promote smoother chip discharge.

【0042】ただし、このように第1、第2凹曲面部
8,12を、その断面がなす凹曲線が1の接点P3で接
して滑らかに連なるように形成する代わりに、例えば図
12に示すように、これら第1、第2凹曲面部8,12
の間に、軸線Oに直交する断面において第1凹曲面部8
がなす凹曲線と第2凹曲面部12がなす凹曲線との双方
に接点P4,P5で接する接線状をなす接続面23を形
成して、この接続面23を介して両凹曲面部8,12が
滑らかに連なるようにしてもよい。この場合にも、第1
凹曲面部8によって巻き癖がつけられた切屑を、その流
れを損なうことなく、しかもこの接続面23に強く押し
付けてドリル回転駆動力の増大を招いたりすることもな
く、第2凹曲面部12側に送り出して円滑に排出するこ
とが可能となる。また、その一方で、このような接続面
23を第1、第2凹曲面部8,12間に介在させた場合
には、これら第1、第2凹曲面部8,12の曲率半径R
2,R4に制限されることなく切屑排出溝3の溝幅を設
定することができるので、例えば上記とは逆に加工物の
材質などに応じて第2凹曲面部12にも切屑を十分に摺
接させてカールさせなければならない場合にその曲率半
径R4を小さくしたとしても、溝幅は十分に大きく確保
して円滑な切屑排出性を維持することも可能となる。
However, instead of forming the first and second concave curved surface portions 8 and 12 in such a manner that the concave curves formed by the cross-sections thereof are in contact with each other at the contact point P3 and are smoothly continuous, for example, shown in FIG. As described above, the first and second concave curved surface portions 8 and 12
Between the first concave curved surface portion 8 in the cross section orthogonal to the axis O.
Is formed on both the concave curve formed by the second concave curved surface portion 12 and the concave curve formed by the second concave curved surface portion 12, and a tangential connecting surface 23 that is in contact with the contact points P4 and P5 is formed. 12 may be smoothly connected. Also in this case, the first
The second concave curved surface portion 12 does not impair the flow of the chips having a curl due to the concave curved surface portion 8 and further strongly press against the connecting surface 23 to increase the drill rotation driving force. It becomes possible to discharge it smoothly to the side. On the other hand, when such a connecting surface 23 is interposed between the first and second concave curved surface portions 8 and 12, the radius of curvature R of the first and second concave curved surface portions 8 and 12 is
Since the groove width of the chip discharge groove 3 can be set without being limited to 2 and R4, for example, conversely to the above, the second concave curved surface portion 12 can be sufficiently chipped depending on the material of the workpiece. Even if the radius of curvature R4 is made small when it must be slidably contacted and curled, it is possible to secure a sufficiently large chip width and maintain a smooth chip discharging property.

【0043】さらに、本実施形態では、上記第1、第2
凸曲面部7,11が上記断面においてなす凸曲線(凸円
弧)の曲率半径R1,R3が、切刃5の外径Dに対して
それぞれ0.1〜0.8×Dの範囲に設定されており、
これにより、ドリル本体1の内壁面4や切刃5の外周端
13,15におけるマージン部6周辺の強度やヒール部
10周辺における強度を十分に確保しつつ、第1、第2
凹曲面部8,12の径方向の幅が小さくなりすぎるのを
防いで、確実な切屑処理性の向上を図ることができる。
なお、高速乾式切削のような条件下でも、このようにド
リル本体1の強度確保と切屑処理性の向上とをより確実
に両立させるには、本実施形態のように上記断面におい
て第1凸凹曲面部7,8がなす凸凹曲線の接点P1を、
軸線Oから切刃5の外径Dの2/3の直径の円より外周
側に、より望ましくは外径Dの5/6の直径の円よりも
外周側に位置させ、また切屑排出溝3の溝幅比を0.8
〜1.2:1の範囲とするのが望ましい。
Further, in this embodiment, the first and second
The radii of curvature R1 and R3 of the convex curve (convex arc) formed by the convex curved surface portions 7 and 11 in the above cross section are set in the range of 0.1 to 0.8 × D with respect to the outer diameter D of the cutting edge 5, respectively. And
As a result, the strength around the margin portion 6 and the strength around the heel portion 10 at the inner wall surface 4 of the drill body 1 and the outer peripheral ends 13 and 15 of the cutting edge 5 and the strength around the heel portion 10 are sufficiently secured, and
It is possible to prevent the radial widths of the concave curved surface portions 8 and 12 from becoming too small, and to reliably improve the chip disposability.
Even under conditions such as high-speed dry cutting, in order to more reliably ensure the strength of the drill body 1 and the improvement of the chip disposability in this way, the first uneven curved surface in the cross section as in the present embodiment is used. The contact point P1 of the uneven curve formed by the parts 7 and 8 is
The cutting edge 5 is positioned on the outer peripheral side of a circle having a diameter of ⅔ of the outer diameter D, more preferably on the outer peripheral side of a circle having a diameter of 5/6 of the outer diameter D, and the chip discharge groove 3 The groove width ratio of 0.8
It is desirable to set the range to 1.2: 1.

【0044】さらにまた、本実施形態ではこのように切
屑処理性の向上が図られてドリル回転駆動力の低減が図
られるのに伴い、加工時にドリル本体1自体が受ける負
荷も小さくなり、これによってその芯厚dも切刃5の外
径Dに対して0.15×D〜0.3×Dと比較的小さな
範囲に設定することができる。このため、上記ドリル本
体1が受ける負荷のうち特にスラスト力を軽減させると
ともに、切屑排出溝3の断面積を大きくしてさらに円滑
な切屑排出を促し、これらによって穴明け加工時の動力
の一層の軽減を図ることができる。その一方で、ドリル
本体1の断面積は、上記曲率半径R1〜R4が上述のよ
うに適当な範囲に設定されることと、特に第1、第2凸
曲面部7,11によって外周側で大きくなることとによ
り、必要かつ十分に確保することができ、従ってドリル
本体1の剛性も維持することができるので、上述のよう
に加工動力の一層の軽減が図られることとも相俟って、
加工時に折損等が生じてドリル寿命が費えてしまうよう
な事態をさらに確実に防止することが可能となる。
Further, in the present embodiment, as the chip disposability is improved and the drill rotation driving force is reduced, the load applied to the drill body 1 itself during processing is also reduced, which reduces the load. The core thickness d can also be set to a relatively small range of 0.15 × D to 0.3 × D with respect to the outer diameter D of the cutting edge 5. Therefore, particularly the thrust force of the load received by the drill main body 1 is reduced, and the cross-sectional area of the chip discharge groove 3 is increased to promote smoother chip discharge, thereby further increasing the power for drilling. Can be reduced. On the other hand, the cross-sectional area of the drill main body 1 is large on the outer peripheral side by the curvature radii R1 to R4 being set in an appropriate range as described above, and particularly by the first and second convex curved surface portions 7 and 11. By doing so, it is possible to ensure the necessary and sufficient level, and therefore the rigidity of the drill body 1 can be maintained, and in addition to the fact that the machining power can be further reduced as described above,
It is possible to more reliably prevent a situation in which the drill life is consumed due to breakage during machining.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
切刃のすくい角がドリル本体の内周から外周側に向け
て、この切刃上の変移点までは漸次増大させられ、この
変移点よりも外周側では漸次減少させられているので、
切刃全体の切れ味を良好に維持して切削抵抗の増大を抑
えつつ、この切刃の特に大きな抵抗が作用する外周端側
に高い切刃強度を与えることが可能となる。このため、
たとえ高速乾式切削となる過酷な加工条件でもドリル寿
命が早期に費えてしまうような事態を防止することがで
き、効率的な穴明け加工を円滑かつ安定して行うことが
可能となる。
As described above, according to the present invention,
The rake angle of the cutting edge is gradually increased from the inner circumference of the drill body to the outer circumference side up to the transition point on this cutting edge, and gradually decreased on the outer circumference side from this transition point.
It becomes possible to give a high cutting edge strength to the outer peripheral end side where a particularly large resistance of this cutting edge acts, while maintaining good sharpness of the entire cutting edge and suppressing an increase in cutting resistance. For this reason,
Even under the severe machining conditions such as high-speed dry cutting, it is possible to prevent the situation where the drill life is consumed early, and it is possible to perform efficient and smooth drilling efficiently and stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態を示す軸線O方向先端視
の正面図である。
FIG. 1 is a front view of an embodiment of the present invention as viewed from the front end in the direction of an axis O. FIG.

【図2】 図1に示す実施形態の軸線Oに直交する断面
図である。
2 is a cross-sectional view orthogonal to the axis O of the embodiment shown in FIG.

【図3】 図1に示す実施形態のシンニング部18を示
すドリル本体1先端部の斜視図である。
3 is a perspective view of a tip portion of the drill body 1 showing a thinning portion 18 of the embodiment shown in FIG. 1. FIG.

【図4】 軸線Oから外周側に切刃5の回転半径rに対
して0.500×rの位置(x=0.500の位置)に
おいて切刃5に直交する断面を示す斜視図である。
4 is a perspective view showing a cross section orthogonal to the cutting edge 5 at a position of 0.500 × r (position of x = 0.500) with respect to a rotation radius r of the cutting edge 5 on the outer peripheral side from the axis O. FIG. .

【図5】 軸線Oから外周側に切刃5の回転半径rに対
して0.625×rの位置(x=0.625の位置)に
おいて切刃5に直交する断面を示す斜視図である。
5 is a perspective view showing a cross section orthogonal to the cutting edge 5 at a position of 0.625 × r (position of x = 0.625) with respect to the rotation radius r of the cutting edge 5 from the axis O to the outer peripheral side. .

【図6】 軸線Oから外周側に切刃5の回転半径rに対
して0.750×rの位置(x=0.750の位置)に
おいて切刃5に直交する断面を示す斜視図である。
FIG. 6 is a perspective view showing a cross section orthogonal to the cutting edge 5 at a position of 0.750 × r (position of x = 0.750) with respect to the rotation radius r of the cutting edge 5 from the axis O to the outer peripheral side. .

【図7】 軸線Oから外周側に切刃5の回転半径rに対
して0.826×rの位置(x=0.826の位置)に
おいて切刃5に直交する断面を示す斜視図である。
FIG. 7 is a perspective view showing a cross section orthogonal to the cutting edge 5 at a position of 0.826 × r (position of x = 0.826) with respect to the rotation radius r of the cutting edge 5 from the axis O to the outer peripheral side. .

【図8】 軸線Oから外周側に切刃5の回転半径rに対
して0.925×rの位置(x=0.925の位置)に
おいて切刃5に直交する断面を示す斜視図である。
8 is a perspective view showing a cross section orthogonal to the cutting edge 5 at a position of 0.925 × r (position of x = 0.925) with respect to a rotation radius r of the cutting edge 5 from the axis O to the outer peripheral side. .

【図9】 切刃5の外周端15の位置(回転半径rに対
して1.000×r、x=1.000の位置)において
切刃5に直交する断面を示す斜視図である。
9 is a perspective view showing a cross section orthogonal to the cutting edge 5 at a position of an outer peripheral end 15 of the cutting edge 5 (position of 1.000 × r, x = 1.000 with respect to radius of gyration r).

【図10】 実施形態の切刃5のすくい角γの変移を示
す線Y、およびこの線Yに対して±7°となる線A,B
を示す図である。
FIG. 10 is a line Y showing a change in the rake angle γ of the cutting edge 5 of the embodiment, and lines A and B that are ± 7 ° with respect to the line Y.
FIG.

【図11】 実施形態のドリルYの切刃5のすくい角γ
の変移を示す線Yと、比較例となるドリルE,Fのすく
い角の変移を示す線E,Fとを合わせて示した図であ
る。
FIG. 11 is a rake angle γ of the cutting edge 5 of the drill Y according to the embodiment.
It is the figure which showed together the line Y which shows the change of, and the lines E and F which show the change of the rake angle of the drills E and F used as a comparative example.

【図12】 第1、第2凹曲面部8,12間に接続面2
3を形成した場合を示す断面図である。
FIG. 12 is a connection surface 2 between the first and second concave curved surface portions 8 and 12.
It is sectional drawing which shows the case where 3 is formed.

【符号の説明】[Explanation of symbols]

1 ドリル本体 2 先端逃げ面 3 切屑排出溝 4,9 切屑排出溝3の内壁面 5 切刃 15 切刃5の外周端 16 凸曲線状切刃部 17 凹曲線状切刃部 19 シンニング切刃部 O ドリル本体1の軸線 T ドリル回転方向 γ 切刃5のすくい角(直角すくい角) X 変移点 1 drill body 2 Tip flank 3 Chip discharge groove 4,9 Inner wall surface of chip discharge groove 3 5 cutting edges 15 Outer peripheral edge of cutting edge 5 16 Convex curved cutting edge 17 Concave curved cutting edge 19 Thinning cutting edge O Drill body 1 axis T drill rotation direction γ Rake angle of cutting edge 5 (Right angle rake angle) X transition point

フロントページの続き (72)発明者 井上 武 岐阜県安八郡神戸町大字横井字中新田1528 番地 三菱マテリアル株式会社岐阜製作所 内 Fターム(参考) 3C037 AA02 BB00 DD01 Continued front page    (72) Inventor Takeshi Inoue             1528, Nakashinden, Yokoi, Kobe-cho, Anpachi-gun, Gifu Prefecture             Address Mitsubishi Materials Corporation Gifu Factory             Within F term (reference) 3C037 AA02 BB00 DD01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軸線回りに回転されるドリル本体の先端
部外周に後端側に向けて延びる切屑排出溝が形成され、
この切屑排出溝のドリル回転方向を向く内壁面と上記ド
リル本体の先端逃げ面との交差稜線部に切刃が形成され
てなるドリルであって、上記切刃は、この切刃に直交す
る断面におけるすくい角が、上記ドリル本体の内周から
外周側に向かうに従い漸次増大させられて該切刃上の変
移点に達し、この変移点よりも外周側では外周側に向か
うに従い上記すくい角が漸次減少させられていることを
特徴とするドリル。
1. A chip discharge groove extending toward the rear end is formed on the outer periphery of the front end of a drill body rotated about an axis.
A drill having a cutting edge formed at an intersecting ridge of an inner wall surface of the chip discharge groove facing the drill rotation direction and a tip flank of the drill body, wherein the cutting edge has a cross section orthogonal to the cutting edge. The rake angle at is gradually increased from the inner circumference of the drill body toward the outer circumference to reach the transition point on the cutting edge, and the rake angle gradually increases toward the outer circumference on the outer circumference side from this transition point. A drill characterized by being reduced.
【請求項2】 上記変移点が、上記軸線から径方向外周
側に向けて上記切刃の回転半径の70〜90%の範囲内
に位置させられていることを特徴とする請求項1に記載
のドリル。
2. The transition point is located within the range of 70 to 90% of the radius of gyration of the cutting edge from the axis toward the outer peripheral side in the radial direction. Drill.
【請求項3】 上記切刃の外周端側には、上記ドリル回
転方向に凸となる曲線状をなす凸曲線状切刃部が形成さ
れるとともに、この凸曲線状切刃部の内周側には、ドリ
ル回転方向の後方側に凹となる曲線状をなして上記凸曲
線状切刃部に滑らかに連なる凹曲線状切刃部が形成され
ており、上記変移点はこの凹曲線状切刃部と上記凸曲線
状切刃部との変曲部に位置させられていることを特徴と
する請求項1または請求項2に記載のドリル。
3. A convex curved cutting edge portion having a curved shape which is convex in the drill rotation direction is formed on the outer peripheral end side of the cutting edge, and the inner peripheral side of the convex curved cutting edge portion is formed. On the rear side of the drill rotation direction, a concave curved cutting edge is formed which is concave toward the rear side in the direction of rotation of the drill and smoothly connects to the convex curved cutting edge, and the transition point is the concave curved cutting edge. The drill according to claim 1 or 2, wherein the drill is located at an inflection portion between the blade portion and the convex curved cutting edge portion.
【請求項4】 上記切刃のすくい角γが、上記軸線から
の径方向外周側に向けての上記切刃の回転半径rの3
7.5%以上82.6%未満の範囲の位置では、上記回
転半径rに対するこの位置の上記軸線からの半径の比率
xについて次式1により近似される角度yの±7°の範
囲において、上記切刃の回転半径rの82.6%以上1
00%までの範囲の位置では上記比率xについて次式2
により近似される角度yの±7°の範囲において、それ
ぞれ変移させられていることを特徴とする請求項1ない
し請求項3のいずれかに記載のドリル。 【数1】 【数2】
4. The rake angle γ of the cutting edge is 3 of the radius of rotation r of the cutting edge toward the radially outer side from the axis.
At a position in the range of 7.5% or more and less than 82.6%, in the range of ± 7 ° of the angle y approximated by the following equation 1 with respect to the ratio x of the radius from the axis at this position to the radius r of rotation, 82.6% or more of the turning radius r of the cutting edge 1
For the position in the range of up to 00%, the ratio x is
4. The drill according to claim 1, wherein the drill is displaced within a range of ± 7 ° of the angle y approximated by. [Equation 1] [Equation 2]
【請求項5】 上記ドリル本体の少なくとも先端部の表
面には、硬質皮膜が被覆されていることを特徴とする請
求項1ないし請求項4のいずれかに記載のドリル。
5. The drill according to claim 1, wherein at least the surface of the tip of the drill body is coated with a hard coating.
JP2002022219A 2001-07-10 2002-01-30 Drill Expired - Lifetime JP3783629B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002022219A JP3783629B2 (en) 2002-01-30 2002-01-30 Drill
EP02006673A EP1275458A1 (en) 2001-07-10 2002-03-26 Drill
EP07005036.4A EP1923157B1 (en) 2001-07-10 2002-03-26 Drill
EP10181031.5A EP2366478B1 (en) 2001-07-10 2002-03-26 Drill
US10/105,411 US6916139B2 (en) 2001-07-10 2002-03-26 Drill
KR1020020017632A KR100643677B1 (en) 2001-07-10 2002-03-30 Drill
CNB021198160A CN1223428C (en) 2001-07-10 2002-03-30 Drilling bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022219A JP3783629B2 (en) 2002-01-30 2002-01-30 Drill

Publications (2)

Publication Number Publication Date
JP2003225816A true JP2003225816A (en) 2003-08-12
JP3783629B2 JP3783629B2 (en) 2006-06-07

Family

ID=27745264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022219A Expired - Lifetime JP3783629B2 (en) 2001-07-10 2002-01-30 Drill

Country Status (1)

Country Link
JP (1) JP3783629B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505635A (en) * 2006-10-13 2010-02-25 ケンナメタル インコーポレイテッド Modular drilling tool and manufacturing method
JP2010099790A (en) * 2008-10-24 2010-05-06 Union Tool Co Drilling tool
JP4834183B1 (en) * 2011-03-03 2011-12-14 株式会社ビック・ツール Drill
JP2014166660A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Drilling machine
JP2014210325A (en) * 2013-04-19 2014-11-13 株式会社不二越 Drill
WO2019176452A1 (en) * 2018-03-16 2019-09-19 三菱日立ツール株式会社 Drill
JP6975353B1 (en) * 2021-03-16 2021-12-01 ダイジ▲ェ▼ット工業株式会社 Drill

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505635A (en) * 2006-10-13 2010-02-25 ケンナメタル インコーポレイテッド Modular drilling tool and manufacturing method
US8317438B2 (en) 2006-10-13 2012-11-27 Kennametal Inc. Twist drill having at least two cutting inserts at the tip each with its own J-shaped chip guiding flute and a method for the production thereof
US8668409B2 (en) 2006-10-13 2014-03-11 Kennametal Inc. Twist drill and method for the production thereof
JP2010099790A (en) * 2008-10-24 2010-05-06 Union Tool Co Drilling tool
JP4834183B1 (en) * 2011-03-03 2011-12-14 株式会社ビック・ツール Drill
JP2014166660A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Drilling machine
JP2014210325A (en) * 2013-04-19 2014-11-13 株式会社不二越 Drill
WO2019176452A1 (en) * 2018-03-16 2019-09-19 三菱日立ツール株式会社 Drill
JP7352106B2 (en) 2018-03-16 2023-09-28 株式会社Moldino Drill
JP6975353B1 (en) * 2021-03-16 2021-12-01 ダイジ▲ェ▼ット工業株式会社 Drill
JP2022142055A (en) * 2021-03-16 2022-09-30 ダイジ▲ェ▼ット工業株式会社 Drill

Also Published As

Publication number Publication date
JP3783629B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP5013435B2 (en) Ball end mill
KR100643677B1 (en) Drill
JP5739498B2 (en) Bit for drill tool
JP5447130B2 (en) Drill with coolant hole
JP5719938B2 (en) drill
JP5762547B2 (en) drill
JP6086174B2 (en) drill
JP6589462B2 (en) Drill
JP5816364B2 (en) 3-flute drill
JP6268809B2 (en) drill
WO2014069265A1 (en) End mill with coolant holes
JP4120185B2 (en) Drill
JP4529383B2 (en) Drill
JP2003225816A (en) Drill
JP2006000985A (en) Cutting tool
JP5549080B2 (en) drill
JP3933044B2 (en) Drill
JP2003025127A (en) Drill
JP2005305610A (en) Twist drill
JP5013434B2 (en) Ball end mill
JP2535644Y2 (en) Drill
JP4120187B2 (en) Drill
JP4120186B2 (en) Drill
JP7463689B2 (en) Rotary tools with coolant holes
JP5439821B2 (en) Drill and grinding method of the drill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Ref document number: 3783629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

EXPY Cancellation because of completion of term