JP4120186B2 - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP4120186B2
JP4120186B2 JP2001209586A JP2001209586A JP4120186B2 JP 4120186 B2 JP4120186 B2 JP 4120186B2 JP 2001209586 A JP2001209586 A JP 2001209586A JP 2001209586 A JP2001209586 A JP 2001209586A JP 4120186 B2 JP4120186 B2 JP 4120186B2
Authority
JP
Japan
Prior art keywords
curved surface
drill
surface portion
concave curved
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209586A
Other languages
Japanese (ja)
Other versions
JP2003025123A (en
Inventor
一也 柳田
克征 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001209586A priority Critical patent/JP4120186B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP07005036.4A priority patent/EP1923157B1/en
Priority to EP10181031.5A priority patent/EP2366478B1/en
Priority to US10/105,411 priority patent/US6916139B2/en
Priority to EP02006673A priority patent/EP1275458A1/en
Priority to CNB021198160A priority patent/CN1223428C/en
Priority to KR1020020017632A priority patent/KR100643677B1/en
Publication of JP2003025123A publication Critical patent/JP2003025123A/en
Application granted granted Critical
Publication of JP4120186B2 publication Critical patent/JP4120186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に高速乾式切削のような過酷な加工条件下でも円滑かつ安定した穴明け加工が可能なドリルに関するものである。
【0002】
【従来の技術】
このような乾式あるいは微量の切削油剤しか用いない過酷な加工条件に対応することを目的としたドリルとしては、例えば特開2000−198011号公報に記載されたようなものが提案されている。すなわち、この公報記載のドリルでは、ドリル本体先端に形成される切刃の外周側に、この切刃の中間部から角度をつけてドリル回転方向に後退する外側コーナ切刃が形成されるとともに、切屑排出溝とマージン部とから形成されるリーディングエッジに上記コーナ切刃に続く直線形状または曲線形状の面取り部が設けられており、この外側コーナ切刃および面取り部とマージン部との交差角を鈍角にすることができるため、上述のような加工条件でも切刃や切屑排出溝の外周端に欠けが生じたりするのを防ぐことが可能となる。また、このように切刃や切屑排出溝の外周端側をドリル回転方向後方側に折曲させたドリルとしては、例えば特公平4−46690号公報に記載のように切刃外周側の第1、第2次直線稜を略V字状の凸形状としたものも提案されており、この公報記載のドリルではさらにこの第2次直線稜の内周側を丸味を伴った凹形状としている。さらに、このように切刃を凹形状としたドリルとしては、例えば特公昭61−58246号公報などに、外周側の切刃部分の径方向すくい角が0°〜正になるように凹曲線で結んだものも提案されている。
【0003】
【発明が解決しようとする課題】
このうち、特公昭61−58246号公報に記載のように外周側の切刃部分を凹曲線としたものは、通常の加工条件では切屑のカーリングによる処理も円滑で安定した穴明けが可能であるものの、切屑排出溝のドリル回転方向を向く内壁面のマージン部との交差角が鋭角となってドリル本体の強度が不足するため、高速乾式切削のような過酷な条件下では直ぐにこの内壁面の外周端側に欠けやチッピングが発生してしまい、工具寿命が極めて短期で費えてしまう。一方、特開2000−198011号公報や特公平4−46690号公報に記載のように、この切屑排出溝の内壁面の外周端側に面取り部を設けたものや、切刃の外周端側をV字状の凸形状とするのに伴い切屑排出溝の外周端側も断面凸V字状とされたものでは、切屑排出溝のマージン部との交差角を鈍角にすることができて欠けやチッピングの発生は抑えられるものの、切刃によって生成された切屑はそのうちこれら切屑排出溝内壁面の上記面取り部や凸V字の外周側に流れた部分が外周側へと流出しようとするため、切屑全体としてのカーリング性が悪くなってしまい、こうして十分にカールされない切屑が切屑排出溝のドリル回転方向後方側を向く内壁面に強く押し付けられてしまうことにより、ドリル本体に大きな抵抗が与えられて摩耗が促進されたり加工時のドリル回転駆動力の増大を招いたりするおそれがある。
【0004】
本発明は、このような背景の下になされたもので、高速乾式切削等の過酷な加工条件でも工具寿命の短縮を防ぐとともに優れた切屑処理性を奏して円滑かつ安定した穴明け加工が可能なドリルを提供することを目的としている。
【0005】
【課題を解決するための手段】
上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるドリル本体の先端部外周に後端側に向けて延びる切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く内壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されてなるドリルであって、上記切屑排出溝のドリル回転方向を向く内壁面には、その外周端側に位置してマージン部に交差し、ドリル回転方向に凸となる凸曲面状をなす凸曲面部を形成するとともに、この凸曲面部の内周側には、該凸曲面部に滑らかに連なってドリル回転方向後方側に凹となる曲面状をなす第1凹曲面部を形成し、さらに上記切屑排出溝のドリル回転方向後方側を向く内壁面には、ドリル回転方向に凹となる曲面状をなす第2凹曲面部を形成して、これら第1、第2凹曲面部の間に、上記軸線に直交する断面において第1凹曲面部がなす凹曲線と第2凹曲面部がなす凹曲線との双方に接する接線状をなす接続面を形成して、この接続面を介して上記第1凹曲面部と第2凹曲面部とを滑らかに連ね、上記軸線に直交する断面において、上記第2凹曲面部がなす凹曲線の曲率半径を、上記第1凹曲面部がなす凹曲線の曲率半径よりも大きくして、上記第1凹曲面部がなす凹曲線の曲率半径を、上記切刃の外径Dに対して0.18×D〜0.35×Dの範囲に設定するとともに、上記第2凹曲面部がなす凹曲線の曲率半径を、上記切刃の外径Dに対して0.2×D〜0.5×Dの範囲に設定したことを特徴とする。
【0006】
従って、このように構成されたドリルにおいては、まず切屑排出溝の外周端側にドリル回転方向に凸となる凸曲面部が形成されているため、この凸曲線面部の外周側、すなわちドリル本体外周のマージン部との交差部ではその交差角を大きくして十分な強度を確保することができ、上述のような加工条件でも欠けやチッピングの発生を防止することができる。そして、この凸曲線面部の内周側には、ドリル回転方向後方側に凹となる第1凹曲面部が滑らかに連なるように形成されており、この第1凹曲面部に切屑を摺接させることにより、凸曲面部に流出した外周側の部分ごと切屑の全体を内周側に巻き込むようにしてカールさせることができ、さらに切屑排出溝のドリル回転方向後方側を向く内壁面にはドリル回転方向に凹となる第2凹曲面部が形成されるとともに、これら第1、第2凹曲面部間には両凹曲面部に滑らかに接する接続面が形成されているので、こうして全体的にカールされた切屑を切屑排出溝のドリル回転方向後方側を向く内壁面側に強く押し付けることなく円滑に流出させることが可能となり、加工時のドリル本体への抵抗を抑えて摩耗の低減やドリル回転駆動力の軽減を図ることができる。しかも、このように第1、第2凹曲面部間に接続面を形成することにより、これら第1、第2凹曲面部の曲率半径に制限されることなく、切屑排出溝の溝幅を確保することができるので、上述のような切屑のカーリング性と排出性とを同時に向上させることが可能となる。ただし、本発明では、上記軸線に直交する断面において、この第2凹曲面部がなす凹曲線の曲率半径を、第1凹曲面部がなす凹曲線の曲率半径よりも大きくすることにより、曲率半径の小さな第1凹曲面部によって切屑に十分な巻き癖をつけてカールさせることができるとともに、こうしてカールされた切屑を、第2凹曲面部の曲率半径を第1凹曲面部より大きくすることと第1、第2凹曲面部間に接続面を介在させることとで、この第2凹曲面部への切屑の押し付けをさらに抑えて、より一層円滑な切屑排出を図ることが可能となる。また、上記軸線に直交する断面において第1凹曲面部がなす凹曲線の曲率半径については、これが大きすぎると切屑を摺接させることによって十分にカールさせることができなくなるおそれがある一方、逆に小さすぎると切屑が急激にカールさせられてブレーキング作用が大きくなりすぎるおそれが生じるので、切刃の外径Dに対して0.18×D〜0.35×Dの範囲に設定される。さらに、軸線に直交する断面において第2凹曲面部がなす凹曲線の曲率半径についても、これが大きすぎると切屑はこの第2凹曲面部には摺接しなくなって第1凹曲面部によってのみカールさせられるようなこととなる一方、逆に小さすぎると切屑の第2凹曲面部への摺接が強くなりすぎてやはり大きなブレーキング作用が生じることとなるので、切刃の外径Dに対して0.2×D〜0.5×Dの範囲に設定される。なお、このような接続面は凸曲面部と第1凹曲面部の間や凸曲面部、第2凹曲面部の外周側に形成されていてもよい。
【0007】
ただし、この場合、上記第1凹曲面部のドリル回転方向後方側への凹みが小さすぎると、切屑の摺接による十分なカーリングが図られなくなるおそれがある一方、逆にこの凹みが大きすぎると、切屑の摺接によるブレーキング作用が強くなりすぎ、切屑が潰れて排出性が損なわれたりドリル駆動力の増大を招いたりするおそれがある。また、上記第2凹曲面部についても、接続面の幅にもよるが、ドリル回転方向への凹みが小さすぎると、第1凹曲面部から流れた切屑がこの第2凹曲面部に強く押し付けられて大きなブレーキング作用が生じるおそれがある一方、逆にこの凹みが大きすぎると、切屑が第1凹曲面部との摺接だけによってカーリングさせられることになって、十分にカールさせられなくなるおそれがある。このため、これら第1、第2凹曲面部の凹みは、上記軸線に直交する断面において、該軸線と上記ドリル回転方向を向く内壁面の外周端とを結ぶ第1仮想直線からの上記第1凹曲面部の凹み量L1を、上記切刃の外径Dに対して−0.06×D〜0の範囲に設定するとともに、上記第1仮想直線に上記軸線において交差する第2仮想直線からの上記第2凹曲面部の凹み量L2を−0.06×D〜0.06×Dの範囲に設定するのが望ましい。
【0008】
なお、これら第1、第2凹曲面部の曲率半径はそれぞれにおいて一定でもよく、すなわち上記断面において第1、第2凹曲面部が半径の異なる円弧を1の接点で互いに滑らかに接するようにした形状であってもよく、また第1凹曲面部側から断面接線状の接続面を介し第2凹曲面部側に向けて曲率半径が漸次大きくなるように、例えば上記断面において楕円状やトロコイド、サイクロイド、インボリュート等の各種曲線状を呈するようにされていてもよい。
【0009】
さらに、こうして切屑排出溝の内壁面に滑らかに連なる凸曲面部と第1,第2凹曲面部とを形成した場合、上記軸線に直交する断面においてまず上記凸曲面部がなす凸曲線の曲率半径は、これが大きすぎると切屑のカーリングが不十分となるおそれがある一方、逆に小さすぎるとマージン部との交差部における十分な強度確保が図られなくなるおそれが生じるので、切刃の外径Dに対して0.1×D〜0.8×Dの範囲に設定されるのが望ましい。さらにまた、上述のようにカールさせられた切屑の円滑な排出を促しつつも、ドリル本体の剛性を十分に確保するには、このドリル本体の芯厚を、上記切刃の外径Dに対して0.15×D〜0.3×Dの範囲に設定するのが望ましい。さらにまた、ドリル本体の少なくとも先端部の表面に、TiN、TiCN、TiAlN等の硬質皮膜を被覆すれば、このドリル本体先端部の耐摩耗性の向上を図ることができる。
【0010】
【発明の実施の形態】
図1ないし図3は、本発明の一実施形態を示すものである。本実施形態においてドリル本体1は、超硬合金等の硬質材料により軸線Oを中心とした略円柱状に形成されており、その先端部には、先端逃げ面2から後端側に向かうに従い一定の捩れ角でドリル回転方向Tの後方側に捩れる一対の切屑排出溝3,3が軸線Oに対して対称に形成されていて、これらの切屑排出溝3,3のドリル回転方向T側を向く内壁面4,4と上記先端逃げ面2との交差稜線部にそれぞれ切刃5,5が形成されている。なお、このドリル本体1先端部には、その外周面や先端逃げ面2、切屑排出溝3に、TiN、TiCN、TiAlN等の硬質皮膜が被覆されている。
【0011】
ここで、上記内壁面4には、その外周側に位置してマージン部6に交差し、軸線Oに直交する断面において図2に示すようにドリル回転方向Tに凸となる凸曲線をなす第1の凸曲面部7と、この第1凸曲面部7の内周側に位置して、上記断面においてドリル回転方向Tの後方側に凹む凹曲線状をなす第1凹曲面部8とが形成されており、これら第1の凸凹曲面部7,8の断面がなす上記凸凹曲線は接点P1において滑らかに接するように連ねられている。また、本実施形態では切屑排出溝3のドリル回転方向T後方側を向く内壁面9にも、その外周側に位置してヒール部10に達し、上記断面がドリル回転方向T後方側に凸となる凸曲線をなす第2凸曲面部11と、この第2凸曲面部11の内周側に位置してその断面がドリル回転方向T側に凹む凹曲線状をなす第2凹曲面部12とが形成され、これら第2の凸凹曲面部11,12がなす上記凸凹曲線も接点P2において滑らかに接するように連ねられている。そして、これら第1、第2凹曲面部8,12の間には、軸線Oに直交する断面において第1凹曲面部8がなす凹曲線と第2凹曲面部12がなす凹曲線との双方に接点P3,P4で接する接線状をなす接続面13が形成されており、この接続面13を介して両凹曲面部8,12が滑らかに連なるようにされている。なお、切屑排出溝3が捩れ溝状に形成されることにより、この接続面13は、ドリル本体1の後端側に向けて該切屑排出溝3と同様に捩れる捩れ面とされる。また、上記マージン部6からドリル回転方向T後方側に上記ヒール部10に至るランド部の外周面は、マージン部6から一段内周側に後退した円筒面状に形成されている。
【0012】
さらに、本実施形態では、上記断面において、第1、第2の凸凹曲面部7,8,11,12がなす凸凹曲線がそれぞれ点C1〜C4を中心とした半径R1〜R4の円弧となるようにされており、このうち第1凸曲面部7がなす凸円弧の中心C1は、この第1凸曲面部7とマージン部6との交点すなわち上記内壁面4の外周端14において該マージン部6に接する直線Q1よりも内周側に位置させられるとともに、第2凸曲面部11がなす円弧の中心C3は、上記外周端14が軸線O回りになす円と第2凸曲面部11がなす円弧の延長線との交点15において上記円に接する直線Q2よりもやはり内周側に位置させられている。従って、上記第1凸曲面部7は、軸線Oと内壁面4の外周端14とを結ぶ第1仮想直線S1よりもドリル回転方向T側に凸となって、この外周端14における第1凸曲面部7の接線は、外周側に向かうに従いドリル回転方向T後方側に延びるように第1仮想直線S1に対して傾斜させられるとともに、この第1仮想直線S1と直交する上記直線Q1とは鈍角をなして交差させられる。また、第2凸曲面部11も、ヒール部10との交点と軸線Oとを結ぶ直線よりもドリル回転方向T後方側に凸となるようにされている。
【0013】
一方、第1、第2凹曲面部8,12がなす円弧の中心C2,C4は、これらの円弧が接点P3,P4で接続面13がなす接線に接していることから、この接線に接点P3,P4で直交する互いに平行な一対の直線上にそれぞれ位置することとなる。さらに、本実施形態ではこの接続面13が切屑排出溝3において最もドリル本体1内周側に凹んだ溝底とされ、従って軸線Oを中心としてこの接続面13に接する当該ドリル本体1の芯厚円となる。そして、この芯厚円の直径すなわちドリル本体1の芯厚dは、上記切刃5の外周端16が軸線O回りになす円の直径すなわち切刃5の外径Dに対し、0.15×D〜0.3×Dの範囲に設定されている。
【0014】
なお、第1凸凹曲面部7,8がなす凸凹曲線の接点P1は、軸線Oを中心として上記切刃5の外径Dの2/3の直径を有する円よりも外周側に位置させられており、より望ましくは軸線Oを中心として外径Dの5/6の直径を有する円よりも外周側に位置させられる。また、第1凹曲面部8のドリル回転方向T後方側への凹みの大きさは、上記第1仮想直線S1からの凹み量L1が切刃5の外径Dに対して−0.06×D〜0の範囲に設定されるとともに、第2凹曲面部12のドリル回転方向T側への凹みの大きさは、上記断面において第1仮想直線S1に軸線Oで直交する第2仮想直線S2からの凹み量L2が−0.06×D〜0.06×Dの範囲となるように設定されている。ただし、これらの凹み量L1,L2は、それぞれ上記断面において第1、第2仮想直線S1,S2に平行で第1、第2凹曲面部8,12がなす凹曲線に接する直線と第1、第2仮想直線S1,S2との間の距離とされており、かつ図2に示すように、第1凹曲面部8の凹み量L1については第1仮想直線S1からドリル回転方向T側を正、後方側を負とし、逆に第2凹曲面部12の凹み量L2については第2仮想直線S2からドリル回転方向T側を負、後方側を正としている。従って、本実施形態においては、第1凹曲面部8の全体が上記第1仮想直線S1よりもドリル回転方向T側に位置することはない。
【0015】
さらに、上記断面において第1、第2凸凹曲面部7,8,11,12がなす円弧の半径R1〜R4は、切刃5の外径Dに対し、第1凸曲面部7の半径R1が0.1〜0.8×Dの範囲に、第1凹曲面部8の半径R2が0.18〜0.35×Dの範囲に、第2凸曲面部11の半径R3が0.1〜0.8×Dの範囲に、第2凹曲面部12の半径R4が0.2〜0.5×Dの範囲に、それぞれ設定されている。そして、本実施形態では、このうち第2凹曲面部12の半径R4が、第1凹曲面部8の半径R2よりも大きくされている。なお、こうして形成された切屑排出溝3の溝幅比は、本実施形態では0.8〜1.2:1の範囲とされている。
【0016】
このような切屑排出溝3の上記内壁面4と先端逃げ面2との交差稜線部に形成される切刃5においては、この内壁面4が上記第1凸凹曲面部7,8によって形成されることにより、図1に示すように、その外周端16側には、ドリル回転方向Tに凸となる曲線状をなす凸曲線状切刃部17が形成されてその後端側に上記第1凸曲面部7が連なるとともに、この凸曲線状切刃部17の内周側には、ドリル回転方向Tの後方側に凹となる曲線状をなして凸曲線状切刃部17に滑らかに接して連なる凹曲線状切刃部18が形成され、その後端側に上記第1凹曲面部8が連なることになって、これら凸凹曲線状切刃部17,18間で切刃5は軸線O方向先端視に緩やかに湾曲するS字状を呈することとなる。ただし、この切刃5には、先端逃げ面2が内周側から外周側に向かうに従いドリル本体1の後端側に向けて傾斜させられることにより先端角が付されており、これと切屑排出溝3が螺旋状に捩れていることとから、この切刃5の凸凹曲線状切刃部17,18が軸線O方向先端視においてなす上記S字状の凸凹曲線は、内壁面4の第1凸凹曲面部7,8が軸線Oに直交する断面においてなす凸凹曲線が、内周側に向かうに従いドリル回転方向T側に漸次ずれたような形状をなすこととなる。従って、この軸線O方向先端視において上記凸曲線状切刃部17は、その外周端16における接線が、上記断面において第1凸曲面部7がなす凸曲線の外周端14における接線よりも大きな傾斜で外周側に向かうに従いドリル回転方向T後方側に延びるようにされるとともに、マージン部6との交差角も第1凸曲面部7がなす鈍角より大きくされ、これにより切刃5が上記外周端16においてなす径方向すくい角αは負角側に設定される。
【0017】
一方、切屑排出溝3の内壁面4,9の先端側には、上記第1凹曲面部8の内周側から第2凹曲面部12および第2凸曲面部11までの先端逃げ面2との交差稜線部分を、ドリル本体1の後端側に向かうに従い切屑排出溝3の内側に向けて切り欠くようにして、ヒール部10に達するシンニング部19が形成されており、従って切刃5の内周端側は、このシンニング部19と先端逃げ面2との交差稜線部に形成されて、上記凹曲面状切刃部18の内周端から先端逃げ面2の中心の上記軸線Oに向けて延びるシンニング切刃部20とされている。なお、切刃5においてこのシンニング切刃部20と上記凹曲線状切刃部18とが交差する部分は、軸線O方向先端視にドリル回転方向Tに凸となる曲線または直線によって滑らかに接続されている。
【0018】
ここで、このシンニング部19のうち、切屑排出溝3の内壁面4,9に交差して先端側に延びる部分は第1シンニング部21とされており、この第1シンニング部21は、ドリル回転方向T後方側を向く切屑排出溝3の内壁面9と交差してヒール部10側に延びる部分においては平面状に形成される一方、この内壁面9とドリル回転方向T側を向く内壁面4とが交差する部分、すなわち上記第1、第2凹曲面部8,12の接点P3部分から、先端逃げ面2の中心に向けて延びる部分は、図3に示すようにこの先端逃げ面2の中心に向かう方向から見た場合に凹曲面状の谷形をなすように形成されており、その凹曲する谷底部22は、上記内壁面4,9に対してドリル本体1の内周側に後退するように傾斜しつつ、切刃5の内周端すなわちシンニング切刃部20の内周端に向けて先端側に延びるように形成されている。なお、この第1シンニング部21の凹曲する谷底部22がその断面においてなす凹曲線の曲率半径は、0.1〜0.5mmの範囲に設定されている。また、この谷底部22の断面がなす凹曲線の曲率半径は、後端側に向かうに従い大きくなるようにされていてもよい。
【0019】
さらに、この第1シンニング部21の最先端の上記谷底部22が切刃5の内周端に達しようとする部分には、この谷底部22に対してさらにドリル本体1の内周側に後退するように一段傾斜しつつ切刃5内周端側に向けて延びる谷形の第2シンニング部23が形成されており、先端逃げ面2の中心の軸線O近傍においてはこの第2シンニング部23が先端逃げ面2に交差してその交差稜線部上に切刃5の内周端が形成される。ここで、この第2シンニング部23の谷底部の曲率半径は、第1シンニング部21の谷底部22の曲率半径よりも小さく、0.1mm未満とされており、場合によっては曲率半径が0、すなわちこの谷底部が凹湾曲しないV字谷状に形成されていてもよく、さらに第1シンニング部21の谷底部22と同様にドリル本体1の後端側に向かうに従い大きくなるようにされていてもよい。また、このように第1シンニング部21よりもさらに一段傾斜する第2シンニング部23と先端逃げ面2との交差稜線部に切刃5の内周端が形成されることにより、ドリル本体1先端の一対の切刃5,5間の間隔すなわち先端逃げ面2の中心に画成されるチゼルの幅は、第1シンニング部21をそのまま先端逃げ面2に交差させて切刃5の内周端を形成するのに比べて狭くなり、このチゼル幅は本実施形態では0〜0.2mmの範囲とされている。従って、これら切刃5,5の内周端が軸線O上で一致するようにされていてもよい。
【0020】
このように構成されたドリルにおいては、まず、切屑排出溝3のドリル回転方向Tを向く内壁面4の外周端14側に第1凸曲面部7が形成されており、これによりこの外周端14における切屑排出溝3の上記内壁面4とマージン部6との交差角を大きくすることができて、該外周端14周辺のドリル本体1の強度を確保することができるので、高速乾式切削等の過酷な加工条件においても、この外周端14周辺に欠けやチッピングが生じて工具寿命が短縮されたりするような事態を防止することができる。また、この第1凸曲面部7の内周側には、この第1凸曲面部7に滑らかに連なるように第1凹曲面部8が形成されており、第1凸曲面部7上に流れた切屑の外周側部分が外周側に流出しようとしても、この第1凹曲面部8上に流れた切屑内周側部分が該第1凹曲面部8に摺接しつつ押し付けられることにより、切屑を全体的に内周側に巻き込むようにして巻き癖をつけ、小さくカールさせることができる。
【0021】
そして、さらに上記構成のドリルでは、この第1凹曲面部8とは反対側のドリル回転方向T後方側を向く切屑排出溝3の内壁面9の内周側に、該第1凹曲面部8とは逆にドリル回転方向Tに凹となる第2凹曲面部12が形成されるとともに、これら第1、第2凹曲面部8,12とが両凹曲面部8,12に滑らかに接する接続面13によって接続されているので、上述のように第1凹曲面部8によって小さくカールされた切屑がこれら第2凹曲面部12や接続面13にさらに強く押し付けられて潰されたりするようなことはなく、切屑の流れを阻害せずに円滑に排出することが可能となる。また、こうして切屑が第2凹曲面部12や接続面13に強く押し付けられることがないため、この切屑の擦過によって切屑排出溝3の内壁面9の摩耗が促進されたり、ドリル回転駆動力の増大を招いたりすることもない。しかも、本実施形態ではこの第2凹曲面部12の外周側にやはり滑らかに連なるように第2凸曲面部11が形成されており、従って切屑の流れがヒール部10側で阻害されることもなく、またこのヒール部10におけるドリル本体1の強度も確保することができる。さらに、この切刃5を含めたドリル本体1の先端部には、TiN、TiCN、TiAlN等の硬質皮膜が被覆されているので、ドリル本体1の耐摩耗性の一層の向上を図ることができる。
【0022】
また、このように接続面13を第1、第2凹曲面部8,12間に介在させた場合には、これら第1、第2凹曲面部8,12の曲率半径R2,R4に制限されることなく切屑排出溝3の溝幅を設定することができる。従って、例えば加工物の材質によって切屑がカールしやすいときなどに、この切屑が小さくカールされすぎるのを防ぐために第1、第2凹曲面部8,12の半径R2,R4を大きくし、その結果、切屑排出溝3の溝幅も大きくなるのに伴いドリル本体1の断面積が減少して剛性が損なわれるおそれがある場合などには、この接続面13の幅を小さくして切屑排出溝3の溝幅も小さくし、これによってドリル本体1の断面積を確保して剛性の維持を図ったりすることができる。また、これとは逆に、例えば切屑がカールし難いときなどに、第1凹曲面部8の半径R2を小さくして切屑に強く巻き癖をつけようとしたり、第2凹曲面部12の半径R4を小さくしてこの第2凹曲面部12にも切屑をある程度強く押し付けようとしたりした場合には、切屑排出溝3の断面積が小さくなって切屑詰まりが生じるおそれがあるが、そのような場合には接続面13の溝幅を大きくすることにより、これら第1、第2凹曲面部8,12の半径R2,R4とは関わりなく、十分な断面積を切屑排出溝3に確保して円滑な切屑排出性を維持することが可能となる。
【0023】
さらに、本実施形態では、これら第1、第2凹曲面部8,12の凹み量L1,L2を、第1凹曲面部8については軸線Oと内壁面4の外周端14とを結ぶ第1仮想直線S1から切刃5の外径Dに対して−0.06×D〜0の範囲となるように(ただし、ドリル回転方向T後方側が負)、また第2凹曲面部12については軸線Oにおいて上記第1仮想直線S1と直交する第2仮想直線S2から−0.06×D〜0.06×Dの範囲となるように(ただし、ドリル回転方向T側が負)それぞれ設定されており、これにより切屑を強すぎず弱すぎずに第1、第2凹曲面部8,12に摺接させて、適度なブレーキング作用を与えることができる。このため、過大なブレーキング作用によって切屑が潰れて円滑な排出性が損なわれたりドリル回転駆動力の増大を招いたりすることなく、しかしながら確実に切屑をカールさせて処理することができる。なお、このような作用効果をより確実に奏功せしめるには、本実施形態のように軸線Oに直交する断面において、第1凹曲面部8がなす凹曲線(凹円弧)の曲率半径R2は切刃5の外径Dに対して0.18〜0.35×Dの範囲に、また第2凹曲面部12の曲率半径R4は0.2〜0.5×Dの範囲に、それぞれ設定されるのが望ましい。
【0024】
また、本実施形態では、これら第1、第2凹曲面部8,12間で、軸線Oに直交する断面において第2凹曲面部12がなす凹曲線の曲率半径すなわち上記半径R4が、第1凹曲面部8がなす凹曲線の曲率半径すなわち上記半径R2よりも大きくなるようにされている。このため、切刃5によって生成された切屑を、まず比較的小さな半径R2の第1凹曲面部8に摺接させることにより、この切屑に十分な巻き癖をつけてカールさせるとともに、こうしてカールされた切屑を比較的大きな半径R4の第2凹曲面部12側に接続面13を介して流出させることにより、この第2凹曲面部12や接続面13においては切屑が強く押し付けられるのを一層抑えることが可能となり、より円滑な切屑排出を促すとともにドリル回転駆動力のさらなる軽減を図ることができる。
【0025】
さらに、本実施形態では、上記第1、第2凸曲面部7,11が上記断面においてなす凸曲線(凸円弧)の曲率半径R1,R3が、切刃5の外径Dに対してそれぞれ0.1〜0.8×Dの範囲に設定されており、これにより、ドリル本体1の内壁面4の外周端14におけるマージン部6周辺の強度やヒール部10周辺における強度を十分に確保しつつ、第1、第2凹曲面部8,12の径方向の幅が小さくなりすぎるのを防いで、確実な切屑処理性の向上を図ることができる。なお、高速乾式切削のような条件下でも、このようにドリル本体1の強度確保と切屑処理性の向上とをより確実に両立させるには、本実施形態のように上記断面において第1凸凹曲面部7,8がなす凸凹曲線の接点P1を、軸線Oから切刃5の外径Dの2/3の直径の円より外周側に、より望ましくは外径Dの5/6の直径の円よりも外周側に位置させ、また切屑排出溝3の溝幅比を0.8〜1.2:1の範囲とするのが望ましい。
【0026】
さらにまた、本実施形態ではこのように切屑処理性の向上が図られてドリル回転駆動力の低減が図られるのに伴い、加工時にドリル本体1自体が受ける負荷も小さくなり、これによってその芯厚dも切刃5の外径Dに対して0.15×D〜0.3×Dと比較的小さな範囲に設定することができる。このため、上記ドリル本体1が受ける負荷のうち特にスラスト力を軽減させるとともに、切屑排出溝3の断面積を大きくしてさらに円滑な切屑排出を促し、これらによって穴明け加工時の動力の一層の軽減を図ることができる。その一方で、ドリル本体1の断面積は、上記曲率半径R1〜R4が上述のように適当な範囲に設定されることと、特に第1、第2凸曲面部7,11によって外周側で大きくなることとにより、必要かつ十分に確保することができ、従ってドリル本体1の剛性も維持することができるので、上述のように加工動力の一層の軽減が図られることとも相俟って、加工時に折損等が生じてドリル寿命が費えてしまうような事態をも防止することが可能となる。
【0027】
一方、こうして切屑排出溝3のドリル回転方向Tを向く内壁面4に上記第1凸凹曲面部7,8が形成された本実施形態のドリルでは、その先端逃げ面2との交差稜線部に形成される切刃5の外周端16側にも、ドリル回転方向Tに凸となる凸曲線状切刃部17が形成され、従って軸線O方向先端視の外周端16における凸曲線状切刃部17とマージン部6との交差角を上述のように大きな角度に、しかも第1凸曲面部7との交差角よりも大きな角度にすることができ、この切刃5の外周端16近傍におけるドリル本体1の強度も十分に確保することができる。このため、ドリル本体1外周に位置するために切削速度が最も高く、しかも切屑生成量も最も多くなるために過大な負荷が生じやすいこの切刃5の外周端16に欠けやチッピングなどが発生するのも防止することができ、高速乾式切削等の加工条件下における工具寿命の一層の延長を図ることができる。しかも、本実施形態ではこの凸曲線状切刃部17が軸線O方向先端視に切刃5の外周端16と軸線Oとを結ぶ直線よりもドリル回転方向Tに凸となるように形成されていて、これにより上述のようにその径方向すくい角αが負角とされているので、マージン部6との上記交差角は鈍角になり、より確実にこの外周端16周辺におけるドリル本体1の強度を確保することが可能となる。
【0028】
また、この凸曲線状切刃部17は、このようにドリル回転方向Tに凸となる曲線状をなしていて、上述した従来のドリルのように切刃が角度をもって凸V字状に折れ曲がっているために切刃上に折曲点が形成されたりすることがなく、しかもその内周側にはドリル回転方向T後方側に凹となる凹曲線状切刃部18が該凸曲線状切刃部17に滑らかに連なるように形成されており、従って切刃5により生成される切屑は上記折曲点で分断されたりすることなく、凹曲線状切刃部18によって生成された部分が内周側に向けて流れ出るのに伴い、全体的に内周側に巻き込まれるように生成されつつ上記第2凹曲面部8に摺接させられて円滑にカールさせられる。このため、本実施形態では、従来のように切刃上の折曲点で切屑が分断されて絡まり合うことにより切屑詰まりを生じたりするようなおそれもなく、また折曲点の外周側に分断された切屑がそのまま外周側に流れ出て抵抗を増大させたりドリル本体の摩耗を速めたりするようなこともなく、より一層の切屑の円滑かつ安定した処理を促して穴明け加工時のドリル回転駆動力の低減を図るとともに、摩耗を抑えて工具寿命を延長させることが可能となる。
【0029】
さらに、本実施形態では、切屑排出溝3の先端側にシンニング部19が形成されていて、これにより切刃5の内周端側は先端逃げ面2の中心に向かうシンニング切刃部20とされており、このシンニング切刃部20と上記凹曲線状切刃部18とが交差する部分が両切刃部18,20に滑らかに連なる凸曲線状または直線状とされるとともに、シンニング切刃部20に連なる第1シンニング部21は谷底部22が凹曲した谷形とされているので、切刃5の全長に亙っても上述のような折曲点が形成されることはなく、しかもこのシンニング切刃部20によって生成された切屑の内周側部分をも、図3に黒塗り矢線で示すように第1シンニング部21の谷底部22断面がなす凹曲線に沿って内周側に巻き込むようにカールさせることができる。このため、上記凹曲線状切刃部18によって切屑が内周側に巻き込まれるのと相俟って、一層の切屑処理性の向上を図ることができ、特に難削材の加工において効果的である。なお、本実施形態ではこの第1シンニング部21の谷底部22がなす凹曲線の曲率半径を0.1〜0.5mmとしているが、これは、この曲率半径がこれよりも大きいと上記切屑の内周側部分を十分に巻き込んでカールさせることができなくなるおそれがある一方、逆にこれよりも小さいとこの切屑の内周側部分がシンニング部19内において詰まりを生じるおそれがあるからである。
【0030】
また、このシンニング部19の先端には、第1シンニング部21の上記谷底部22からさらに一段傾斜して先端逃げ面2に達する第2シンニング部23が形成されていて、この第2シンニング部23と先端逃げ面2との交差稜線部上に切刃5の内周端が形成されており、しかもこの第2シンニング部23の溝底の曲率半径が0.1mm未満と上記谷底部22よりも小さくされていることから、この切刃5の内周端はより内周側に配置されることとなり、これによってチゼルの幅が0〜0.2mmと極短い幅とされている。このため、当該ドリルが加工物に食い付く際の食い付き性や直進安定性の向上を図ってさらに安定かつ高精度の加工を行うことができるとともに、ドリル本体1にその軸線方向に作用するスラスト力を抑えることことができて、ドリル駆動力の一層の軽減を促すことも可能となる。しかも、このようにシンニング部19が切刃5の内周端に向けて傾斜の大きくなる第1、第2の複数のシンニング部21,23によって形成されることにより、先端の第2シンニング部23の溝底に沿った断面におけるドリル本体1の先端角度は、単一のシンニング部の溝底を同じチゼル幅となるように傾斜させた場合に比べて大きくなるので、本実施形態によればこのドリル本体1先端の回転中心周辺における強度も十分に確保して、食い付き時の衝撃的負荷などによっても損傷の生じることのないドリルを提供することができる。ただし、第1シンニング部21だけでドリル本体1の食い付き性や直進安定性と強度とが確保できるのであれば、第2シンニング部23はなくてもよい。
【0031】
ここで、次表1は、図1〜図3に示した実施形態のドリルと、それぞれ第1凸曲面部7の半径R1の大きさと第1、第2凹曲面部8,12の大小、および芯厚dの大きさが異なる以外はこの実施形態と同様とされた比較ドリル1〜5とで、切削速度を変化させ、かつ乾式で穴明け加工試験を行ったときの結果を示すものであり、加工条件や評価は表下に示した通りである。
【0032】
【表1】

Figure 0004120186
【0033】
この表1の結果より、まず第1凸曲面部7の半径R1が切刃5の外径Dに対して0.1×Dを下回る比較ドリル1では、この第1凸曲面部7の幅が小さくなるのに伴い先端の凸曲線状切刃部16の幅も小さくなって、この凸曲線状切刃部16ごと切刃5の肩すなわち上記外周端15部分にチッピングが生じ、またこれとは逆に半径R1が0.8×Dを上回る比較ドリル2では、これら第1凸曲面部7および凸曲線状切刃部16が幅広となって、相対的に第1凹曲面部8および凹曲線状切刃部17が幅狭となり、これにより切屑のカーリング性が損なわれて切屑排出溝3の内壁面4,9に切屑が強く押し付けられ、大きな摩耗を生じる結果となった。また、上記実施形態とは逆に第1凹曲面部8の半径R2を第2凹曲面部12の半径R4よりも大きくした比較ドリル3では、切屑が第2凹曲面部12に強く押し付けられることによって図5(ロ)に示すように潰れを生じ、またこの第2凹曲面部12の摩耗も著しかった。さらに、芯厚dを0.3×Dよりも大きくした比較ドリル4では、切屑排出溝3の断面積が小さくなってやはり切屑の擦過による摩耗が大きく、しかもスラスト力が増大してドリル駆動力も大きくなったのに対し、逆に芯厚dを0.15×Dより小さくした比較ドリル5では、スラスト力は小さくなったものの、剛性不足によって折損が生じてしまった。
【0034】
これらの比較ドリル1〜5に対して、上記実施形態のドリル1〜3では、いずれも排出された切屑が図5(イ)に示すように潰れを生じたりすることなく小さくカールさせられていて、切屑排出溝3の内壁面4,9等における工具摩耗も正常なものであり、特に芯厚dを0.23×Dとした実施形態ドリル2ではスラスト力、水平分力とも小さく、より安定した穴明け加工を行うことが可能であった。なお、これに対して芯厚dを0.20×Dとやや小さめにした実施形態ドリル3では、その分剛性も小さくなったため水平分力が大きくなる傾向となったが、比較ドリル5のように折損に至るようなことはなく、実用上十分な寿命を得ることができた。
【0035】
【発明の効果】
以上説明したように、本発明によれば、切屑排出溝のドリル回転方向を向く壁面の外周端側に凸曲面部を形成することにより、この切屑排出溝の外周端におけるドリル本体強度を確保してチッピングや欠けの発生を防止することができる。そして、この凸曲面部の内周側に滑らかに連なる第1凹曲面部を形成することにより、切屑全体を内周側に巻き込むようにして巻き癖をつけてカールさせ、効率的な処理を図ることができるとともに、ドリル回転方向後方側を向く壁面には第2凹曲面部を形成してこれら第1、第2凹曲面部を接続面によって滑らかに接続することにより、カールされた切屑がこの第2凹曲面部や接続面に強く押し付けられすぎるのを防いで、ドリル本体の摩耗やドリル回転駆動力の低減を図ることができる。また、この接続面の幅を適宜設定することにより、第1、第2凹曲面部の曲率半径に関わらず、ドリル本体の剛性や切屑排出溝の断面積を確保することもできる。従って、乾式でしかも高速切削となるような過酷な加工条件においても、ドリルの寿命の延長を図って円滑かつ安定した穴明け加工を行うことができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す軸線O方向先端視の正面図である。
【図2】 図1に示す実施形態の軸線Oに直交する部分断面図である。
【図3】 図1に示す実施形態のシンニング部19を示すドリル本体1先端部の斜視図である。
【図4】 (イ)は本発明の実施形態によるドリルによって生成された切屑を示す図であり、(ロ)は実施形態とは第1、第2凹曲面部8,12の半径R3,R4の大小が反対とされた比較ドリル3による切屑を示す図である。
【符号の説明】
1 ドリル本体
2 先端逃げ面
3 切屑排出溝
4,9 切屑排出溝3の内壁面
5 切刃
7 第1凸曲面部
8 第1凹曲面部
11 第2凸曲面部
12 第2凹曲面部
13 接続面
14 内壁面4の外周端
16 切刃5の外周端
17 凸曲線状切刃部
18 凹曲線状切刃部
19 シンニング部
20 シンニング切刃部
21 第1シンニング部
22 第1シンニング部21の谷底部
23 第2シンニング部
O ドリル本体1の軸線
T ドリル回転方向
R1〜R4 第1、第2凸凹曲面部7,8,11,12が軸線Oに直交する断面においてなす曲線の曲率半径
S1,S2 第1、第2仮想直線
L1,L2 第1、第2凹曲面部8,12の凹み量
d ドリル本体1の芯厚[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drill capable of a smooth and stable drilling process even under severe processing conditions such as high-speed dry cutting.
[0002]
[Prior art]
As a drill intended to cope with such severe processing conditions that use only a dry or trace amount of cutting fluid, a drill described in, for example, Japanese Patent Application Laid-Open No. 2000-198011 has been proposed. That is, in the drill described in this publication, on the outer peripheral side of the cutting blade formed at the tip of the drill body, an outer corner cutting blade that is angled from the middle portion of the cutting blade and recedes in the drill rotation direction is formed, The leading edge formed from the chip discharge groove and the margin portion is provided with a chamfered portion having a linear shape or a curved shape following the corner cutting edge, and the crossing angle between the outer corner cutting edge and the chamfered portion and the margin portion is determined. Since the obtuse angle can be obtained, it is possible to prevent the chip or the chip discharge groove from being chipped even under the above processing conditions. Moreover, as a drill which bent the outer peripheral end side of the cutting blade or the chip discharge groove to the rear side in the drill rotation direction as described above, for example, as described in Japanese Patent Publication No. 4-46690, the first on the outer peripheral side of the cutting blade is used. A secondary straight ridge having a substantially V-shaped convex shape has also been proposed. In the drill described in this publication, the inner peripheral side of the secondary straight ridge has a rounded concave shape. Further, as such a drill having a concave cutting edge, for example, in Japanese Examined Patent Publication No. 61-58246, a concave curve is used so that the rake angle in the radial direction of the cutting edge portion on the outer peripheral side becomes 0 ° to positive. A tied one has also been proposed.
[0003]
[Problems to be solved by the invention]
Of these, as described in Japanese Examined Patent Publication No. 61-58246, when the outer peripheral cutting edge portion has a concave curve, the processing by chip curling can be performed smoothly and stably under normal processing conditions. However, since the crossing angle with the margin part of the inner wall facing the drill rotation direction of the chip discharge groove becomes an acute angle and the strength of the drill body is insufficient, this inner wall surface is immediately exposed under severe conditions such as high-speed dry cutting. Chipping and chipping occur on the outer peripheral end side, and the tool life is consumed in a very short time. On the other hand, as described in Japanese Patent Application Laid-Open No. 2000-198011 and Japanese Patent Publication No. 4-46690, a chamfered portion is provided on the outer peripheral end side of the inner wall surface of the chip discharge groove, or the outer peripheral end side of the cutting blade is In the case where the outer peripheral end of the chip discharge groove has a V-shaped cross section along with the V-shaped convex shape, the crossing angle with the margin part of the chip discharge groove can be made an obtuse angle. Although chipping is suppressed, the chips generated by the cutting blade are likely to flow out to the outer peripheral side from the chamfered portion of the inner surface of the chip discharge groove and the outer peripheral side of the convex V shape. The curling property as a whole deteriorates, and thus the chips that are not sufficiently curled are strongly pressed against the inner wall surface of the chip discharge groove facing the rear side of the drill rotation direction, which gives a great resistance to the drill body. Worn there is a risk of or cause an increase in drill rotation driving force at the time of processing or promoted.
[0004]
The present invention has been made under such a background, and prevents the shortening of the tool life even under severe processing conditions such as high-speed dry cutting and provides excellent chip disposal and enables smooth and stable drilling. The purpose is to provide a simple drill.
[0005]
[Means for Solving the Problems]
In order to solve the above problems and achieve such an object, according to the present invention, a chip discharge groove extending toward the rear end side is formed on the outer periphery of the distal end portion of the drill body rotated about the axis, and the chip is A drill in which a cutting edge is formed at an intersecting ridge line portion between the inner wall surface of the discharge groove facing the drill rotation direction and the tip flank of the drill body, and the inner wall surface of the chip discharge groove facing the drill rotation direction A convex curved surface portion that is located on the outer peripheral end side, intersects the margin portion, and forms a convex curved surface that is convex in the drill rotation direction, and is formed on the inner peripheral side of the convex curved surface portion. Forming a first concave curved surface portion that forms a curved surface that is smoothly connected to the rear side of the drill rotation direction and has a concave shape in the drill rotation direction on the inner wall surface facing the rear side of the drill discharge groove in the drill rotation direction. A second concave curved surface portion having a curved surface shape is formed. Between the first and second concave curved surface portions, a connecting surface that forms a tangential line that touches both the concave curve formed by the first concave curved surface portion and the concave curve formed by the second concave curved surface portion in a cross section orthogonal to the axis. And the first concave curved surface portion and the second concave curved surface portion are smoothly connected via the connection surface. In the cross section orthogonal to the axis, the radius of curvature of the concave curve formed by the second concave curved surface portion is made larger than the radius of curvature of the concave curve formed by the first concave curved surface portion, so that the first concave curved surface portion is The radius of curvature of the concave curve formed is set in a range of 0.18 × D to 0.35 × D with respect to the outer diameter D of the cutting edge, and the radius of curvature of the concave curve formed by the second concave curved surface portion is set. The outer diameter D of the cutting blade is set in a range of 0.2 × D to 0.5 × D. It is characterized by that.
[0006]
Therefore, in the drill configured in this way, a convex curved surface portion that is convex in the drill rotation direction is formed on the outer peripheral end side of the chip discharge groove, so the outer peripheral side of this convex curved surface portion, that is, the outer periphery of the drill body At the intersection with the margin portion, the intersection angle can be increased to ensure a sufficient strength, and chipping and chipping can be prevented even under the above processing conditions. And the 1st concave curved surface part which becomes a concave in the drill rotation direction back side is formed in the inner peripheral side of this convex curve surface part smoothly, and a chip is slidably contacted to this 1st concave curved surface part. As a result, it is possible to curl the entire chip on the outer peripheral side that has flowed out to the convex curved surface part so as to be wound on the inner peripheral side, and to rotate the drill on the inner wall surface facing the rear side in the drill rotation direction of the chip discharge groove A second concave curved surface portion that is concave in the direction is formed, and a connecting surface that smoothly touches both concave curved surface portions is formed between the first and second concave curved surface portions. It is possible to smoothly flow out the chips without pressing strongly against the inner wall surface facing the rear side of the drill rotation direction of the chip discharge groove, reducing resistance to the drill body during processing, reducing wear and driving the drill To reduce power Door can be. In addition, by forming the connection surface between the first and second concave curved surface portions in this way, the groove width of the chip discharge groove is ensured without being limited by the curvature radius of the first and second concave curved surface portions. Therefore, it is possible to simultaneously improve the curling property and discharging property of the chips as described above. However, in the present invention, in the cross section perpendicular to the axis, the radius of curvature of the concave curve formed by the second concave curved surface portion is made larger than the radius of curvature of the concave curve formed by the first concave curved surface portion. The first concave curved surface portion can curl the chip with sufficient curl, and the radius of curvature of the second concave curved surface portion is made larger than that of the first concave curved surface portion. By interposing the connection surface between the first and second concave curved surface portions, it is possible to further suppress chip pressing to the second concave curved surface portion and to further smooth chip discharge. In addition, as for the radius of curvature of the concave curve formed by the first concave curved surface portion in the cross section perpendicular to the axis, there is a possibility that it cannot be sufficiently curled by sliding the chips if it is too large. If it is too small, the chips are abruptly curled and the braking action may become too large, so the range is set in the range of 0.18 × D to 0.35 × D with respect to the outer diameter D of the cutting edge. Furthermore, if the radius of curvature of the concave curve formed by the second concave curved surface portion in the cross section orthogonal to the axis is too large, the chips do not slide on the second concave curved surface portion and are curled only by the first concave curved surface portion. On the other hand, if it is too small, the sliding contact of the chips with the second concave curved surface portion becomes too strong and a large braking action is generated. It is set in the range of 0.2 × D to 0.5 × D. Such a connection surface may be formed between the convex curved surface portion and the first concave curved surface portion, or on the outer peripheral side of the convex curved surface portion or the second concave curved surface portion.
[0007]
However, in this case, if the dent on the rear side in the drill rotation direction of the first concave curved surface portion is too small, there is a possibility that sufficient curling due to the sliding contact of chips may not be achieved, but conversely if the dent is too large. Further, the braking action due to the sliding contact of the chips becomes too strong, and the chips may be crushed and the discharge performance may be impaired, or the drill driving force may be increased. Also, with respect to the second concave curved surface portion, depending on the width of the connection surface, if the recess in the drill rotation direction is too small, chips flowing from the first concave curved surface portion are strongly pressed against the second concave curved surface portion. On the other hand, if this dent is too large, the chips may be curled only by sliding contact with the first concave curved surface portion, and may not be sufficiently curled. There is. For this reason, the dents of the first and second concave curved surface portions are the first imaginary line from the first imaginary straight line connecting the axis and the outer peripheral end of the inner wall surface facing the drill rotation direction in a cross section orthogonal to the axis. From the second imaginary straight line that intersects the first imaginary straight line at the axis line while setting the dent amount L1 of the concave curved surface part to a range of −0.06 × D to 0 with respect to the outer diameter D of the cutting edge. It is desirable to set the dent amount L2 of the second concave curved surface portion in the range of −0.06 × D to 0.06 × D.
[0008]
The radii of curvature of the first and second concave curved surface portions may be constant in each case, that is, the first and second concave curved surface portions in the cross section are smoothly in contact with each other at one contact point with arcs having different radii. The shape may be a shape, and the radius of curvature gradually increases from the first concave curved surface portion side to the second concave curved surface portion side through the connection surface having a tangential cross section, for example, an elliptical shape or a trochoid in the cross section, Various curvilinear shapes such as a cycloid and an involute may be exhibited.
[0009]
Further, when the convex curved surface portion and the first and second concave curved surface portions that are smoothly connected to the inner wall surface of the chip discharge groove are formed in this way, the curvature radius of the convex curve formed by the convex curved surface portion first in the cross section orthogonal to the axis line. On the other hand, if this is too large, the curling of chips may be insufficient. On the other hand, if it is too small, sufficient strength cannot be secured at the intersection with the margin portion. In contrast, it is desirable to set a range of 0.1 × D to 0.8 × D. Furthermore, in order to sufficiently ensure the rigidity of the drill body while facilitating smooth discharge of the chips curled as described above, the core thickness of the drill body is set to the outer diameter D of the cutting blade. It is desirable to set it in the range of 0.15 × D to 0.3 × D. Furthermore, if the surface of at least the tip of the drill body is coated with a hard coating such as TiN, TiCN, TiAlN, etc., the wear resistance of the tip of the drill body can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of the present invention. In the present embodiment, the drill body 1 is formed in a substantially cylindrical shape centering on the axis O by a hard material such as a cemented carbide, and is constant at the tip portion from the tip flank 2 toward the rear end side. A pair of chip discharge grooves 3, 3 that are twisted to the rear side in the drill rotation direction T at a twist angle of? Are formed symmetrically with respect to the axis O, and the drill rotation direction T side of these chip discharge grooves 3, 3 is Cutting blades 5 and 5 are formed at the intersecting ridges between the facing inner wall surfaces 4 and 4 and the tip flank 2, respectively. The tip of the drill body 1 is coated with a hard coating such as TiN, TiCN, TiAlN on the outer peripheral surface, the tip flank 2 and the chip discharge groove 3.
[0011]
Here, the inner wall surface 4 is located on the outer peripheral side thereof, intersects the margin portion 6, and forms a convex curve that is convex in the drill rotation direction T as shown in FIG. 2 in a cross section orthogonal to the axis O. 1 convex curved surface part 7 and the 1st concave curved surface part 8 which makes the concave curve shape which is located in the inner peripheral side of this 1st convex curved surface part 7, and dents in the back side of the drill rotation direction T in the said cross section are formed. The uneven curves formed by the cross sections of the first uneven surface portions 7 and 8 are connected so as to smoothly contact at the contact point P1. Further, in the present embodiment, the inner wall surface 9 of the chip discharge groove 3 facing the rear side in the drill rotation direction T is also located on the outer peripheral side and reaches the heel portion 10, and the above-mentioned cross section protrudes toward the rear side in the drill rotation direction T. A second convex curved surface portion 11 that forms a convex curve, and a second concave curved surface portion 12 that is located on the inner peripheral side of the second convex curved surface portion 11 and has a concave curved shape whose cross section is recessed toward the drill rotation direction T. Are formed so that the uneven curves formed by the second uneven curved surface portions 11 and 12 are also smoothly contacted at the contact point P2. Between the first and second concave curved surface portions 8 and 12, both the concave curve formed by the first concave curved surface portion 8 and the concave curve formed by the second concave curved surface portion 12 in a cross section orthogonal to the axis O. A connecting surface 13 is formed in a tangential shape that contacts the contacts P3 and P4, and the both concave curved surface portions 8 and 12 are smoothly connected via the connecting surface 13. In addition, by forming the chip discharge groove 3 in a twisted groove shape, the connection surface 13 is a twisted surface that is twisted in the same manner as the chip discharge groove 3 toward the rear end side of the drill body 1. Further, the outer peripheral surface of the land portion extending from the margin portion 6 to the heel portion 10 in the drill rotation direction T rear side is formed in a cylindrical surface shape that recedes from the margin portion 6 to the inner peripheral side in one step.
[0012]
Furthermore, in the present embodiment, in the cross section, the uneven curves formed by the first and second uneven curved surface portions 7, 8, 11, and 12 are arcs having radii R1 to R4 with the points C1 to C4 as the centers. The center C1 of the convex arc formed by the first convex curved surface portion 7 is the intersection of the first convex curved surface portion 7 and the margin portion 6, that is, the margin portion 6 at the outer peripheral end 14 of the inner wall surface 4. The center C3 of the circular arc formed by the second convex curved surface portion 11 is positioned on the inner peripheral side with respect to the straight line Q1 in contact with the circular arc formed by the second convex curved surface portion 11 and the circle formed by the outer peripheral end 14 around the axis O. At the intersection 15 with the extended line, the straight line Q2 that is in contact with the circle is also located on the inner peripheral side. Accordingly, the first convex curved surface portion 7 is convex toward the drill rotation direction T side with respect to the first virtual straight line S1 connecting the axis O and the outer peripheral end 14 of the inner wall surface 4, and the first convex at the outer peripheral end 14. The tangent line of the curved surface portion 7 is inclined with respect to the first imaginary straight line S1 so as to extend rearward in the drill rotation direction T toward the outer peripheral side, and is obtuse with the straight line Q1 orthogonal to the first imaginary straight line S1. Can be crossed. Further, the second convex curved surface portion 11 is also convex toward the rear side in the drill rotation direction T from the straight line connecting the intersection with the heel portion 10 and the axis O.
[0013]
On the other hand, since the arc centers C2 and C4 formed by the first and second concave curved surface portions 8 and 12 are in contact with the tangent line formed by the connection surface 13 at the contact points P3 and P4, the contact point P3 , P4, respectively, are located on a pair of parallel lines orthogonal to each other. Furthermore, in this embodiment, this connection surface 13 is the groove bottom that is recessed most on the inner peripheral side of the drill body 1 in the chip discharge groove 3, and therefore the core thickness of the drill body 1 that is in contact with this connection surface 13 about the axis O. Yen. The diameter of the core thickness circle, that is, the core thickness d of the drill body 1 is 0.15 × with respect to the diameter of the circle formed by the outer peripheral end 16 of the cutting blade 5 around the axis O, that is, the outer diameter D of the cutting blade 5. It is set in the range of D to 0.3 × D.
[0014]
The contact point P1 of the uneven curve formed by the first uneven surface portions 7 and 8 is positioned on the outer peripheral side with respect to the circle having the diameter of 2/3 of the outer diameter D of the cutting blade 5 with the axis O as the center. More preferably, it is positioned on the outer peripheral side of a circle having a diameter of 5/6 of the outer diameter D around the axis O. In addition, the size of the recess of the first concave curved surface portion 8 toward the rear side in the drill rotation direction T is such that the recess amount L1 from the first imaginary straight line S1 is −0.06 × with respect to the outer diameter D of the cutting blade 5. The second imaginary straight line S2 is set in the range of D to 0, and the size of the dent of the second concave curved surface portion 12 toward the drill rotation direction T is perpendicular to the first imaginary straight line S1 by the axis O in the cross section. Is set to be in a range of −0.06 × D to 0.06 × D. However, these dent amounts L1 and L2 are parallel to the first and second imaginary straight lines S1 and S2 in the cross section, respectively, and the first and second straight lines in contact with the concave curves formed by the first and second concave curved surface portions 8 and 12 respectively. The distance between the second virtual straight line S1 and S2, and as shown in FIG. 2, with respect to the amount of recess L1 of the first concave curved surface portion 8, the drill rotation direction T side is positive from the first virtual straight line S1. The rear side is negative, and conversely, with respect to the dent amount L2 of the second concave curved surface portion 12, the drill rotation direction T side from the second virtual straight line S2 is negative and the rear side is positive. Therefore, in the present embodiment, the entire first concave curved surface portion 8 is not positioned on the drill rotation direction T side with respect to the first virtual straight line S1.
[0015]
Further, in the cross section, the radii R1 to R4 of the arc formed by the first and second uneven curved surface portions 7, 8, 11, and 12 have a radius R 1 of the first convex curved surface portion 7 with respect to the outer diameter D of the cutting edge 5. In the range of 0.1 to 0.8 × D, the radius R2 of the first concave curved surface portion 8 is in the range of 0.18 to 0.35 × D, and the radius R3 of the second convex curved surface portion 11 is 0.1 to 0.1 × D. In the range of 0.8 × D, the radius R4 of the second concave curved surface portion 12 is set in the range of 0.2 to 0.5 × D. And in this embodiment, radius R4 of the 2nd concave curved surface part 12 is made larger than radius R2 of the 1st concave curved surface part 8 among these. In addition, the groove width ratio of the chip discharge groove 3 formed in this way is set to a range of 0.8 to 1.2: 1 in the present embodiment.
[0016]
In the cutting edge 5 formed at the intersecting ridge line portion between the inner wall surface 4 and the tip flank 2 of the chip discharge groove 3, the inner wall surface 4 is formed by the first uneven curved surface portions 7 and 8. Accordingly, as shown in FIG. 1, a convex curved cutting edge portion 17 having a curved shape convex in the drill rotation direction T is formed on the outer peripheral end 16 side, and the first convex curved surface is formed on the rear end side. The portion 7 is continuous, and on the inner peripheral side of the convex curved cutting edge portion 17, a curved shape that is concave on the rear side in the drill rotation direction T is formed so as to be in smooth contact with the convex curved cutting blade portion 17. A concave curved cutting edge portion 18 is formed, and the first concave curved surface portion 8 is connected to the rear end side thereof, and the cutting blade 5 is located between the convex and concave curved cutting blade portions 17 and 18 in the front view in the direction of the axis O. It will exhibit an S-shape that gently curves. However, the cutting edge 5 is provided with a tip angle by being inclined toward the rear end side of the drill body 1 as the tip flank 2 moves from the inner peripheral side to the outer peripheral side, and chip discharge is performed. Since the groove 3 is twisted in a spiral shape, the S-shaped uneven curve formed by the uneven curved cutting edge portions 17 and 18 of the cutting edge 5 when viewed from the front in the direction of the axis O is the first curve of the inner wall surface 4. The uneven curve formed in the cross section where the uneven curved surface portions 7 and 8 are orthogonal to the axis O will have a shape that gradually shifts toward the drill rotation direction T side toward the inner peripheral side. Therefore, the convex curve-shaped cutting edge portion 17 has a tangent at the outer peripheral end 16 that is larger in inclination than the tangent at the outer peripheral end 14 of the convex curve formed by the first convex curved surface portion 7 in the cross section when viewed from the front in the axis O direction. As it goes to the outer peripheral side, it extends to the rear side in the drill rotation direction T, and the crossing angle with the margin portion 6 is also made larger than the obtuse angle formed by the first convex curved surface portion 7, whereby the cutting edge 5 is 16 is set to the negative angle side.
[0017]
On the other hand, the tip flank 2 from the inner peripheral side of the first concave curved surface portion 8 to the second concave curved surface portion 12 and the second convex curved surface portion 11 is formed on the distal end side of the inner wall surfaces 4 and 9 of the chip discharge groove 3. A thinning portion 19 reaching the heel portion 10 is formed so as to cut out the crossed ridge line portion toward the rear end side of the drill body 1 toward the inside of the chip discharge groove 3. The inner peripheral end side is formed at the intersecting ridge line portion between the thinning portion 19 and the tip flank 2 and is directed from the inner peripheral end of the concave curved cutting edge portion 18 toward the axis O at the center of the tip flank 2. The thinning cutting edge portion 20 extends. Note that a portion of the cutting blade 5 where the thinning cutting blade portion 20 and the concave curved cutting blade portion 18 intersect is smoothly connected by a curve or straight line that is convex in the drill rotation direction T when viewed from the front in the axis O direction. ing.
[0018]
Here, a portion of the thinning portion 19 that intersects the inner wall surfaces 4 and 9 of the chip discharge groove 3 and extends to the front end side is a first thinning portion 21, and this first thinning portion 21 is rotated by a drill. The portion extending to the heel portion 10 side intersecting the inner wall surface 9 of the chip discharge groove 3 facing the rear side in the direction T is formed in a flat shape, while the inner wall surface 4 facing the inner wall surface 9 and the drill rotation direction T side. 3, that is, a portion extending from the contact P3 portion of the first and second concave curved surface portions 8 and 12 toward the center of the tip flank 2 as shown in FIG. It is formed so as to form a concave curved valley when viewed from the direction toward the center, and the concavely curved valley bottom 22 is located on the inner peripheral side of the drill body 1 with respect to the inner wall surfaces 4, 9. The inner peripheral end of the cutting edge 5, that is, the thin It is formed to extend distally toward the inner peripheral end of the ring cutting edge 20. In addition, the curvature radius of the concave curve which the trough bottom part 22 which the concave part of this 1st thinning part 21 makes in the cross section is set to the range of 0.1-0.5 mm. Further, the radius of curvature of the concave curve formed by the cross section of the valley bottom 22 may be increased toward the rear end side.
[0019]
Further, in the portion where the foremost valley bottom portion 22 of the first thinning portion 21 is about to reach the inner peripheral end of the cutting edge 5, the first thinning portion 21 is further retracted toward the inner peripheral side of the drill body 1 with respect to the valley bottom portion 22. A valley-shaped second thinning portion 23 extending toward the inner peripheral end side of the cutting blade 5 while being inclined one step is formed, and in the vicinity of the axis O at the center of the tip flank 2, the second thinning portion 23 is formed. Intersects the tip flank 2 and the inner peripheral end of the cutting edge 5 is formed on the intersecting ridge line portion. Here, the curvature radius of the valley bottom portion of the second thinning portion 23 is smaller than the curvature radius of the valley bottom portion 22 of the first thinning portion 21 and is less than 0.1 mm. That is, the bottom of the valley may be formed in a V-shaped valley that is not concavely curved, and is further increased in size toward the rear end side of the drill body 1 in the same manner as the valley bottom 22 of the first thinning portion 21. Also good. In addition, the tip end of the drill body 1 is formed by forming the inner peripheral end of the cutting edge 5 at the intersecting ridge line portion between the second thinning portion 23 and the tip flank 2 which are inclined further by one step than the first thinning portion 21 in this way. The distance between the pair of cutting edges 5, 5, that is, the width of the chisel defined at the center of the tip flank 2 is such that the first thinning portion 21 intersects the tip flank 2 as it is and the inner peripheral edge of the cutting blade 5. The width of the chisel is in the range of 0 to 0.2 mm in this embodiment. Accordingly, the inner peripheral ends of the cutting blades 5 and 5 may be aligned on the axis O.
[0020]
In the drill configured in this way, first, the first convex curved surface portion 7 is formed on the outer peripheral end 14 side of the inner wall surface 4 facing the drill rotation direction T of the chip discharge groove 3. Since the crossing angle between the inner wall surface 4 and the margin portion 6 of the chip discharge groove 3 can be increased, and the strength of the drill body 1 around the outer peripheral end 14 can be ensured. Even under severe processing conditions, it is possible to prevent a situation in which chipping or chipping occurs around the outer peripheral end 14 to shorten the tool life. Further, a first concave curved surface portion 8 is formed on the inner peripheral side of the first convex curved surface portion 7 so as to be smoothly connected to the first convex curved surface portion 7, and flows on the first convex curved surface portion 7. Even if the outer peripheral side portion of the chip is about to flow out to the outer peripheral side, the chip inner peripheral side portion flowing on the first concave curved surface portion 8 is pressed while being in sliding contact with the first concave curved surface portion 8, thereby It can be curled small by attaching a curl so that it is entirely wound on the inner peripheral side.
[0021]
Further, in the drill having the above-described configuration, the first concave curved surface portion 8 is provided on the inner peripheral side of the inner wall surface 9 of the chip discharge groove 3 facing the rear side of the drill rotation direction T opposite to the first concave curved surface portion 8. On the contrary, a second concave curved surface portion 12 that is concave in the drill rotation direction T is formed, and the first and second concave curved surface portions 8 and 12 are smoothly connected to the both concave curved surface portions 8 and 12. Since it is connected by the surface 13, the chips curled small by the first concave curved surface portion 8 as described above are pressed more strongly against the second concave curved surface portion 12 and the connecting surface 13 and are crushed. It is possible to discharge smoothly without obstructing the flow of chips. Further, since the chips are not strongly pressed against the second concave curved surface portion 12 and the connecting surface 13 in this way, the abrasion of the inner wall surface 9 of the chip discharge groove 3 is promoted by the scraping of the chips, or the drill rotational driving force is increased. Is not invited. In addition, in the present embodiment, the second convex curved surface portion 11 is formed so as to be smoothly connected to the outer peripheral side of the second concave curved surface portion 12, so that the flow of chips may be inhibited on the heel portion 10 side. In addition, the strength of the drill body 1 in the heel portion 10 can be ensured. Further, since the tip of the drill body 1 including the cutting edge 5 is coated with a hard film such as TiN, TiCN, or TiAlN, the wear resistance of the drill body 1 can be further improved. .
[0022]
Further, when the connection surface 13 is interposed between the first and second concave curved surface portions 8 and 12 in this way, the radius of curvature R2 and R4 of the first and second concave curved surface portions 8 and 12 is limited. The groove width of the chip discharge groove 3 can be set without any change. Therefore, for example, when the chip tends to curl due to the material of the workpiece, the radii R2 and R4 of the first and second concave curved surface portions 8 and 12 are increased in order to prevent the chip from being curled too small, and as a result If the cross-sectional area of the drill body 1 is reduced as the groove width of the chip discharge groove 3 is increased and the rigidity may be impaired, the width of the connection surface 13 is reduced to reduce the chip discharge groove 3. Accordingly, the cross-sectional area of the drill body 1 can be ensured to maintain the rigidity. On the other hand, for example, when it is difficult for the chip to curl, the radius R2 of the first concave curved surface portion 8 is decreased to try to strongly curl the chip, or the radius of the second concave curved surface portion 12 is set. When R4 is made small to try to press the chip against the second concave curved surface portion 12 to some extent, the cross-sectional area of the chip discharge groove 3 may be reduced and chip clogging may occur. In this case, by increasing the groove width of the connection surface 13, a sufficient cross-sectional area is secured in the chip discharge groove 3 regardless of the radii R2 and R4 of the first and second concave curved surface portions 8 and 12. Smooth chip discharge performance can be maintained.
[0023]
Further, in the present embodiment, the first and second concave curved surface portions 8 and 12 are connected to the concave amounts L1 and L2, and the first concave curved surface portion 8 is connected to the axis O and the outer peripheral end 14 of the inner wall surface 4 with respect to the first concave curved surface portion 8. The range from −0.06 × D to 0 with respect to the outer diameter D of the cutting edge 5 from the imaginary straight line S1 (however, the rear side of the drill rotation direction T is negative). O is set to be in the range of −0.06 × D to 0.06 × D from the second virtual line S2 orthogonal to the first virtual line S1 (however, the drill rotation direction T side is negative). As a result, the chip can be brought into sliding contact with the first and second concave curved surface portions 8 and 12 without being too strong and not too weak, and an appropriate braking action can be given. For this reason, the chips can be reliably curled and processed without damaging the smooth evacuation due to excessive braking action and without causing an increase in the drill rotation driving force. In order to achieve such an effect more reliably, the curvature radius R2 of the concave curve (concave arc) formed by the first concave curved surface portion 8 in the cross section orthogonal to the axis O as in the present embodiment is cut. The outer radius D of the blade 5 is set in a range of 0.18 to 0.35 × D, and the radius of curvature R4 of the second concave curved surface portion 12 is set in a range of 0.2 to 0.5 × D. Is desirable.
[0024]
In the present embodiment, the radius of curvature of the concave curve formed by the second concave curved surface portion 12 in the cross section perpendicular to the axis O between the first and second concave curved surface portions 8 and 12, that is, the radius R4 is the first. The radius of curvature of the concave curve formed by the concave curved surface portion 8, that is, the radius R2 is made larger. For this reason, the chip generated by the cutting blade 5 is first slidably brought into contact with the first concave curved surface portion 8 having a relatively small radius R2, so that the chip is curled with a sufficient curl and thus curled. By flowing out the chips to the second concave curved surface portion 12 side having a relatively large radius R4 via the connection surface 13, it is possible to further suppress the strong pressing of the chips on the second concave curved surface portion 12 and the connection surface 13. Therefore, it is possible to promote smoother chip discharge and further reduce the drill rotation driving force.
[0025]
Further, in the present embodiment, the curvature radii R1 and R3 of the convex curves (convex arcs) formed by the first and second convex curved surface portions 7 and 11 in the cross section are 0 with respect to the outer diameter D of the cutting blade 5, respectively. .1 to 0.8 × D, so that the strength around the margin portion 6 and the strength around the heel portion 10 at the outer peripheral end 14 of the inner wall surface 4 of the drill body 1 are sufficiently secured. The width of the first and second concave curved surface portions 8 and 12 in the radial direction can be prevented from becoming too small, and reliable chip disposal can be improved. In addition, in order to achieve both the securing of the strength of the drill body 1 and the improvement of the chip disposal in this way even under conditions such as high-speed dry cutting, the first uneven surface in the cross section as in the present embodiment. The contact point P1 of the uneven curve formed by the portions 7 and 8 is located on the outer peripheral side from the circle O having a diameter of 2/3 of the outer diameter D of the cutting blade 5 from the axis O, and more preferably a circle having a diameter of 5/6 of the outer diameter D. It is desirable that the groove width ratio of the chip discharge groove 3 is in the range of 0.8 to 1.2: 1.
[0026]
Furthermore, in this embodiment, as the chip disposability is improved and the drill rotational driving force is reduced in this way, the load that the drill body 1 itself receives during processing becomes smaller, and thereby the core thickness is reduced. d can also be set to a relatively small range of 0.15 × D to 0.3 × D with respect to the outer diameter D of the cutting edge 5. For this reason, especially the thrust force is reduced among the loads received by the drill body 1 and the cross-sectional area of the chip discharge groove 3 is increased to facilitate smooth chip discharge, thereby further increasing the power during drilling. Mitigation can be achieved. On the other hand, the cross-sectional area of the drill body 1 is large on the outer peripheral side by setting the curvature radii R1 to R4 in an appropriate range as described above, and in particular by the first and second convex curved surface portions 7 and 11. Therefore, the necessary and sufficient amount can be secured, and therefore the rigidity of the drill body 1 can be maintained, so that the machining power can be further reduced as described above. It is possible to prevent a situation in which breakage or the like sometimes occurs and the drill life is consumed.
[0027]
On the other hand, in the drill of this embodiment in which the first uneven curved surface portions 7 and 8 are formed on the inner wall surface 4 facing the drill rotation direction T of the chip discharge groove 3 in this way, the drill is formed at the intersecting ridge line portion with the tip flank 2. On the outer peripheral end 16 side of the cutting edge 5 to be formed, a convex curved cutting edge portion 17 that is convex in the drill rotation direction T is formed. And the margin portion 6 can be set to a large angle as described above, and larger than the cross angle with the first convex curved surface portion 7, and the drill body in the vicinity of the outer peripheral end 16 of the cutting edge 5. The strength of 1 can be sufficiently secured. For this reason, since it is located on the outer periphery of the drill body 1, the cutting speed is the highest, and the amount of chips generated is the largest, so that an excessive load is likely to occur, and the outer peripheral edge 16 of the cutting blade 5 is easily chipped or chipped. Therefore, the tool life can be further extended under processing conditions such as high-speed dry cutting. Moreover, in the present embodiment, the convex curved cutting edge portion 17 is formed so as to protrude in the drill rotation direction T from the straight line connecting the outer peripheral end 16 of the cutting edge 5 and the axis O when viewed from the front of the axis O direction. Thus, as described above, since the radial rake angle α is a negative angle, the crossing angle with the margin portion 6 becomes an obtuse angle, and the strength of the drill body 1 around the outer peripheral end 16 is more reliably determined. Can be secured.
[0028]
Further, the convex curved cutting edge portion 17 has a curved shape that is convex in the drill rotation direction T in this way, and the cutting edge is bent into a convex V shape with an angle as in the conventional drill described above. Therefore, a bending point is not formed on the cutting edge, and a concave curved cutting edge portion 18 which is concave on the rear side in the drill rotation direction T is formed on the inner circumferential side of the cutting edge. Therefore, the chip generated by the cutting blade 5 is not divided at the bending point, and the portion generated by the concave curved cutting blade portion 18 is the inner circumference. As it flows out toward the side, it is slidably brought into contact with the second concave curved surface portion 8 while being generated so as to be entirely wound on the inner peripheral side, and is smoothly curled. For this reason, in the present embodiment, there is no fear that chips will be clogged by being divided and entangled at the bending point on the cutting edge as in the prior art, and also divided on the outer peripheral side of the bending point. Drill rotation drive during drilling by promoting smoother and more stable processing of chips without increasing the resistance and accelerating the wear of the drill body. In addition to reducing the force, it is possible to suppress wear and extend the tool life.
[0029]
Furthermore, in this embodiment, the thinning part 19 is formed in the front end side of the chip discharge groove | channel 3, By this, the inner peripheral end side of the cutting blade 5 is made into the thinning cutting edge part 20 which goes to the center of the front-end | tip flank 2. A portion where the thinning cutting edge portion 20 and the concave curved cutting edge portion 18 intersect with each other is formed into a convex curve shape or a straight line smoothly connected to both the cutting edge portions 18 and 20, and the thinning cutting edge portion. Since the first thinning portion 21 connected to 20 has a valley shape in which the valley bottom portion 22 is bent, the bending point as described above is not formed even over the entire length of the cutting edge 5. The inner peripheral side portion of the chips generated by the thinning cutting edge portion 20 is also on the inner peripheral side along the concave curve formed by the cross section of the valley bottom portion 22 of the first thinning portion 21 as shown by the black arrow in FIG. Can be curled so that For this reason, coupled with the fact that chips are wound on the inner peripheral side by the concave curvilinear cutting edge portion 18, it is possible to further improve the chip disposability, especially in the processing of difficult-to-cut materials. is there. In this embodiment, the radius of curvature of the concave curve formed by the valley bottom portion 22 of the first thinning portion 21 is set to 0.1 to 0.5 mm. If this radius of curvature is larger than this, This is because the inner peripheral side portion may not be sufficiently wound and curled, and conversely, if it is smaller than this, the inner peripheral side portion of the chips may be clogged in the thinning portion 19.
[0030]
Further, a second thinning portion 23 is formed at the tip of the thinning portion 19 so as to be inclined one step further from the valley bottom portion 22 of the first thinning portion 21 and reach the tip flank 2. The inner peripheral end of the cutting edge 5 is formed on the intersecting ridge line portion between the tip flank 2 and the radius of curvature of the groove bottom of the second thinning portion 23 is less than 0.1 mm, which is higher than that of the valley bottom portion 22. Since it is made small, the inner peripheral end of the cutting blade 5 is arranged on the inner peripheral side, and the width of the chisel is set to an extremely short width of 0 to 0.2 mm. For this reason, it is possible to improve the biting property and the straight running stability when the drill bites the workpiece, and to perform further stable and highly accurate machining, and the thrust acting on the drill body 1 in the axial direction thereof The force can be suppressed, and further reduction of the drill driving force can be promoted. In addition, the thinning portion 19 is formed by the first and second thinning portions 21 and 23 whose inclination increases toward the inner peripheral end of the cutting blade 5 in this way, so that the second thinning portion 23 at the tip end is formed. The angle of the tip of the drill body 1 in the cross section along the groove bottom is larger than that when the groove bottom of a single thinning portion is inclined so as to have the same chisel width. It is possible to provide a drill that sufficiently secures the strength around the center of rotation of the tip of the drill body 1 and that is not damaged even by an impact load at the time of biting. However, the second thinning portion 23 may not be provided as long as the biting property, straight running stability, and strength of the drill main body 1 can be secured only by the first thinning portion 21.
[0031]
Here, the following table 1 shows the drill of the embodiment shown in FIGS. 1 to 3, the size of the radius R1 of the first convex curved surface portion 7, the size of the first and second concave curved surface portions 8, 12, and The comparison drills 1 to 5 are the same as in this embodiment except that the size of the core thickness d is different, and show the results when the cutting speed was changed and the drilling test was performed dry. The processing conditions and evaluation are as shown below the table.
[0032]
[Table 1]
Figure 0004120186
[0033]
From the results of Table 1, first, in the comparative drill 1 in which the radius R1 of the first convex curved surface portion 7 is less than 0.1 × D with respect to the outer diameter D of the cutting blade 5, the width of the first convex curved surface portion 7 is As it becomes smaller, the width of the convex curvilinear cutting edge portion 16 at the tip also becomes smaller, and the shoulder of the cutting blade 5 together with the convex curvilinear cutting edge portion 16, that is, the outer peripheral end 15 portion is chipped. On the contrary, in the comparative drill 2 in which the radius R1 exceeds 0.8 × D, the first convex curved surface portion 7 and the convex curved cutting edge portion 16 are wide, and the first concave curved surface portion 8 and the concave curved curve are relatively formed. As a result, the curled portion of the chip was damaged, and the chip was strongly pressed against the inner wall surfaces 4 and 9 of the chip discharge groove 3, resulting in large wear. In contrast to the above embodiment, in the comparative drill 3 in which the radius R2 of the first concave curved surface portion 8 is larger than the radius R4 of the second concave curved surface portion 12, chips are strongly pressed against the second concave curved surface portion 12. As shown in FIG. 5 (b), crushing occurred, and the wear of the second concave curved surface portion 12 was remarkable. Further, in the comparative drill 4 in which the core thickness d is larger than 0.3 × D, the cross-sectional area of the chip discharge groove 3 is reduced, so that wear due to chip abrasion is also large, and the thrust force is increased and the drill driving force is also increased. On the contrary, in the comparative drill 5 in which the core thickness d was smaller than 0.15 × D, the thrust force was reduced, but breakage occurred due to insufficient rigidity.
[0034]
With respect to these comparative drills 1 to 5, in the drills 1 to 3 of the above embodiment, the discharged chips are curled small without causing crushing as shown in FIG. The tool wear on the inner wall surfaces 4 and 9 of the chip discharge groove 3 is also normal. In particular, in the embodiment drill 2 in which the core thickness d is 0.23 × D, both the thrust force and the horizontal component force are small and more stable. Drilling was possible. On the other hand, in the embodiment drill 3 in which the core thickness d is slightly reduced to 0.20 × D, since the rigidity is reduced accordingly, the horizontal component force tends to increase. However, there was no breakage and a practically sufficient life could be obtained.
[0035]
【The invention's effect】
As described above, according to the present invention, the convex body is formed on the outer peripheral end of the wall surface facing the drill rotation direction of the chip discharge groove, thereby ensuring the strength of the drill body at the outer peripheral end of the chip discharge groove. Occurrence of chipping and chipping can be prevented. Then, by forming the first concave curved surface portion that is smoothly connected to the inner peripheral side of the convex curved surface portion, curling is performed by curling the curl so that the entire chip is wound on the inner peripheral side, thereby achieving efficient processing. In addition, the second concave curved surface portion is formed on the wall surface facing the rear side in the drill rotation direction, and the first and second concave curved surface portions are smoothly connected by the connection surface, so that the curled chips can be removed. It is possible to prevent excessive pressing against the second concave curved surface portion and the connection surface, and to reduce wear of the drill body and drill rotation driving force. In addition, by appropriately setting the width of the connection surface, the rigidity of the drill body and the cross-sectional area of the chip discharge groove can be ensured regardless of the radii of curvature of the first and second concave curved surface portions. Therefore, even under severe conditions such as dry and high-speed cutting, the drill life can be extended and smooth and stable drilling can be performed.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of the present invention as viewed from the front in the direction of an axis O. FIG.
FIG. 2 is a partial cross-sectional view orthogonal to the axis O of the embodiment shown in FIG.
3 is a perspective view of the distal end portion of a drill body 1 showing a thinning portion 19 of the embodiment shown in FIG. 1. FIG.
4A is a view showing chips generated by the drill according to the embodiment of the present invention, and FIG. 4B is a view showing the radii R3 and R4 of the first and second concave curved surface portions 8 and 12 in the embodiment. It is a figure which shows the chip | tip with the comparative drill 3 by which the magnitude | size of was reversed.
[Explanation of symbols]
1 Drill body
2 Tip flank
3 Chip discharge groove
4,9 Inner wall surface of chip discharge groove 3
5 Cutting blade
7 First convex curved surface
8 first concave curved surface
11 Second convex curved surface
12 Second concave curved surface
13 Connection surface
14 Outer peripheral edge of inner wall surface 4
16 Outer edge of cutting edge 5
17 Convex curve cutting edge
18 Concave curved cutting edge
19 Thinning club
20 Thinning cutting edge
21 First thinning section
22 Valley bottom of the first thinning part 21
23 Second thinning section
O Axis of drill body 1
T Drill rotation direction
R1 to R4 Curvature radii of curves formed by the first and second uneven curved surface portions 7, 8, 11, and 12 in a cross section orthogonal to the axis O
S1, S2 first and second virtual straight lines
L1, L2 Depression amount of the first and second concave curved surface portions 8, 12
d Core thickness of drill body 1

Claims (5)

軸線回りに回転されるドリル本体の先端部外周に後端側に向けて延びる切屑排出溝が形成され、この切屑排出溝のドリル回転方向を向く内壁面と上記ドリル本体の先端逃げ面との交差稜線部に切刃が形成されてなるドリルであって、上記切屑排出溝のドリル回転方向を向く内壁面には、その外周端側に位置してマージン部に交差し、ドリル回転方向に凸となる凸曲面状をなす凸曲面部が形成されるとともに、この凸曲面部の内周側には、該凸曲面部に滑らかに連なってドリル回転方向後方側に凹となる曲面状をなす第1凹曲面部が形成され、さらに上記切屑排出溝のドリル回転方向後方側を向く内壁面には、ドリル回転方向に凹となる曲面状をなす第2凹曲面部が形成されており、これら第1、第2凹曲面部の間には、上記軸線に直交する断面において第1凹曲面部がなす凹曲線と第2凹曲面部がなす凹曲線との双方に接する接線状をなす接続面が形成されていて、この接続面を介して上記第1凹曲面部と第2凹曲面部とが滑らかに連ねられており、上記軸線に直交する断面において、上記第2凹曲面部がなす凹曲線の曲率半径が、上記第1凹曲面部がなす凹曲線の曲率半径よりも大きくされていて、上記第1凹曲面部がなす凹曲線の曲率半径が、上記切刃の外径Dに対して0.18×D〜0.35×Dの範囲に設定されるとともに、上記第2凹曲面部がなす凹曲線の曲率半径が、上記切刃の外径Dに対して0.2×D〜0.5×Dの範囲に設定されていることを特徴とするドリル。A chip discharge groove extending toward the rear end is formed on the outer periphery of the tip end of the drill body rotated about the axis, and the inner wall surface of the chip discharge groove facing the drill rotation direction intersects the tip flank of the drill body. A drill in which a cutting edge is formed in a ridge line portion, and the inner wall surface facing the drill rotation direction of the chip discharge groove is located on the outer peripheral end side, intersects the margin portion, and protrudes in the drill rotation direction. A convex curved surface portion having a convex curved surface shape is formed, and a first curved surface shape that is smoothly connected to the convex curved surface portion and concave on the rear side in the drill rotation direction is formed on the inner peripheral side of the convex curved surface portion. A concave curved surface portion is formed, and a second concave curved surface portion having a curved shape that is concave in the drill rotating direction is formed on the inner wall surface facing the rear side in the drill rotating direction of the chip discharge groove. Between the second concave curved surface portions, there is a break perpendicular to the axis. A tangential connection surface is formed in contact with both the concave curve formed by the first concave curved surface portion and the concave curve formed by the second concave curved surface portion, and the first concave curved surface portion and the first concave curved surface portion are formed through this connection surface. The second concave curved surface portion is smoothly connected, and in the cross section orthogonal to the axis, the radius of curvature of the concave curve formed by the second concave curved surface portion is the radius of curvature of the concave curve formed by the first concave curved surface portion. And the radius of curvature of the concave curve formed by the first concave curved surface portion is set in a range of 0.18 × D to 0.35 × D with respect to the outer diameter D of the cutting edge. The radius of curvature of the concave curve formed by the second concave curved surface portion is set in a range of 0.2 × D to 0.5 × D with respect to the outer diameter D of the cutting blade. . 上記軸線に直交する断面において、該軸線と上記ドリル回転方向を向く内壁面の外周端とを結ぶ第1仮想直線からの上記第1凹曲面部の凹み量L1が、上記切刃の外径Dに対して−0.06×D〜0の範囲に設定されるとともに、上記第1仮想直線に上記軸線において交差する第2仮想直線からの上記第2凹曲面部の凹み量L2が−0.06×D〜0.06×Dの範囲に設定されていることを特徴とする請求項1に記載のドリル。  In the cross section orthogonal to the axis, the dent amount L1 of the first concave curved surface portion from the first imaginary straight line connecting the axis and the outer peripheral end of the inner wall surface facing the drill rotation direction is the outer diameter D of the cutting blade. Is set in a range of −0.06 × D to 0, and a dent amount L2 of the second concave curved surface portion from the second virtual straight line intersecting the first virtual straight line at the axis is −0. The drill according to claim 1, wherein the drill is set in a range of 06 × D to 0.06 × D. 上記軸線に直交する断面において上記凸曲面部がなす凸曲線の曲率半径が、上記切刃の外径Dに対して0.1×D〜0.8×Dの範囲に設定されていることを特徴とする請求項1または請求項2に記載のドリル。The radius of curvature of the convex curve formed by the convex curved surface portion in the cross section orthogonal to the axis is set in a range of 0.1 × D to 0.8 × D with respect to the outer diameter D of the cutting blade. The drill according to claim 1 or 2 , wherein the drill is characterized. 上記ドリル本体の芯厚が、上記切刃の外径Dに対して0.15×D〜0.3×Dの範囲に設定されていることを特徴とする請求項1ないし請求項3のいずれかに記載のドリル。Core thickness of the drill main body, any claims 1, characterized in that set in the range 0.15 × D~0.3 × D with respect to outer diameter D of the cutting edge of claims 3 The drill described in crab. 上記ドリル本体の少なくとも先端部の表面には、硬質皮膜が被覆されていることを特徴とする請求項1ないし請求項4のいずれかに記載のドリル。The drill according to any one of claims 1 to 4 , wherein a hard film is coated on a surface of at least a tip portion of the drill body.
JP2001209586A 2001-07-10 2001-07-10 Drill Expired - Fee Related JP4120186B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001209586A JP4120186B2 (en) 2001-07-10 2001-07-10 Drill
EP10181031.5A EP2366478B1 (en) 2001-07-10 2002-03-26 Drill
US10/105,411 US6916139B2 (en) 2001-07-10 2002-03-26 Drill
EP02006673A EP1275458A1 (en) 2001-07-10 2002-03-26 Drill
EP07005036.4A EP1923157B1 (en) 2001-07-10 2002-03-26 Drill
CNB021198160A CN1223428C (en) 2001-07-10 2002-03-30 Drilling bit
KR1020020017632A KR100643677B1 (en) 2001-07-10 2002-03-30 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209586A JP4120186B2 (en) 2001-07-10 2001-07-10 Drill

Publications (2)

Publication Number Publication Date
JP2003025123A JP2003025123A (en) 2003-01-29
JP4120186B2 true JP4120186B2 (en) 2008-07-16

Family

ID=19045215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209586A Expired - Fee Related JP4120186B2 (en) 2001-07-10 2001-07-10 Drill

Country Status (1)

Country Link
JP (1) JP4120186B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE531188C2 (en) * 2007-05-29 2009-01-13 Sandvik Intellectual Property Drill body for chip separating machining
DE102013201062B4 (en) * 2013-01-23 2018-09-13 Kennametal Inc. drill
JP7447707B2 (en) * 2019-07-08 2024-03-12 三菱マテリアル株式会社 Drill

Also Published As

Publication number Publication date
JP2003025123A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
EP1923157B1 (en) Drill
JP4120185B2 (en) Drill
JP5719938B2 (en) drill
US4983079A (en) Twist drill
US5230593A (en) Twist drill
JP3739591B2 (en) Solid end mill
JP5762547B2 (en) drill
WO2010050391A1 (en) Ball end mill
JP6268809B2 (en) drill
JP3162309B2 (en) Tomoe type thinning drill with chisel for high-speed heavy cutting
JP2006000985A (en) Cutting tool
JP3988659B2 (en) Drill
JP3783629B2 (en) Drill
JP4120186B2 (en) Drill
JP3933044B2 (en) Drill
JP2003025127A (en) Drill
JP4120187B2 (en) Drill
JPH07237018A (en) Drill
JP2002126925A (en) Twist drill
JPH03142117A (en) Boring tool
JP2004090198A (en) Throw-away tip
JP2004261930A (en) Drill
JP2003285211A (en) Twist drill
JP2535644Y2 (en) Drill
JP3335401B2 (en) End mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4120186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees