JP2001341019A - Twist drill - Google Patents

Twist drill

Info

Publication number
JP2001341019A
JP2001341019A JP2001069797A JP2001069797A JP2001341019A JP 2001341019 A JP2001341019 A JP 2001341019A JP 2001069797 A JP2001069797 A JP 2001069797A JP 2001069797 A JP2001069797 A JP 2001069797A JP 2001341019 A JP2001341019 A JP 2001341019A
Authority
JP
Japan
Prior art keywords
chamfer
twist drill
tip
degrees
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069797A
Other languages
Japanese (ja)
Inventor
Tokuhide Onizuka
徳英 鬼塚
Takenori Shimizu
武則 清水
Isao Yokota
勲 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2001069797A priority Critical patent/JP2001341019A/en
Publication of JP2001341019A publication Critical patent/JP2001341019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a twist drill with hardly generating a burr and with excellent durability by adopting a tool profile of a sharper edge when drilling a comparatively ductile material to be cut such as stainless steel and preventing welding and press adhesion of an outer peripheral part in a high speed cutting of 25 m or more. SOLUTION: This coated cemented carbide twist drill is constituted by making a helix angle as a high helix angle of 35 deg. to 450 deg., forming a tip cutting edge into a protrusion shape in a tip view of the drill, providing the tip cutting edge on a 1 to 10% rotating direction rear side of an edge diameter for a virtual line for joining an uppermost protrusion part of the protrusion shape part to a thinning edge and providing a chamfer on a connecting part of the tip edge and an outer periphery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、延性のある被削材、
例えば、軟鋼、ステンレス鋼等の穴明け工具に関し、特
に高速度工具鋼を用いたステンレス鋼の穴明け工具にす
る。
BACKGROUND OF THE INVENTION The present invention relates to a ductile work material,
For example, the present invention relates to a drilling tool made of mild steel, stainless steel, etc., and particularly to a stainless steel drilling tool using high-speed tool steel.

【0002】[0002]

【従来の技術】従来、延性のある被削材、特にステンレ
ス鋼の穴あけ工具には多種多様なドリルが提案されてい
る。ステンレス鋼の穴加工においては、図1に示すよう
な、30度前後のねじれ角を有する一般的なツイストド
リルでも切削できるが、加工硬化するために削りにく
く、切屑が分断されにくいという特性があり、切屑排出
性(切削動力)や穴精度(拡大代、特に被削材の入口で
の拡大代)が悪くなるという欠点がある。しかも、切削
点の温度を下げ、工具寿命の延長を図り、切削抵抗を下
げるため、切屑排出溝のねじれ角は30度前後と大きく
設定されている。これを改良したものに特開平9−11
015号公報に記載の穴あけ工具が有る。特開平9−1
1015号公報には、先端刃のみ、ねじれ角を大きく
し、切れ味は良くした例である。
2. Description of the Related Art Conventionally, various kinds of drills have been proposed for a drilling tool made of a ductile work material, particularly a stainless steel. In the drilling of stainless steel, as shown in Fig. 1, a general twist drill having a twist angle of about 30 degrees can be cut, but it has the property that it is hard to cut due to work hardening, and it is difficult to cut chips. In addition, there is a disadvantage that the chip discharging property (cutting power) and the hole accuracy (enlargement allowance, particularly enlargement allowance at the entrance of the work material) are deteriorated. In addition, the torsion angle of the chip discharge groove is set to be as large as about 30 degrees in order to lower the temperature of the cutting point, prolong the tool life, and lower the cutting resistance. An improved version of this is disclosed in JP-A-9-11.
No. 015 discloses a drilling tool. JP-A-9-1
Japanese Patent Publication No. 1015 is an example in which only the tip blade has a large torsion angle and good sharpness.

【0003】更に、ステンレス鋼を切削する際のチゼル
部の形状は、前記と同じ理由により、シャープな形状で
あるX型シンニングが用いられるが、切削抵抗の軽減や
求心性の向上を目的にX型シンニングを改良してその段
差を無くし、スムーズな切屑排出が行えるようにした特
開平11−267912号公報の例が有る。また、先端
刃も凹状として、切り屑処理性を高めている。また、ス
テンレス鋼の様な強度の高い被削材では、穴明け加工
時、特に被加工物の下面側にバリが発生するので、この
バリの除去のために後加工において、やすりやたがね等
で取り除かなけらばならず、その除去作業に多大の時間
がかかりすぎることから、バリの発生しないドリルの開
発が望まれている。
[0003] Furthermore, for the same reason as described above, a sharp X-type thinning is used as the shape of the chisel when cutting stainless steel. However, X-type thinning is used for the purpose of reducing cutting resistance and improving centripetality. Japanese Patent Application Laid-Open No. 11-267912 discloses an example in which the mold thinning is improved to eliminate the step, thereby enabling smooth chip discharge. In addition, the tip blade is also concave so as to enhance chip disposal. In the case of a high-strength work material such as stainless steel, burrs are generated during drilling, particularly on the lower surface side of the work. The drill must be removed, and the removal operation takes a great deal of time. Therefore, the development of a drill that does not generate burrs is desired.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ステン
レス鋼等の穴あけ加工では切削速度が速くなると極端に
短寿命となりやすく、例えば、図1のようなドリルでは
低速高送りである10m程度の切削速度では100〜1
50穴程度の加工が行えるが、30m前後の切削速度で
は1穴も加工できずに折損する。同様に、特開平9−1
1015号公報、特開平11−267912号公報の例
でも、切削速度の影響を受ける外周側は寿命が短くな
り、特に特開平11−267912号公報では、外周側
との繋ぎ部が尖っている分強度が低下するため、チッピ
ング等を生じやすく、能率を高めることが難しいのが現
状である。
However, in the drilling of stainless steel or the like, when the cutting speed is increased, the life tends to be extremely short when the cutting speed is increased. For example, in a drill as shown in FIG. 100-1
Processing of about 50 holes can be performed, but at a cutting speed of about 30 m, even one hole cannot be processed and breaks. Similarly, Japanese Patent Laid-Open No. 9-1
In the examples of JP-A No. 1015 and JP-A-11-267912, the life is shortened on the outer peripheral side which is affected by the cutting speed. At present, chipping and the like are apt to occur due to a decrease in strength, and it is difficult to increase efficiency.

【0005】上記課題を解決するために、本願発明で
は、ステンレス鋼の様に比較的延性のある被削材の穴明
け加工に際して、より一層のシャープエツジな刃型を適
用し、25m以上の高速切削において、外周部の溶着、
圧着を防止し、バリが殆んど発生しない耐久性に優れた
ツイストドリルを提供することを目的とする。
[0005] In order to solve the above-mentioned problems, the present invention employs a sharper edge cutter for drilling a relatively ductile work material such as stainless steel, and has a high speed of 25 m or more. In cutting, welding of the outer periphery,
An object of the present invention is to provide a twist drill excellent in durability, which prevents pressure bonding and hardly generates burrs.

【0006】[0006]

【課題を解決するための手段】本発明による穴明け工具
は、被覆した超硬質合金製からなるツイストドリルにお
いて、ねじれ角を35度〜45度の強ねじれ角とし、該
ドリルの先端視で、先端切れ刃を凸状とし、かつ、該凸
状部の最凸部とシンニング刃とを結ぶ仮想線に対して、
先端切れ刃を刃径の1〜10%回転方向後方側に設け、
先端刃と外周の繋ぎ部にチャンファを設けたことを特徴
とするツイストドリルであり、先端刃を凸状として、先
端刃と外周の繋ぎ部に加わる負荷を分散、軽減し、切り
屑の排出を拘束させるように行い、更に、該チャンファ
を設けることによりバリ軽減を計ったものである。
According to the present invention, there is provided a drilling tool comprising: a twisted drill made of a coated super-hard alloy; a torsion angle of 35 to 45 degrees; The tip cutting edge is convex, and, with respect to an imaginary line connecting the most convex portion of the convex portion and the thinning blade,
The tip cutting edge is provided on the rear side in the rotation direction of 1 to 10% of the blade diameter,
This twist drill is characterized in that a chamfer is provided at the connecting portion between the tip blade and the outer periphery, and the tip blade is made convex, dispersing and reducing the load applied to the connecting portion between the tip blade and the outer periphery, and discharging chips. The burrs are reduced and burrs are reduced by providing the chamfer.

【0007】図3〜図5を参照して説明する。先ず、軸
方向すくい角であるねじれ角は、大きく採れば切れ味を
よくできるが、その反面、強度が低下する。ねじれ角が
35度未満だと切削抵抗が大きく拡大代が大きくなり、
穴精度が低下し、ねじれ角が45度を超えると、切り屑
排出の妨げになるため35度〜45度の範囲とした。更
に、先端刃を凸状とすることにより、先端刃で受ける切
削抵抗を外周側、内周側に強制的に分断し、更に、外周
側とのチャンファを大きな角度で設けることが出来るた
め、先端刃とチャンファの強度を高めることができる。
次に、凸部からシンニング切れ刃迄の先端切れ刃は、切
削抵抗の分散、軽減や切り屑の拘束に影響するため、該
凸状部の最凸部とシンニング刃とを結ぶ仮想線に対し
て、先端切れ刃を刃径の1〜10%回転方向後方側に設
ける。先端切れ刃を刃径の1〜10%回転方向後方側と
したのは、刃径の1%未満では、直線状切れ刃と同様、
切り屑の生成に関して効果がなく、また、刃径の10%
を超えると、相対的にランド幅の肉厚が薄くなり、強度
的に劣るため、刃径の1〜10%の範囲とした。また、
生成された切り屑は凸状部により拘束されて切り屑排出
溝の軸方向に強制的に移動され、排出される。特に、凸
状部は、図5に示す先端視における、最凸部の径方向の
位置、凸部差により制御することができる。また、その
強度の低下を径方向すくい角である先端刃との繋ぎかた
で、図4に示すようにチャンファを設けて繋ぐことによ
り、強度低下を補い、十分な刃先強度を得られるように
した。更に、強度をより確実なものとするため、超硬合
金製のツイストドリルで行われているような切れ刃処理
を行っても良い。チャンファを設けることにより、強ね
じれを採用しても先端刃と外周の繋ぎ部の強度を高める
ことができ、また、バリ対策ともなる。該チャンファ
は、回転中心線の垂線に対して25度〜45度の角度と
したのは、ドリル先端角として一般的に118度〜13
5度程度のものが用いられており、本願の表し方では3
1度〜22.5度となり、25度未満では実質的に先端
角と重複しチャンファ自体を設けることが出来ず、また
60度を超えると軸方向に長くなり、有効刃長等に影響
を及ぼすこととなるため、チャンファの角度は25度〜
60度の範囲とした。好ましくは25度〜45度であ
る。
A description will be given with reference to FIGS. First, the torsion angle, which is the rake angle in the axial direction, can be sharpened by taking a large value, but on the other hand, the strength decreases. If the helix angle is less than 35 degrees, the cutting force is large and the allowance for expansion is large,
If the hole accuracy is reduced and the torsion angle exceeds 45 degrees, the discharge of chips is hindered, so the range was 35 degrees to 45 degrees. Further, by making the tip blade convex, the cutting resistance received by the tip blade is forcibly divided into the outer peripheral side and the inner peripheral side, and further, the chamfer with the outer peripheral side can be provided at a large angle. The strength of the blade and chamfer can be increased.
Next, since the tip cutting edge from the convex portion to the thinning cutting edge affects the dispersion and reduction of the cutting resistance and the restraint of the chip, the tip cutting edge corresponds to an imaginary line connecting the most convex portion of the convex portion and the thinning blade. The tip cutting edge is provided on the rear side in the rotation direction by 1 to 10% of the blade diameter. The reason why the tip cutting edge is set at 1 to 10% of the blade diameter on the rear side in the rotation direction is that when the cutting edge is less than 1% of the blade diameter, like the straight cutting edge,
No effect on chip generation and 10% of blade diameter
If it exceeds the thickness, the thickness of the land width becomes relatively thin and the strength is inferior. Also,
The generated chips are constrained by the convex portions and are forcibly moved in the axial direction of the chip discharge grooves and discharged. In particular, the convex part can be controlled by the radial position of the most convex part and the convex part difference in the front view shown in FIG. In addition, by connecting the lowering of the strength with the tip blade which is a rake angle in the radial direction, a chamfer is provided as shown in FIG. did. Further, in order to further ensure the strength, a cutting edge treatment as performed by a twist drill made of cemented carbide may be performed. By providing the chamfer, the strength of the connecting portion between the tip blade and the outer periphery can be increased even when strong torsion is adopted, and it is also a measure against burrs. The chamfer is set at an angle of 25 ° to 45 ° with respect to the perpendicular to the rotation center line, because the drill tip angle is generally 118 ° to 13 °.
About 5 degrees are used, and in the expression of the present application, 3 degrees are used.
When the angle is less than 25 degrees, the chamfer itself cannot be provided because it substantially overlaps the tip angle, and when it exceeds 60 degrees, the length becomes longer in the axial direction, which affects the effective blade length and the like. The chamfer angle is 25 degrees
The range was 60 degrees. Preferably it is 25 degrees to 45 degrees.

【0008】次に、チャンファの長さは0.1mm以上
としたのは、0.1mm未満では実質的に効果がなく、
強度を向上させることができないため0.1mm以上と
した。また、長く設けると、テーパと同様な効果が得ら
れ、バリ対策に効果が得られる。更に、チャンファは先
端刃と外周とを円弧状、略直線状でも同様な効果が得ら
れる。特に、角度が30度前後ではチャンファの長さも
短いため円弧状が良いが、角度が大きくなるとチャンフ
ァも長くなるので略直線状で良く、更には略直線状の場
合でも先端刃との繋ぎ、外周との繋ぎ部はR結びとする
事が望ましい。最凸部の位置は、径の80%〜シンニン
グ刃の端部の間の任意の位置でよいか、好ましくは、径
の30〜70%である。70%を超えると、外周端との
繋ぎ部に十分な余裕がとれず、曲面状につなぐことが難
しくなる。また、30%未満では、シンニング刃との繋
ぎが滑らかに行えないためである。更に、最凸部の形状
は緩やかな曲線状に設けることが良い。凸部差は、切削
抵抗の分散、軽減や切り屑の拘束に影響するため、径の
0.5〜5%とする。この際、図5に示すように定義す
る。径の0.5%未満では、実質的な作用が少なく、ま
た径の5%を超えると、凸部が出過ぎるため、径の0.
5〜5%とした。この凸部の位置、大きさにより切り屑
の移動する方向を軸方向により拘束することができる。
更に、図5に示すように、先端刃の外周端は上記説明し
た凸部の最凸部より曲面状に繋ぎ、より大きな角度とな
るように設ける。大きな角度とすることにより、切れ刃
の耐欠損性を高める。
Next, the reason that the length of the chamfer is set to 0.1 mm or more is substantially ineffective when it is less than 0.1 mm.
Since the strength cannot be improved, the thickness is set to 0.1 mm or more. Further, when the length is long, the same effect as that of the taper can be obtained, and the effect of the burr countermeasure can be obtained. Further, the same effect can be obtained even if the chamfer has an arc shape or a substantially straight shape between the tip blade and the outer periphery. In particular, when the angle is around 30 degrees, the length of the chamfer is short, so that the shape of the arc is good. However, when the angle is large, the chamfer is long, so that the shape may be substantially linear. It is desirable that the connecting portion to be R-connected. The position of the most convex portion may be any position between 80% of the diameter and the end of the thinning blade, or preferably 30 to 70% of the diameter. If it exceeds 70%, there is not enough room at the connecting portion with the outer peripheral end, and it is difficult to connect in a curved shape. On the other hand, if it is less than 30%, the connection with the thinning blade cannot be performed smoothly. Further, the shape of the most convex portion is preferably provided in a gentle curved shape. Since the difference in the convex portions affects the dispersion and reduction of the cutting resistance and the restraint of the chips, the difference is set to 0.5 to 5% of the diameter. At this time, it is defined as shown in FIG. When the diameter is less than 0.5%, the substantial effect is small. When the diameter exceeds 5%, the convex portion is excessively formed.
5 to 5%. The direction in which the chips move can be restricted in the axial direction depending on the position and size of the projection.
Further, as shown in FIG. 5, the outer peripheral end of the tip blade is connected to the most convex portion of the above-described convex portion in a curved shape and provided at a larger angle. By increasing the angle, the chipping resistance of the cutting edge is increased.

【0009】ドリルの芯厚は、0.10D〜0.25D
の範囲で、0.10D未満では工具剛性が不足して、穴
加工時の被削材入口の拡大代の精度が悪くなり、0.2
5Dを越えると溝自体のスペースを狭くなりすぎるた
め、内壁との接触が増え、切削抵抗が大きくなると共に
切屑排出性が悪くなり、切屑詰まりを起し易くなるめで
ある。更に、溝幅比は(断面図における、切屑排出溝の
溝幅を工具外周長さで除し、百分率で表す。)55〜7
0%とした。ここで、溝幅比55%未満では、強ねじれ
と相まって刃溝の幅が狭くなり切屑詰まりを引き起こす
ことになり、70%を超えると、溝幅が広い分、切屑処
理が不安定となり、特に切り屑が伸び勝手となり、制御
しずらく、切削動力が不安定になるため、溝幅比は55
〜70%の範囲とした。更に、大きな溝幅比は、溝のヒ
ール部の形状により調整することもできる。ヒール部端
を円弧状に形成することにより、溝幅比を大きくとり、
前述のような切り屑の内壁との接触を少なめることがで
きる。
The core thickness of the drill is 0.10D to 0.25D
In the range of less than 0.10D, the tool rigidity is insufficient, and the precision of the enlargement allowance of the work material inlet at the time of drilling becomes poor.
If it exceeds 5D, the space of the groove itself becomes too narrow, so that the contact with the inner wall increases, the cutting resistance increases, and the chip discharge property deteriorates, so that chip clogging is likely to occur. Further, the groove width ratio is 55 to 7 (in the sectional view, the groove width of the chip discharge groove is divided by the tool outer peripheral length and expressed as a percentage).
0%. Here, if the groove width ratio is less than 55%, the width of the blade groove is narrowed in combination with strong torsion, causing chip clogging. If it is more than 70%, the chip processing becomes unstable due to the wide groove width, particularly Since the chips are easy to grow and difficult to control and the cutting power becomes unstable, the groove width ratio is 55%.
-70%. Furthermore, a large groove width ratio can be adjusted by the shape of the heel portion of the groove. By forming the heel end in an arc shape, take a large groove width ratio,
The contact of the chips with the inner wall as described above can be reduced.

【0010】本発明のツイストドリルは、高速度鋼を用
いて説明してきたが、より好ましくは粉末ハイスが良
い。通常の溶製ハイスに比して炭化物の粒度が細かいた
め、ねじれ角が強い本発明のドリルには好都合である。
また、溶製ハイスでもねじれを生かし、切れ刃処理の大
小により適用することができる。更に、ステンレス鋼等
の延性に富む材料には被覆が必須なものであり、本発明
においても公知な被膜、例えば、TiNやTiAlN等
の物理蒸着法を用いて行われる膜が適している。特に、
切り屑の溶着や圧着を生じやすい先端切れ刃のチゼル近
傍には、潤滑性にとむCr窒化物、DLC及び2硫化モ
リブデン等の固体潤滑剤の被膜も有効である。
Although the twist drill of the present invention has been described using high-speed steel, powdered high-speed steel is more preferable. Since the carbide has a finer grain size as compared with the ordinary ingot high-speed steel, it is advantageous for the drill of the present invention having a large torsion angle.
In addition, it is possible to apply the shape of the cutting edge treatment by utilizing the torsion even in the case of the melted high-speed steel. Further, a coating is essential for a highly ductile material such as stainless steel, and a coating known in the present invention, for example, a film formed by using a physical vapor deposition method such as TiN or TiAlN is suitable. In particular,
In the vicinity of the chisel at the tip cutting edge where chips are easily welded or pressed, a coating of a solid lubricant such as Cr nitride, DLC and molybdenum disulfide for lubricity is also effective.

【0011】35〜45度のねじれ角を採用することに
より、切れ味がよく高い穴精度が得られる。更に、穴精
度をより高めるため、シンニング形状をより求心性の高
い形状とした。図5の先端視の様に、シンニング角度を
大きく採り、図4に示すように、軸方向のすくい角を−
5度以上の負角とし、刃溝まで十分な距離を、滑らかに
結ぶように設けることにより、切り屑のつまりを防止
し、上記先端刃の凸状の作用と相まって、軸方向後方に
排出される。以下、実施例に基づき、本発明を具体的に
説明する。
By employing a twist angle of 35 to 45 degrees, sharpness and high hole accuracy can be obtained. Furthermore, in order to further improve the hole accuracy, the thinning shape is made a shape with higher centripetality. As shown in FIG. 5, the thinning angle is large, and as shown in FIG.
By providing a negative angle of 5 degrees or more and providing a sufficient distance to the blade groove so as to smoothly tie, chips are prevented from being clogged, and in combination with the convex action of the tip blade, the chips are discharged rearward in the axial direction. You. Hereinafter, the present invention will be specifically described based on examples.

【0012】[0012]

【実施例】図3は、本発明の実施例によるドリルの正面
図、図4は、図3に示すドリルの90度回転させた上面
図、図5は、図3の先端視である。本実施例によるツイ
ストドリル1は、高速度鋼(粉末ハイス)製、刃径6m
m、2枚刃、ねじれ角2は40度で、TiAlNを被覆
した。図5に示すように、軸線Oの周りの先端刃3には
凸部4が設けられ、最凸部5との差6は径の3%であ
る。また、先端刃3の外周端にはチャンファ7を角度3
0度、長さ0.25mmで設けた。先端刃のシンニング
は、X型とした。
FIG. 3 is a front view of a drill according to an embodiment of the present invention, FIG. 4 is a top view of the drill shown in FIG. 3 rotated by 90 degrees, and FIG. 5 is a front view of FIG. The twist drill 1 according to the present embodiment is made of high-speed steel (powder high-speed steel) and has a blade diameter of 6 m.
m, two blades, helix angle 2 was 40 degrees, and TiAlN was coated. As shown in FIG. 5, the tip blade 3 around the axis O is provided with a convex portion 4, and the difference 6 from the most convex portion 5 is 3% of the diameter. In addition, a chamfer 7 is attached to the outer peripheral end of the tip blade 3 at an angle of 3 degrees.
It was provided at 0 degree and 0.25 mm in length. The thinning of the tip blade was X-shaped.

【0013】次に、本発明によるドリル、図1に示すね
じれ角30度の従来ドリル1、図2に示す従来ドリル2
とについて、各種被削材の切削性能に関する試験を行っ
た。尚、従来ドリルは、同一径でTiAlN被覆を行っ
た。切削試験にあたっては、被削材として、SUS30
4を用い、穴加工深さ3Dとし、切削油剤は水溶性のエ
マルジョンタイプを用い、切削速度30m/min、送
り量0.15mm/revで行い、切れ刃のチッピング
状態、摩耗量・摩耗状態を一定数ごとに確認し、穴あけ
を継続した。また、1穴目の加工で拡大代を測定し、更
に、定常摩耗域で測定した。先ず、1穴目で、本発明例
のドリルは、切り屑形態としては処理性の良いカールさ
れた切り屑が得られ、1穴目の拡大代は、入り口、中央
とも0.02mmと良好であり、チッピングもなく正常
な摩耗を示したが、従来例1では切削速度が速すぎるた
め、1穴も加工できずに寿命となった。従来例2のドリ
ルも、外周側部にチッピングを生じた。そのため拡大代
は、0.08mmと大きくなった。更に、穴あけ試験を
継続した結果、100穴目で、本発明例のドリルは、1
穴目の状態が継続し、逃げ面最大摩耗もVBmaxで
0.08mm、正常な摩耗であつたが、従来例2のドリ
ルでは、外周端のチッピングが大きくなり、試験を止め
た。100穴加工における拡大代は、本発明例0.02
mmに対し、従来例2は0.08mmであった。
Next, a drill according to the present invention, a conventional drill 1 having a twist angle of 30 degrees shown in FIG. 1, and a conventional drill 2 shown in FIG.
With respect to and, tests regarding the cutting performance of various work materials were performed. The conventional drill was coated with TiAlN at the same diameter. In the cutting test, SUS30
4, the drilling depth is 3D, the cutting fluid is a water-soluble emulsion type, the cutting speed is 30 m / min, the feed rate is 0.15 mm / rev, and the chipping state, wear amount and wear state of the cutting edge are determined. Checking was performed at a fixed number of times, and drilling was continued. In addition, the allowance for enlargement was measured in the processing of the first hole, and further, it was measured in the steady wear region. First, in the first hole, the drill of the example of the present invention obtains curled chips with good processing properties as the chip form, and the enlargement margin of the first hole is as good as 0.02 mm at both the entrance and the center. There was normal wear without chipping, but in Conventional Example 1, since the cutting speed was too high, one hole could not be machined and the life was extended. The drill of Conventional Example 2 also had chipping on the outer peripheral side. Therefore, the enlargement allowance was as large as 0.08 mm. Further, as a result of continuing the drilling test, the drill of the present invention was found to
The state of the holes continued, and the maximum flank wear was 0.08 mm in VBmax, which was normal wear. However, with the drill of Conventional Example 2, chipping at the outer peripheral end became large, and the test was stopped. The enlargement allowance in 100 hole machining is 0.02 in the present invention.
Conventional Example 2 was 0.08 mm in mm.

【0014】更に、試験を継続し、200穴、400
穴、600穴で、徐々に溶着がみられるようになり、8
00穴加工でその一部が脱落したため、逃げ面最大摩耗
量が0.3mmを越えたため、切削試験を止めた。80
0穴加工での拡大代も0.02mmと良好であった。
Further, the test was continued, and 200 holes, 400 holes
Welding gradually began to appear at the holes and 600 holes.
The cutting test was stopped because a part of the flank fell off during the 00 hole drilling and the maximum flank wear exceeded 0.3 mm. 80
The enlargement allowance in the 0-hole processing was as good as 0.02 mm.

【0015】次に、先の実施例で用いた本発明例のねじ
れ角、チャンファ等を変化させて、同様に切削試験を行
った。先ず、ねじれ角を、35度、38度、40度、4
5度、比較例1として50度のものを製作した。切削試
験の結果、1穴目で、正常な摩耗は、ねじれ角35度の
みで、他の38度〜50度のドリルはチッピングを生じ
た。そのため、38度〜50度の本発明例、比較例にチ
ャンファを設けた。チャンファは、ねじれ角に対応して
38度では0.1〜0.3mm、40度では、0.1〜
0.5mm、45度では0.1〜1mm、チャンファの
角度は25度、35度、45度、60度として直線状に
加工した後、各繋ぎ部をR状に追加工した。また、同様
な角度・長さでチャンファを円弧状に形成したものも同
様に製作し、切削試験を行った。1穴目でのチッピング
等の防止は、ねじれ角38度の本発明例全てで、チャン
ファを設けることにより防止でき、その処理量としては
0.1mm程度のチャンファで十分な効果が確認でき
た。試験を継続し、更に100、200穴と増やしてい
くに従い、チャンファを設けることによりチャンファの
角度が大きいほどバリ発生が少なく良好な切削となる。
Next, cutting tests were performed in the same manner by changing the torsion angle, chamfer, etc. of the examples of the present invention used in the previous embodiment. First, the torsion angles were 35, 38, 40, and 4 degrees.
Five degrees and 50 degrees as Comparative Example 1 were produced. As a result of the cutting test, in the first hole, normal wear was only at a twist angle of 35 degrees, and the other drills at 38 to 50 degrees caused chipping. Therefore, a chamfer was provided in the present invention example and the comparative example of 38 to 50 degrees. The chamfer is 0.1 to 0.3 mm at 38 degrees corresponding to the torsion angle, and 0.1 to 0.3 at 40 degrees.
After 0.5 to 1 mm at 45 ° and 0.1 to 1 mm at chamfer angles of 25 °, 35 °, 45 ° and 60 °, each joint was additionally processed into an R shape. In addition, a chamfer having a similar angle and length formed in a circular arc shape was similarly manufactured and subjected to a cutting test. Prevention of chipping or the like at the first hole can be prevented by providing a chamfer in all of the examples of the present invention having a twist angle of 38 degrees, and a sufficient effect was confirmed with a chamfer of about 0.1 mm in processing amount. As the test is continued and the holes are further increased to 100 and 200 holes, by providing the chamfer, the larger the angle of the chamfer is, the less the burr is generated and the better the cutting is.

【0016】最凸部の位置50%の試料を用いて、差6
を径の0.5%、2%、3%、4%、5%、10%の試
料を製作し、同様に切削試験を行った。その結果、1穴
目で欠損を生じたのは、10%の差6を設けた試料のみ
で他は正常な摩耗を示した。凸部が出っ張りすぎている
ため欠損した。更に試験を継続し、100穴加工では、
差6が5%の試料で凸部の摩耗が大きくなり、溶着が認
められた。他の試料は正常な摩耗を示した。更に、50
0穴まで試験を継続すると、差6が0.5%の試料で、
切り屑形態が変化し、連続する切り屑が排出されように
なった。他の試料は正常な摩耗を示した。
Using a sample having a position of 50% of the most convex portion, the difference 6
Were prepared with 0.5%, 2%, 3%, 4%, 5%, and 10% of the diameter, and the cutting test was performed in the same manner. As a result, only the sample having a 10% difference 6 caused a defect in the first hole, and the others showed normal wear. The protrusion was lost because the protrusion was too protruding. Further testing is continued, and in 100 hole processing,
In the sample having a difference 6 of 5%, abrasion of the projections was increased, and welding was observed. Other samples showed normal wear. In addition, 50
If the test is continued up to 0 holes, the difference 6 is a 0.5% sample,
The swarf morphology changed and continuous swarf began to be ejected. Other samples showed normal wear.

【0017】上記実施例で用いたツイストドリルを用い
て、5ミクロンのTiAlNを被覆した後、磁気研磨に
より被覆後の刃先処理を行った。被覆後の刃先処理によ
り、切れ刃部は、被覆後の被膜表面の凹凸が交差するた
め、その凹凸をならし、刃先稜線を滑らかにすることが
できる。また、チゼル部に対しても同様な効果に加え、
被膜表面に存在するドロップレットや大きな粒子をなら
し、膜の表面を滑らかにできる。特に、軟鋼等の延性の
ある材料では、膜のドロップレット等の突部が圧着等の
原因となるため、効果が大きい。
After coating with 5 μm TiAlN using the twist drill used in the above embodiment, the coated blade edge was treated by magnetic polishing. Since the unevenness of the coating surface after coating intersects with the cutting edge after coating by the edge processing, the unevenness can be smoothed and the edge line of the cutting edge can be smoothed. In addition, in addition to the effect similar to the chisel,
Droplets and large particles existing on the surface of the coating can be smoothed out, and the surface of the coating can be smoothed. In particular, in the case of a ductile material such as mild steel, the projections such as the droplets of the film cause pressure bonding and the like, so that the effect is large.

【0018】[0018]

【発明の効果】上記のように、本発明に係る穴明け工具
を用いることにより、切削抵抗が小さく、穴精度(拡大
代)の良い加工が行え、また、チャンファを設けること
により切削が安定し、バリ発生も少なく優れた工具寿命
を発揮する。チャンファの外径差によってバリ対策もで
き、寸法精度および加工面精度が向上する。
As described above, by using the drilling tool according to the present invention, machining with small cutting resistance and good hole accuracy (enlargement allowance) can be performed, and cutting is stabilized by providing a chamfer. Demonstrates excellent tool life with less burrs. Burr countermeasures can be taken by the difference in the outer diameter of the chamfer, and dimensional accuracy and machining surface accuracy are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、従来例のツイストドリルの正面図を示
す。
FIG. 1 is a front view of a conventional twist drill.

【図2】図2は、他の従来例のツイストドリルの正面図
を示す。
FIG. 2 is a front view of another conventional twist drill.

【図3】図3は、本発明例の実施例のドリルの正面図を
示す。
FIG. 3 shows a front view of a drill according to an embodiment of the present invention.

【図4】図4は、図3の要部拡大図を示す。FIG. 4 is an enlarged view of a main part of FIG. 3;

【図5】図5は、図3の先端視を示す。FIG. 5 shows a front view of FIG. 3;

【符号の説明】[Explanation of symbols]

1 ツイストドリル 2 ねじれ角 3 先端刃 4 凸部 5 最凸部 6 最凸部との差 7 チャンファ 8 切屑排出溝 9 チャンファの角度 10 チャンファの長さ DESCRIPTION OF SYMBOLS 1 Twist drill 2 Twist angle 3 Tip blade 4 Convex part 5 Most convex part 6 Difference from the most convex part 7 Chamfer 8 Chip discharge groove 9 Chamfer angle 10 Chamfer length

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被覆した超硬質合金製からなるツイストド
リルにおいて、ねじれ角を35度〜45度の強ねじれ角
とし、該ドリルの先端視で、先端切れ刃を凸状とし、か
つ、該凸状部の最凸部とシンニング刃とを結ぶ仮想線に
対して、先端切れ刃を刃径の1〜10%回転方向後方側
に設け、先端刃と外周の繋ぎ部にチャンファを設けたこ
とを特徴とするツイストドリル。
1. A twist drill made of a coated super-hard alloy and having a torsion angle of 35 to 45 degrees with a strong torsion angle. A tip cutting edge is provided on the rear side in the rotation direction of 1 to 10% of the blade diameter with respect to an imaginary line connecting the most convex portion of the shape portion and the thinning blade, and a chamfer is provided at a connecting portion between the tip blade and the outer periphery. Characteristic twist drill.
【請求項2】請求項1記載のツイストドリルにおいて、
該チャンファを回転中心線の垂線に対して25度〜60
度の角度で設けたことを特徴とするツイストドリル。
2. The twist drill according to claim 1, wherein
Set the chamfer at 25 degrees to 60 degrees with respect to the perpendicular to the rotation center line.
A twist drill characterized by being provided at a degree angle.
【請求項3】請求項1乃至2記載のツイストドリルにお
いて、該チャンファの長さが0.1mm以上としたこと
を特徴とするツイストドリル。
3. The twist drill according to claim 1, wherein the length of the chamfer is 0.1 mm or more.
【請求項4】請求項1乃至3記載のツイストドリルにお
いて、該チャンファは略円弧状としたことを特徴とする
ツイストドリル。
4. A twist drill according to claim 1, wherein said chamfer is substantially arc-shaped.
【請求項5】請求項1乃至4記載のツイストドリルにお
いて、該チャンファは略直線状としたことを特徴とする
ツイストドリル。
5. The twist drill according to claim 1, wherein said chamfer is substantially straight.
JP2001069797A 2000-03-30 2001-03-13 Twist drill Pending JP2001341019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069797A JP2001341019A (en) 2000-03-30 2001-03-13 Twist drill

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000093615 2000-03-30
JP2000-93615 2000-03-30
JP2001069797A JP2001341019A (en) 2000-03-30 2001-03-13 Twist drill

Publications (1)

Publication Number Publication Date
JP2001341019A true JP2001341019A (en) 2001-12-11

Family

ID=26588851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069797A Pending JP2001341019A (en) 2000-03-30 2001-03-13 Twist drill

Country Status (1)

Country Link
JP (1) JP2001341019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575401B1 (en) * 2004-11-18 2009-08-18 Precorp, Inc. PCD drill for composite materials
US7665935B1 (en) 2006-07-27 2010-02-23 Precorp, Inc. Carbide drill bit for composite materials
US8342780B2 (en) 2008-10-17 2013-01-01 Precorp, Inc. Shielded PCD or PCBN cutting tools

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575401B1 (en) * 2004-11-18 2009-08-18 Precorp, Inc. PCD drill for composite materials
US7665935B1 (en) 2006-07-27 2010-02-23 Precorp, Inc. Carbide drill bit for composite materials
US8342780B2 (en) 2008-10-17 2013-01-01 Precorp, Inc. Shielded PCD or PCBN cutting tools

Similar Documents

Publication Publication Date Title
JP5719938B2 (en) drill
JP5762547B2 (en) drill
WO2010050391A1 (en) Ball end mill
JP2006239829A (en) Drill
JPS62188616A (en) Rotary cutting tool
JP2006281407A (en) Machining drill for nonferrous metal
JP2006000985A (en) Cutting tool
JP2008142834A (en) Drill
JP2005001082A (en) Drill
JP4097515B2 (en) Ball end mill
JP3337804B2 (en) End mill
JP2020023051A (en) Drill
JP2001341019A (en) Twist drill
WO2021230176A1 (en) Drill and method for manufacturing cut workpiece
JP2001328016A (en) Twist drill
JP2001341021A (en) Twist drill
JP2002172506A (en) Covered twist drill
WO2020240892A1 (en) Cutting tool
JP2001341020A (en) Drilling tool
JP3318020B2 (en) Ball end mill
JP2003275909A (en) Drill
JP2001300810A (en) Twist drill
JPH0720211U (en) Ball end mill
JPWO2006109347A1 (en) Drill
JP2001341022A (en) Drill for perforating high hardness material