JP2006239829A - Drill - Google Patents

Drill Download PDF

Info

Publication number
JP2006239829A
JP2006239829A JP2005060459A JP2005060459A JP2006239829A JP 2006239829 A JP2006239829 A JP 2006239829A JP 2005060459 A JP2005060459 A JP 2005060459A JP 2005060459 A JP2005060459 A JP 2005060459A JP 2006239829 A JP2006239829 A JP 2006239829A
Authority
JP
Japan
Prior art keywords
cutting
drill
oil hole
tip
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060459A
Other languages
Japanese (ja)
Inventor
Masahiko Kono
正彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2005060459A priority Critical patent/JP2006239829A/en
Publication of JP2006239829A publication Critical patent/JP2006239829A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve abrasion of a knife edge and a rake face of a cutting blade by improving a cooling effect and a lubricating effect in the neighborhood of a cutting point by cutting fluid on a drill. <P>SOLUTION: This drill is constituted by opening an oil hole 10 on its head end flank 6, extending toward the cutting blade 4 positioned near by the front side in the rotating direction K of an opening part 10a from the opening part 10a of the oil hole 10 and forming at least one of recessed groove type channels 11a, 11b opened to a chip discharging groove 3 by cutting out the cutting blade 4. It is possible to extensively improve a tool life of the drill as abrasion of the knife edge and a flank 5 is restrained since a sufficient amount of the cutting fluid is certainly supplied by the channels 11a, 11b and a cooling effect and a lubricating effect by the cutting fluid are extensively improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はドリル本体の内部に切削油剤を供給するための油穴を備えたドリルに関する。 The present invention relates to a drill having an oil hole for supplying a cutting fluid into a drill body.

この種の従来ドリルを図3〜図5に示す。図3に示すドリルは、工具の欠損を防ぎ冷却効果を高めることを目的としたものであり、ドリルの先端部に設けられた先端逃げ面に油穴が開口し、その開口部の中心O2がドリル先端部の正面視において切刃の稜線から0.01D以上0.15D以下(D:ドリル径)の距離に位置し、さらに、ドリルの回転軌跡の外周縁より0.08D以上0.23D以下(D:ドリル径)の距離に位置していることを特徴とするものである(例えば、特許文献1参照)。 This type of conventional drill is shown in FIGS. The drill shown in FIG. 3 is intended to prevent tool breakage and enhance the cooling effect. An oil hole is opened in the tip flank provided at the tip of the drill, and the center O2 of the opening is It is located at a distance of 0.01D or more and 0.15D or less (D: drill diameter) from the edge of the cutting edge in a front view of the drill tip, and further 0.08D or more and 0.23D or less from the outer peripheral edge of the drill's rotation trajectory. It is characterized by being located at a distance of (D: drill diameter) (for example, see Patent Document 1).

図4に示すドリルは、工具内周側に切削油剤を効率的に供給することを目的としたものであり、工具本体の軸心に沿って形成された切削油剤の供給穴が先端逃げ面の前記軸心上に開口していることを特徴とするものである(例えば、特許文献2参照)。 The drill shown in FIG. 4 is intended to efficiently supply the cutting fluid to the inner peripheral side of the tool, and the cutting fluid supply hole formed along the axis of the tool body has a tip flank surface. It is characterized by opening on the axis (for example, see Patent Document 2).

図5に示すドリルは、切削油剤によるすくい面の冷却効果及び潤滑効果を高めることを目的としたものであり、油穴をすくい面またはマージンに開口させたものである(例えば、特許文献3参照)。 The drill shown in FIG. 5 is intended to enhance the cooling effect and lubrication effect of the rake face by the cutting fluid, and has an oil hole opened in the rake face or margin (for example, see Patent Document 3). ).

特開2002−52410号公報JP 2002-52410 A 特開2000−33510号公報JP 2000-33510 A 特表平11−508829号公報Japanese National Patent Publication No. 11-508829

しかしながら、特許文献1及び特許文献2に開示されたドリルでは、先端逃げ面に十分な量の切削油剤を供給できるが、被削材及び切屑に擦過するため高温、高圧となる切刃の刃先及びこの刃先近傍にあるすくい面、すなわち切削点近傍に、切削油剤が到達しにくいため高い冷却効果及び潤滑効果が得られなかった。よって、すくい面のクレータ摩耗が急速に進行し工具寿命が短くなる問題があった。 However, in the drills disclosed in Patent Document 1 and Patent Document 2, a sufficient amount of cutting fluid can be supplied to the tip flank surface, but because it scrapes against the work material and chips, the cutting edge of the cutting blade that becomes high temperature and high pressure and Since the cutting fluid hardly reaches the rake face in the vicinity of the cutting edge, that is, in the vicinity of the cutting point, a high cooling effect and lubricating effect cannot be obtained. Therefore, there has been a problem that crater wear on the rake face proceeds rapidly and the tool life is shortened.

特許文献3に開示されたドリルにおいては、油穴の開口部がすくい面に設けられたことからすくい面に供給される切削油剤の量は増加するものの、前記開口部が切刃の刃先に近接していないため切削油剤を切削点近傍に効率的に供給することができなかった。よって、切削点近傍の冷却効果及び潤滑効果は満足できるものではなかった。さらに、切屑排出溝内の切屑が前記開口部によって排出を阻害されたり前記開口部につまったり前記開口部を損傷させたりするため、切屑の排出性、切削油剤の吐出量及びドリル本体の寿命に悪影響を及ぼすおそれがあった。 In the drill disclosed in Patent Document 3, although the amount of the cutting fluid supplied to the rake face increases because the opening of the oil hole is provided on the rake face, the opening is close to the cutting edge of the cutting edge. As a result, the cutting fluid could not be efficiently supplied in the vicinity of the cutting point. Therefore, the cooling effect and the lubricating effect in the vicinity of the cutting point were not satisfactory. Furthermore, since the chips in the chip discharge groove are blocked from being discharged by the openings, or are clogged by the openings or damage the openings, the chip discharge performance, the amount of cutting fluid discharged, and the life of the drill body There was a risk of adverse effects.

本発明は、前記の事情に鑑みてなされたものであって、その目的は、切削油剤による切削点近傍の冷却効果及び潤滑効果を高めて切刃の刃先及びすくい面の摩耗を改善したドリルを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a drill that improves the cooling effect and the lubricating effect in the vicinity of the cutting point by the cutting fluid to improve the wear of the cutting edge and the rake face. It is to provide.

前記の課題を解決するため、本発明は、軸心(CL)まわりに回転するドリル本体の外周面に前記軸心(CL)を挟んで一対の切屑排出溝が形成されるとともに、前記切屑排出溝と前記ドリル本体の先端の先端逃げ面との交差稜線部に一対の切刃が形成され、前記ドリル本体の後端面から先端側に向けて切削油剤を供給するための油穴が形成されたドリルにおいて、各々の前記先端逃げ面には前記油穴が開口するとともに、前記油穴の開口部からこの開口部の回転方向(K)前方側に位置する切刃に向かって延び、且つ、前記切刃を切り欠くことにより切屑排出溝に開口する少なくとも1条の凹溝状の流路が形成されていることを特徴とするドリルである。 In order to solve the above-mentioned problems, the present invention provides a pair of chip discharge grooves formed on the outer peripheral surface of a drill body that rotates about the axis (CL) with the axis (CL) interposed therebetween, and the chip discharge A pair of cutting edges are formed at the intersecting ridge line portion between the groove and the tip flank of the tip of the drill body, and an oil hole for supplying cutting fluid from the rear end surface of the drill body toward the tip side is formed. In each of the drills, each of the tip flank faces has an oil hole, and extends from the opening of the oil hole toward a cutting blade positioned on the front side in the rotation direction (K) of the opening, and It is a drill characterized in that at least one groove-shaped channel opening in the chip discharge groove is formed by cutting out the cutting blade.

上記のドリルにおいて、前記流路によって切り欠かれた各々の前記切刃の切欠部が前記軸心(CL)まわりの回転軌跡において重複せず、且つ、前記切欠部が切削に関与しないことが好ましい。 In the drill described above, it is preferable that the notch portions of the cutting blades notched by the flow path do not overlap in the rotation trajectory around the axis (CL), and the notch portions are not involved in cutting. .

上記のドリルによれば、油穴の開口部からこの開口部の回転方向(K)前方側に位置する切刃に向かって延び、且つ、前記切刃を切り欠くことにより切屑排出溝に開口する凹溝状の流路が形成されているので、切削点近傍に十分な量の切削油剤を確実に供給できて、切刃の刃先及び刃先近傍にあるすくい面における冷却効果及び潤滑効果が大幅に高められる。よって、前記刃先及び前記すくい面の摩耗の進行がおさえられドリルの工具寿命が大幅に改善される。 According to the above-described drill, it extends from the opening of the oil hole toward the cutting edge located on the front side in the rotation direction (K) of the opening, and opens into the chip discharge groove by cutting out the cutting edge. Since the groove-shaped flow path is formed, a sufficient amount of cutting fluid can be reliably supplied near the cutting point, and the cooling effect and lubrication effect on the cutting edge of the cutting edge and the rake face near the cutting edge are greatly improved. Enhanced. Therefore, the wear of the cutting edge and the rake face is suppressed, and the tool life of the drill is greatly improved.

さらに、流路によって切り欠かれた切刃の切欠部は切削に関与しないことから、切屑が細かく分断するため切屑の排出性が向上するほか、トルク、スラスト等の切削抵抗の低減により工具振動及び工具びびりが抑制されるため、ドリルの切削性能及び工具寿命が向上する。 Furthermore, since the notch portion of the cutting edge cut out by the flow path does not participate in cutting, the chip is divided finely, so that the chip discharge performance is improved and the tool vibration and vibration are reduced by reducing the cutting resistance such as torque and thrust. Since tool chatter is suppressed, the cutting performance and tool life of the drill are improved.

次に、本発明を適用した実施の形態について図を参照しながら説明する。図1は本発明を適用したドリルの先端部の正面図である。図2は図1に示すドリルの先端視側面図である。本ドリルにおいて、ドリル本体(1)は軸心(CL)まわりに回転される略丸棒状をなし、先端部に形成された刃部(2)と、この刃部(2)に連なり後端部に形成されるシャンク部(図示しない)とから構成される。刃部(2)の外周面には、図1に例示するようにドリル本体(1)の先端の先端逃げ面(6)から軸心(CL)方向の後端側に向けて捩れる一対の切屑排出溝(3)が形成されて、これら切屑排出溝(3)の回転方向(K)前方側を向く壁面と、ドリル本体(1)の先端の先端逃げ面(6)との交差稜線部に一対の切刃(4)が形成されている。少なくとも切刃(4)は超硬合金、サーメット、セラミックス等のいずれかの硬質材料からなる。さらに、切刃(4)の外周端部に連なって設けられたマージン(7)が軸心(CL)方向の後端側に向かって延設されている。 Next, an embodiment to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a front view of the tip of a drill to which the present invention is applied. FIG. 2 is a side view of the drill shown in FIG. In this drill, the drill body (1) has a substantially round bar shape rotated about the axis (CL), the blade (2) formed at the tip, and the rear end connected to the blade (2). It is comprised from the shank part (not shown) formed in this. On the outer peripheral surface of the blade portion (2), as illustrated in FIG. 1, a pair of twists from the tip flank (6) at the tip of the drill body (1) toward the rear end side in the axial center (CL) direction. Crossing ridge line portion between the wall surface in which the chip discharge grooves (3) are formed and facing the front side in the rotational direction (K) of the chip discharge grooves (3) and the tip flank (6) at the tip of the drill body (1) A pair of cutting edges (4) is formed in the. At least the cutting edge (4) is made of any hard material such as cemented carbide, cermet, ceramics or the like. Furthermore, a margin (7) provided continuously to the outer peripheral end portion of the cutting blade (4) extends toward the rear end side in the axial center (CL) direction.

これら切刃(4)の内周側には、ドリル本体(1)の先端にシンニング(8)が施されることによってシンニング刃(9)が形成されている。図2に例示するように、これらシンニング刃(9)はドリル先端視で各々の切刃(4)に鈍角に交差し、その交差部は滑らかな曲線状とされ、ドリル本体(1)の先端における軸心(CL)側に向かって直線状に延びるように形成されている。ドリル本体(1)の先端の先端逃げ面(6)は、切刃(4)及びシンニング刃(9)から回転方向(K)後方側に行くにしたがって逃げ角が段階的に大きくなる複数の先端逃げ面(6a〜6c)から構成されている。各々の切刃(4)及びシンニング刃(9)に連なる第1先端逃げ面(6a)と、この第1先端逃げ面(6a)の回転方向(K)後方側に連なる第2先端逃げ面(6b)との交差稜線は切刃(4)にほぼ平行となるように形成され、第2先端逃げ面(6b)と、この第2先端逃げ面(6b)の回転方向(K)後方側に連なる第3先端逃げ面(6c)との交差稜線はシンニング刃(9)の直線部にほぼ直角に交差するように形成されている。 On the inner peripheral side of these cutting blades (4), a thinning blade (9) is formed by applying a thinning (8) to the tip of the drill body (1). As illustrated in FIG. 2, these thinning blades (9) intersect each of the cutting blades (4) at an obtuse angle when viewed from the tip of the drill, and the intersecting portion has a smooth curved shape, and the tip of the drill body (1). Is formed so as to extend linearly toward the axis (CL) side. The tip clearance surface (6) at the tip of the drill body (1) has a plurality of tips whose clearance angles increase stepwise from the cutting blade (4) and the thinning blade (9) toward the rear side in the rotational direction (K). It consists of flank faces (6a-6c). A first tip flank (6a) connected to each of the cutting edges (4) and the thinning blade (9), and a second tip flank connected to the rear side in the rotational direction (K) of the first tip flank (6a) ( 6b) is formed so as to be substantially parallel to the cutting edge (4). The second tip flank (6b) and the rotational direction (K) rear side of the second tip flank (6b) The intersecting ridge line with the continuous third tip flank (6c) is formed so as to intersect the straight portion of the thinning blade (9) at a substantially right angle.

ドリル本体(1)の内部には、シャンク部の後端面(図示しない)から先端側に向けて断面略円形状をなす2本の油穴(10)が形成される。図2からわかるように、2本の油穴(10)はそれぞれの第2先端逃げ面(6b)に開口する。そして、これら油穴(10)の開口部(10a)から前記開口部(10a)の回転方向(K)前方側直近に位置する切刃(4)に向かって延びる流路(11a、11b)が形成される。本ドリルでは、それぞれの流路(11a、11b)は、油穴(10)の開口部(10a)の回転方向(K)前方側に位置する内壁面を切り欠くとともに第2先端逃げ面(6b)及び第1先端逃げ面(6a)の表面に凹みを形成する1条の凹溝をなし、前記油穴(10)の開口部(10a)の回転方向(K)前方側直近に位置する切刃(4)に向かって直線的に延び、前記切刃(4)の一部を切り欠くことにより切屑排出溝(3)に開口している。 In the drill body (1), two oil holes (10) having a substantially circular cross section are formed from the rear end surface (not shown) of the shank portion toward the front end side. As can be seen from FIG. 2, the two oil holes (10) open to the respective second tip clearance surfaces (6b). And the flow path (11a, 11b) extended toward the cutting edge (4) located in the rotation direction (K) front side of the said opening part (10a) from the opening part (10a) of these oil holes (10). It is formed. In this drill, each flow path (11a, 11b) cuts out the inner wall surface located in the rotation direction (K) front side of the opening part (10a) of the oil hole (10) and the second tip flank (6b). ) And a first groove that forms a recess on the surface of the first tip flank (6a), and a cut located in the rotational direction (K) front side of the opening (10a) of the oil hole (10). It extends linearly toward the blade (4) and opens into the chip discharge groove (3) by cutting out a part of the cutting blade (4).

図には示さないが、ドリル径(D)が小さい場合や流路(11a、11b)を切刃(4)外周端部付近に向かって延設する場合には、流路(11a、11b)の外周側の壁面とドリル本体(1)の外周面に挟まれた部分の肉厚の変動が大きくなるのを避けるため、先端視で流路(11a、11b)を外側に向かって凸曲線状に形成してもよい。また、流路(11a、11b)の断面形状は図1に例示するように直線状の側壁と円弧状の底部とから構成されたU字状を呈するが、これに限らず、V字状、半円形状、又はコ字状等の形状から適宜選択可能である。 Although not shown in the drawing, when the drill diameter (D) is small or when the flow path (11a, 11b) is extended toward the outer peripheral end of the cutting edge (4), the flow path (11a, 11b) In order to avoid an increase in the wall thickness of the portion sandwiched between the outer peripheral wall surface and the outer peripheral surface of the drill body (1), the flow path (11a, 11b) has a convex curve shape toward the outside in a front end view. You may form in. In addition, the cross-sectional shape of the flow path (11a, 11b) is a U-shape composed of a straight side wall and an arc-shaped bottom as illustrated in FIG. It can be appropriately selected from shapes such as a semicircular shape or a U-shape.

これら流路(11a、11b)によって切り欠かれる切刃(4)の切欠部(4a、4b)は、軸心(CL)まわりの回転軌跡が重複しないように、それぞれ径方向の異なる位置に形成される。さらに、切欠部(4a、4b)は穴あけ加工時に切削に関与しないように形成される。要するに前記切欠部(4a、4b)がニックとして作用するように形成される。さらに、当該ドリルによる穴あけ加工時において、切欠部(4a、4b)と被削材との間には間隙を設ける必要がある。そのため、軸心(CL)方向における切欠部(4a、4b)の最深部の切刃(4)稜線に対する後退量(H)は、当該ドリルの1回転当たりの送り量を刃数で除した値よりも大きく設定される。なお、前記後退量(H)は、過大になると切欠部(4a、4b)近傍の切刃(4)の強度が低下したり切欠部(4a、4b)及び流路(11a、11b)の加工が難しくなったりするおそれがあるので、前記送り量の50倍以下又はドリル径(D)の50%以下の量に設定されるのが好ましい。 The notches (4a, 4b) of the cutting edge (4) cut out by these flow paths (11a, 11b) are formed at different positions in the radial direction so that the rotation trajectories around the axis (CL) do not overlap. Is done. Furthermore, the notches (4a, 4b) are formed so as not to participate in cutting during drilling. In short, the notches (4a, 4b) are formed to act as nicks. Furthermore, it is necessary to provide a gap between the notches (4a, 4b) and the work material when drilling with the drill. Therefore, the retreating amount (H) with respect to the cutting edge (4) ridgeline of the deepest part of the notch (4a, 4b) in the axial center (CL) direction is a value obtained by dividing the feed amount per one rotation of the drill by the number of blades. Is set larger than. If the retraction amount (H) is excessive, the strength of the cutting edge (4) in the vicinity of the notches (4a, 4b) is reduced or the notches (4a, 4b) and the flow paths (11a, 11b) are processed. Therefore, it is preferable to set the amount to 50 times or less of the feed amount or 50% or less of the drill diameter (D).

切欠部(4a、4b)の幅(W)は、図2に例示するように油穴(10)の直径とほぼ等しく形成されているが、油穴(10)の直径よりも小さく又は大きく形成されてもよいが、過小になると切削油剤の流通量が不十分となるおそれがあり、過大になるとドリル本体(1)の先端部の強度が低下するおそれがあるため、切欠部(4a、4b)の幅(W)は油穴(10)の内径の30%〜200%の範囲に設定してあるのが好ましい。 The width (W) of the notches (4a, 4b) is formed to be substantially equal to the diameter of the oil hole (10) as illustrated in FIG. 2, but is smaller or larger than the diameter of the oil hole (10). However, if the amount is too small, the flow rate of the cutting fluid may be insufficient. If the amount is too large, the strength of the tip of the drill body (1) may be reduced. ) Is preferably set in the range of 30% to 200% of the inner diameter of the oil hole (10).

穴あけ加工時に流路(11a、11b)が被削材に干渉することを回避するため、流路(11a、11b)の底面及び両壁面は、被削材に対して逃げを有するように形成してある。そうすれば、切削抵抗の増大が回避できるとともに、流路(11a、11b)の損傷及び流路(11a、11b)内における切削油剤の流通阻害が避けられる。 In order to prevent the flow paths (11a, 11b) from interfering with the work material during drilling, the bottom surface and both wall surfaces of the flow paths (11a, 11b) are formed so as to have relief from the work material. It is. By doing so, an increase in cutting resistance can be avoided, and damage to the flow paths (11a, 11b) and obstruction of the flow of the cutting fluid in the flow paths (11a, 11b) can be avoided.

1つの油穴(10)の開口部(10a)から延びる流路(11a、11b)は1条に限らず2条以上であってもよい。流路(11、11b)を形成するにあたっては、例えば砥石を用いた研削加工、放電加工、又はレーザービーム加工等の公知の加工方法により形成し、超硬合金、サーメット等の焼結合金の場合には焼結前の成形加工により形成してもよい。 The flow paths (11a, 11b) extending from the opening (10a) of one oil hole (10) are not limited to one but may be two or more. In the case of forming the flow path (11, 11b), it is formed by a known processing method such as grinding using a grindstone, electric discharge processing, or laser beam processing, and is a sintered alloy such as cemented carbide or cermet. Alternatively, it may be formed by molding before sintering.

以上に説明したドリルによれば、油穴(10)の開口部(10a)から加工穴の穴底に向かって吐出された切削油剤の一部は、流路(11a、11b)内を回転方向(K)前方側に位置する切刃(4)の切欠部(4a、4b)へ向かって流れ、この切欠部(4a、4b)からすくい面(5)側へ流通して切刃(4)の刃先及び刃先近傍にあるすくい面(5)、すなわち切削点近傍に確実に到達する。しかも、前記切削点近傍では十分な量の切削油剤が供給されることから切削油剤による冷却効果及び潤滑効果が飛躍的に高められる。よって、切刃(4)の刃先の摩耗及びすくい面(5)のクレータ摩耗の進行がおさえられてドリルの工具寿命が大幅に向上する。なお、切削油剤は従来ドリル同様に先端逃げ面(6)と加工穴の穴底との間を流れ回転方向(K)後方側の切屑排出溝(3)に流れるため、先端逃げ面(6)の摩耗抑制効果及び切屑の排出性については従来ドリル同等の効果が得られる。 According to the drill described above, a part of the cutting fluid discharged from the opening (10a) of the oil hole (10) toward the bottom of the machining hole rotates in the flow path (11a, 11b). (K) It flows toward the notch (4a, 4b) of the cutting edge (4) located on the front side, and flows from the notch (4a, 4b) to the rake face (5) side to the cutting edge (4). The cutting edge and the rake face (5) in the vicinity of the cutting edge, that is, the vicinity of the cutting point are surely reached. In addition, since a sufficient amount of the cutting fluid is supplied in the vicinity of the cutting point, the cooling effect and the lubricating effect of the cutting fluid are greatly enhanced. Accordingly, the wear of the cutting edge (4) and the crater wear of the rake face (5) are suppressed, and the tool life of the drill is greatly improved. Since the cutting fluid flows between the tip flank (6) and the bottom of the machining hole as in the conventional drill, and flows into the chip discharge groove (3) on the rear side in the rotational direction (K), the tip flank (6) As for the wear-inhibiting effect and chip evacuation effect, the effect equivalent to that of a conventional drill can be obtained.

流路(11a、11b)によって切り欠き形成された切刃(4)の切欠部(4a、4b)はニックと同様の効果を奏する。すなわち、切屑が細かく分断することにより切屑の排出性が向上するほか、トルク、スラスト等の切削抵抗が低減し工具振動や工具びびりが抑止されるため加工穴の加工精度及びドリルの工具寿命が向上する。 The notches (4a, 4b) of the cutting edge (4) formed by notching with the flow paths (11a, 11b) have the same effect as the nick. In other words, fine chip cutting improves chip discharge performance, reduces cutting resistance such as torque and thrust, and suppresses tool vibration and tool chatter, improving drilling accuracy and drill tool life. To do.

図5に例示したように、すくい面の切刃稜線から離間した位置に油穴の開口部が設けられた従来ドリルでは、切屑排出溝内の切屑が前記開口部により流通を阻害されたり前記開口部につまったり前記開口部を損傷させたりするため、切屑の排出性、切削油剤の吐出量及びドリル本体の寿命に悪影響を及ぼすおそれがあったが、本ドリルにおいては、切欠部(4a、4b)は切刃(4)稜線上に設けられるうえに切屑を生成しないので上記の問題がない。また流路(11a、11b)は切屑がほとんど流通しない先端逃げ面(6)の表面に設けてあるので、切屑がつまって切削油剤の流通を阻害することがない。よって、切屑の排出性が良好であり、流路(11a、11b)及び切欠部(4a、4b)を流通する切削油剤は安定して十分な量が確保されるため、切削油剤による切削点近傍の冷却効果及び潤滑効果が確実に且つ十分に得られる。 As illustrated in FIG. 5, in the conventional drill in which the opening portion of the oil hole is provided at a position separated from the cutting edge ridge line of the rake face, the chips in the chip discharge groove are blocked from flowing by the opening portion or the opening. However, in this drill, the notches (4a, 4b) may be adversely affected on chip discharge, cutting fluid discharge rate and drill body life. ) Is provided on the edge of the cutting edge (4) and does not generate chips, so there is no such problem. Moreover, since the flow paths (11a, 11b) are provided on the surface of the tip flank (6) where the chips hardly flow, the chips do not clog and prevent the cutting fluid from flowing. Therefore, the chip dischargeability is good, and a sufficient amount of the cutting fluid flowing through the flow paths (11a, 11b) and the notches (4a, 4b) is stably secured. The cooling effect and the lubricating effect are reliably and sufficiently obtained.

本ドリルの流路(11a、11b)は、先端逃げ面に油穴を開口させた既存ドリルに対して上述した製作方法により追加工することが可能であり、その追加工は非常に容易である。 The flow path (11a, 11b) of the present drill can be additionally processed by the above-described manufacturing method with respect to the existing drill having an oil hole on the tip flank, and the additional process is very easy. .

本発明を適用したドリルの先端部の正面図である。It is a front view of the front-end | tip part of the drill to which this invention is applied. 図1に示すドリルの先端視側面図である。It is a front view side view of the drill shown in FIG. 従来油穴付きドリルを示す図である。It is a figure which shows the drill with a conventional oil hole. 他の従来油穴付きドリルを示す図である。It is a figure which shows another conventional drill with an oil hole. さらに他の従来油穴付きドリルを示す図である。It is a figure which shows the other conventional drill with an oil hole.

符号の説明Explanation of symbols

1 ドリル本体
2 刃部
3 切屑排出溝
4 切刃
4a、4b 切欠部
5 すくい面
6 先端逃げ面
6a 第1先端逃げ面
6b 第2先端逃げ面
7c 第3先端逃げ面
7 マージン
8 シンニング
9 シンニング刃
10 油穴
10a 油穴の開口部
11a、11b 流路
DESCRIPTION OF SYMBOLS 1 Drill main body 2 Blade part 3 Chip discharge groove 4 Cutting edge 4a, 4b Notch part 5 Rake face 6 Tip flank 6a First tip flank 6b Second tip flank 7c Third tip flank 7 Margin 8 Thinning 9 Thinning blade DESCRIPTION OF SYMBOLS 10 Oil hole 10a Oil hole opening part 11a, 11b Flow path

Claims (2)

軸心(CL)まわりに回転するドリル本体の外周面に前記軸心(CL)を挟んで一対の切屑排出溝が形成されるとともに、前記切屑排出溝と前記ドリル本体の先端の先端逃げ面との交差稜線部に一対の切刃が形成され、前記ドリル本体の後端面から先端側に向けて切削油剤を供給するための油穴が形成されたドリルにおいて、
各々の前記先端逃げ面には前記油穴が開口するとともに、前記油穴の開口部からこの開口部の回転方向(K)前方側に位置する切刃に向かって延び、且つ、前記切刃を切り欠くことにより前記切屑排出溝に開口する少なくとも1条の凹溝状の流路が形成されていることを特徴とするドリル。
A pair of chip discharge grooves are formed on the outer peripheral surface of the drill body rotating about the axis (CL) with the axis (CL) interposed therebetween, and the chip discharge grooves and the tip flank at the tip of the drill body In the drill in which a pair of cutting blades are formed in the crossed ridge line portion, and an oil hole for supplying a cutting fluid from the rear end surface of the drill body toward the tip side is formed,
Each of the tip flank faces has an oil hole, and extends from the opening of the oil hole toward a cutting blade located on the front side in the rotational direction (K) of the opening, and the cutting blade is A drill characterized in that at least one groove-shaped channel opening in the chip discharge groove is formed by cutting.
前記流路によって切り欠かれた各々の前記切刃の切欠部が前記軸心(CL)まわりの回転軌跡において重複せず、且つ、前記切欠部が切削に関与しないことを特徴とする請求項1記載のドリル。 2. The notch of each of the cutting blades notched by the flow path does not overlap in a rotation locus around the axis (CL), and the notch is not involved in cutting. The drill described.
JP2005060459A 2005-03-04 2005-03-04 Drill Pending JP2006239829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060459A JP2006239829A (en) 2005-03-04 2005-03-04 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060459A JP2006239829A (en) 2005-03-04 2005-03-04 Drill

Publications (1)

Publication Number Publication Date
JP2006239829A true JP2006239829A (en) 2006-09-14

Family

ID=37046724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060459A Pending JP2006239829A (en) 2005-03-04 2005-03-04 Drill

Country Status (1)

Country Link
JP (1) JP2006239829A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407363A (en) * 2011-12-14 2012-04-11 常熟市磊王合金工具有限公司 Bonding-resistant drill bit
JP2013193159A (en) * 2012-03-19 2013-09-30 Mitsubishi Materials Corp End mill with coolant hole
CN105710419A (en) * 2016-03-23 2016-06-29 苏州亚思科精密数控有限公司 Self-cooling type drill bit
CN105710420A (en) * 2016-03-23 2016-06-29 苏州亚思科精密数控有限公司 Self-cooling type detachable drill bit device
CN105728804A (en) * 2016-03-23 2016-07-06 苏州亚思科精密数控有限公司 Self-cooling type rotary drill device
EP2913133A4 (en) * 2012-10-29 2016-07-13 Mitsubishi Materials Corp End mill with coolant holes
JP2016144865A (en) * 2016-05-17 2016-08-12 株式会社トクピ製作所 Processing method using drill and drill with coolant ejection hole
JP2017024168A (en) * 2014-09-26 2017-02-02 三菱マテリアル株式会社 Drill and drill head
CN106807983A (en) * 2015-11-30 2017-06-09 湖南衡泰机械科技有限公司 A kind of rotary drilling-head for numerical controlled engraving and milling device
JP2020069582A (en) * 2018-10-31 2020-05-07 株式会社タンガロイ Body and rotating tool
US11173554B2 (en) * 2017-05-22 2021-11-16 Gkn Aerospace Sweden Ab Cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871824A (en) * 1994-09-12 1996-03-19 O S G Kk Composite material machining drill
JPH10109210A (en) * 1996-09-30 1998-04-28 Ngk Spark Plug Co Ltd Throw away tip for spade drill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871824A (en) * 1994-09-12 1996-03-19 O S G Kk Composite material machining drill
JPH10109210A (en) * 1996-09-30 1998-04-28 Ngk Spark Plug Co Ltd Throw away tip for spade drill

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407363A (en) * 2011-12-14 2012-04-11 常熟市磊王合金工具有限公司 Bonding-resistant drill bit
JP2013193159A (en) * 2012-03-19 2013-09-30 Mitsubishi Materials Corp End mill with coolant hole
EP2913133A4 (en) * 2012-10-29 2016-07-13 Mitsubishi Materials Corp End mill with coolant holes
US9833845B2 (en) 2012-10-29 2017-12-05 Mitsubishi Materials Corporation End mill with coolant holes
JP2017024168A (en) * 2014-09-26 2017-02-02 三菱マテリアル株式会社 Drill and drill head
CN106807983A (en) * 2015-11-30 2017-06-09 湖南衡泰机械科技有限公司 A kind of rotary drilling-head for numerical controlled engraving and milling device
CN105710419A (en) * 2016-03-23 2016-06-29 苏州亚思科精密数控有限公司 Self-cooling type drill bit
CN105710420A (en) * 2016-03-23 2016-06-29 苏州亚思科精密数控有限公司 Self-cooling type detachable drill bit device
CN105728804A (en) * 2016-03-23 2016-07-06 苏州亚思科精密数控有限公司 Self-cooling type rotary drill device
JP2016144865A (en) * 2016-05-17 2016-08-12 株式会社トクピ製作所 Processing method using drill and drill with coolant ejection hole
US11173554B2 (en) * 2017-05-22 2021-11-16 Gkn Aerospace Sweden Ab Cutting tool
JP2020069582A (en) * 2018-10-31 2020-05-07 株式会社タンガロイ Body and rotating tool

Similar Documents

Publication Publication Date Title
JP2006239829A (en) Drill
KR101699971B1 (en) Solid step drill
JP6086173B2 (en) drill
EP2441543B1 (en) Drilling tool
JP2008137125A (en) Drill
WO2007039949A1 (en) Boring tool and method of boring pilot hole
JP6848176B2 (en) Drill
JP5811919B2 (en) Drill with coolant hole
JP4941356B2 (en) Drilling tool
JP2003275913A (en) Drill
JP2010162643A (en) Drill and grinding method of the drill
JP2019171514A (en) Drill
JP5413888B2 (en) Drilling tool
JP3686022B2 (en) Drilling tool with coolant hole
JP2005177891A (en) Drill
JP2003136319A (en) Cutting edge tip replacing type twist drill
EP3736072A1 (en) Milling tool with coolant distributing holes
JP2009241239A (en) Drill and boring machining method
JP4979392B2 (en) Cutting tool unit and cutting tool used for the cutting tool unit
JP4954044B2 (en) drill
JP4779546B2 (en) Drilling tool
JP5439821B2 (en) Drill and grinding method of the drill
JP2000033510A (en) Hole drilling tool
JP4779550B2 (en) Drilling tool
JP2005169600A (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124