JP2001341022A - Drill for perforating high hardness material - Google Patents

Drill for perforating high hardness material

Info

Publication number
JP2001341022A
JP2001341022A JP2001069802A JP2001069802A JP2001341022A JP 2001341022 A JP2001341022 A JP 2001341022A JP 2001069802 A JP2001069802 A JP 2001069802A JP 2001069802 A JP2001069802 A JP 2001069802A JP 2001341022 A JP2001341022 A JP 2001341022A
Authority
JP
Japan
Prior art keywords
drill
cutting edge
tip
perforating
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069802A
Other languages
Japanese (ja)
Inventor
Tokuhide Onizuka
徳英 鬼塚
Takenori Shimizu
武則 清水
Isao Yokota
勲 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2001069802A priority Critical patent/JP2001341022A/en
Publication of JP2001341022A publication Critical patent/JP2001341022A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a twist drill perforating a material with hardness of a degree of structural steel or a pre-hardened material by a drill with superior chip discharge ability enhancing cutting speed, feed rate, and efficiency, reducing burrs generated in the perforating, and eliminating deburring after the perforating. SOLUTION: In a drill twist drill 1 for perforating high hardness material made of coated cemented carbide, a helix angle 2 is provided at 10 to 45 deg., a tip cutting edge 3 is formed protrusively as viewed from a tip of the drill, the tip cutting edge is provided 1 to 10% of a cutting part diameter to the rear in a rotating direction with respect to an imaginary line connecting a most protruding part of the protruding part and a thinning edge, and a face of a connecting part of the tip cutting edge and an outer circumference is chamfered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超硬質ドリルに係り、
特に焼入れされてHRC30〜60の高硬度材の穿孔加
工に適した超硬質ドリルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super hard drill,
Particularly, the present invention relates to a super-hard drill which is hardened and is suitable for drilling a high-hardness material having an HRC of 30 to 60.

【0002】[0002]

【従来の技術】金型の高精度化・高品質化の要求に伴
い、プレハードン材の拡大等をふまえ、高硬度材に直
接、穴加工を行うことが増えてきている。プレハードン
材は、予め熱処理によりHRC45前後の硬度となって
いる。本来の焼入れ鋼と異なり、プレハードン材は、構
造用鋼のドリルを用いるとチッピング等のトラブルが生
じやすく、また、特開平7−80714号のに記載され
ているようなHRC60以上の高硬度材用のドリルを用
いるほどでもない。
2. Description of the Related Art With the demand for higher precision and higher quality of dies, direct drilling of high-hardness materials has been increasing in consideration of expansion of pre-hardened materials. The pre-hardened material has a hardness of about 45 HRC in advance by heat treatment. Unlike the original hardened steel, the pre-hardened material is liable to cause troubles such as chipping when a structural steel drill is used, and is used for high-hardness materials of HRC60 or more as described in JP-A-7-80714. Not as good as using a drill.

【0003】更に、プレハードン鋼を切削する際には、
余分なバリ等を生じないようにすることも要求されてい
る。これらバリを減少させるため、特に上記例でも、貫
通穴の穿孔においては、ドリルが抜ける側の面に所謂こ
ば欠けを生じることがない超硬質ドリルを提供すること
にある、と対策がとられている。
Further, when cutting pre-hardened steel,
It is also required not to generate extra burrs and the like. In order to reduce these burrs, especially in the above-described example, a countermeasure has been taken to provide a super-hard drill that does not cause so-called chipping on the surface on the side where the drill comes out, in the case of drilling a through hole. ing.

【0004】[0004]

【発明が解決しようとする課題】しかし、プレハードン
材程度の硬さでは、より切り屑排出性に優れたドリル
で、切削速度、送り速度も高く、能率を高めることが望
まれている。また、穴あけ加工におけるバリの発生を減
少させ、穴あけ後のバリ取り等を行わずにする事も望ま
れている。そのため、本願発明は、構造用鋼、プレハー
ドン材程度の硬さの被削材を、より切り屑排出性に優れ
たドリルで、切削速度、送り速度も高く、能率を高め、
更に、穴あけ加工におけるバリの発生を減少させ、穴あ
け後のバリ取り等を行わずにするツイストドリルを提供
することを目的とする。
However, with a hardness of about the same degree as that of a pre-hardened material, it is desired that a drill having a higher chip discharge performance, a higher cutting speed and a higher feed speed, and higher efficiency be used. It is also desired to reduce the occurrence of burrs in the drilling process and to eliminate deburring after drilling. Therefore, the invention of the present application is a structural steel, a work material having a hardness of about a pre-hardened material, a drill excellent in chip evacuation, a high cutting speed, a high feed speed, high efficiency,
It is a further object of the present invention to provide a twist drill that reduces the occurrence of burrs in drilling and does not perform deburring after drilling.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本願発明では、本発明による穴明け工具は、被覆し
た超硬質合金製からなる高硬度材穴あけ用ドリルツイス
トドリルにおいて、ねじれ角を10度〜45度とし、該
ドリルの先端視で、先端切れ刃をを凸状とし、かつ、該
凸状部の最凸部とシンニング刃とを結ぶ仮想線に対し
て、先端切れ刃を刃径の1〜10%回転方向後方側に設
け、先端刃と外周の繋ぎ部を面取り状の面としたことを
特徴とする高硬度材穴あけ用ドリルであり、コーナー部
の強度を補ったものである。
In order to solve the above-mentioned problems, according to the present invention, a drilling tool according to the present invention is provided with a twist twist drill for drilling a high-hardness material made of a coated super-hard alloy. 10 ° to 45 °, and when viewed from the tip of the drill, the tip cutting edge is made convex, and the tip cutting edge is cut with respect to an imaginary line connecting the most convex part of the convex part and the thinning blade. A drill for drilling high-hardness materials, provided on the rear side in the rotation direction of 1 to 10% of the diameter and having a chamfered surface at the joint between the tip blade and the outer periphery, which supplements the strength of the corner portion. is there.

【0006】先ず、軸方向すくい角であるねじれ角は、
大きく採れば切れ味をよくできるが、その反面、強度が
低下する。ねじれ角が10度未満だと直刃と同様に切削
抵抗が大きくなるため、拡大代が大きくなり、穴精度が
低下する。ねじれ角が45度を超えると、切り屑排出の
妨げになるため30度〜45度の範囲とした。また、そ
の強度の低下を径方向すくい角である先端刃との繋ぎか
たで、図2に示すように凸状部から面取り状に滑らかに
繋ぐことにより、強度低下を補い、十分な刃先強度を得
られるようにし、特に、この面取りは、工具の耐欠損性
を高め、寿命を長くするのに寄与するだけでなく、貫通
穴の切削に際しては、こば欠けの発生を抑え、バリの発
生を減少させることができる。次に、凸部からシンニン
グ切れ刃迄の先端切れ刃は、切削抵抗の分散、軽減や切
り屑の拘束に影響するため、該凸状部の最凸部とシンニ
ング刃とを結ぶ仮想線に対して、先端切れ刃を刃径の1
〜10%回転方向後方側に設ける。先端切れ刃を刃径の
1〜10%回転方向後方側としたのは、刃径の1%未満
では、直線状切れ刃と同様、切り屑の生成に関して効果
がなく、また、刃径の10%を超えると、相対的にラン
ド幅の肉厚が薄くなり、強度的に劣るため、刃径の1〜
10%の範囲とした。更に、該ドリルの先端視で、先端
切れ刃をを凸状とすることにより、先端切れ刃で受ける
切削抵抗を外周側、内周側に強制的に分断し、更に、外
周刃側の繋ぎ部分を大きな角度で設けることが出来るた
め、先端切れ刃と外周の繋ぎ部分の強度を高めることが
できる。また、生成された切り屑は凸状部により拘束さ
れて切り屑排出溝の軸方向に強制的に移動され、排出さ
れる。特に、凸状部は、図5に示す先端視における、最
凸部の径方向の位置、凸部差により制御することができ
る。最凸部の位置は、径の98%〜シンニング刃の端部
の間の任意の位置でよいか、好ましくは、径の70〜9
8%である。98%を超えると、外周端との繋ぎ部に十
分な余裕がとれず、曲面状につなぐことが難しくなる。
また、70%未満では、シンニング刃との繋ぎが滑らか
に行えないためである。更に、最凸部の形状は緩やかな
曲線状に設けると良い。この際、図5に示すようにその
差を定義する。該凸状部の最凸部と外周刃との差は、刃
径の0.5%未満では、実質的な作用が少なく、また径
の20%を超えると、凸部が出過ぎるため、径の0.5
〜20%とした。この凸部の位置、差により切り屑の移
動する方向を軸方向により拘束することができる。更
に、強度をより確実なものとするため、超硬合金製のツ
イストドリルで行われているような切れ刃処理を行って
も良い。
First, the torsion angle, which is the rake angle in the axial direction, is:
If it is large, sharpness can be improved, but strength is reduced. If the helix angle is less than 10 degrees, the cutting resistance is increased as in the case of a straight blade, so that the margin for enlargement is increased and the hole accuracy is reduced. If the torsion angle exceeds 45 degrees, the discharge of chips is hindered, so the range was 30 degrees to 45 degrees. In addition, as shown in FIG. 2, by smoothly connecting the lowering of the strength with the tip blade which is the rake angle in the radial direction, the lowering of the strength is compensated for by smoothly connecting the convex portion to the chamfered shape, so that sufficient cutting edge strength is obtained. In particular, this chamfer not only improves the chip resistance of the tool and prolongs the service life, but also suppresses the occurrence of chipping when cutting through holes and reduces the generation of burrs. Can be reduced. Next, since the tip cutting edge from the convex portion to the thinning cutting edge affects the dispersion and reduction of cutting resistance and the restraint of chips, the tip cutting edge corresponds to an imaginary line connecting the most convex portion of the convex portion and the thinning blade. And the cutting edge at the tip
Provided on the rear side in the rotation direction by 10%. The reason why the tip cutting edge is 1 to 10% of the blade diameter in the rotation direction rear side is that if it is less than 1% of the blade diameter, as in the case of the linear cutting edge, there is no effect on the generation of chips, and the cutting edge is 10% of the blade diameter. %, The land width becomes relatively thin and the strength is inferior.
The range was 10%. Furthermore, by making the tip cutting edge convex when viewed from the tip of the drill, the cutting resistance received by the tip cutting edge is forcibly divided into an outer peripheral side and an inner peripheral side, and further, a connecting portion on the outer peripheral blade side. Can be provided at a large angle, so that the strength of the connecting portion between the tip cutting edge and the outer periphery can be increased. Further, the generated chips are constrained by the convex portions and are forcibly moved in the axial direction of the chip discharge grooves and discharged. In particular, the convex part can be controlled by the radial position of the most convex part and the convex part difference in the front view shown in FIG. The position of the most convex portion may be any position between 98% of the diameter and the end of the thinning blade, or preferably 70 to 9 of the diameter.
8%. If it exceeds 98%, there is not enough room for the connecting portion with the outer peripheral end, and it is difficult to connect in a curved shape.
On the other hand, if it is less than 70%, the connection with the thinning blade cannot be performed smoothly. Further, the shape of the most convex portion is preferably provided in a gentle curved shape. At this time, the difference is defined as shown in FIG. The difference between the most protruding portion of the protruding portion and the outer peripheral blade is substantially less when the blade diameter is less than 0.5%, and when the diameter exceeds 20%, the protruding portion is excessively formed. 0.5
-20%. The direction in which the chips move can be constrained in the axial direction by the position and difference of the projections. Further, in order to further ensure the strength, a cutting edge treatment as performed by a twist drill made of cemented carbide may be performed.

【0007】切れ刃処理は、超硬合金のような脆性材料
で製作されるツイストドリルに用いられているが、高速
度工具鋼製のドリルではほとんど適用された例がない。
高速度工具鋼工具は、強度が高く、シャープな刃型を採
用しても、チッピング等を生じにくいが、35度〜45
度の強ねじれとなると、その切れ刃の一部に切れ刃処理
を行うと、プラス面の方が大きくなる。切れ刃処理は被
覆前に行っても、被覆後に行っても同様な効果を奏する
が、被覆前に行う場合には0.002〜0.20mm程
度が適用できる。その形態は先端刃のシンニング付近、
外周付近等場所による差、ネガホーニング処理等の適用
も含め、0.002〜0.20mmの範囲とした。0.
002未満では、切れ刃処理の効果が少なく、0.20
mmを超えると大きくなりすぎるため、上記の範囲とし
た。また、切れ刃処理はブラシ、磁気研磨等の公知な方
法で行うことができる。更に、被覆後に行う場合には、
該刃先処理量は0.1〜10μmの量とした。0.1μ
m未満では実質的に効果がなく、10μmを超えると膜
を完全に除去し、基体である超硬質合金を露出させすぎ
るため、上記の範囲とした。
[0007] The cutting edge treatment is used for a twist drill made of a brittle material such as a cemented carbide, but there is hardly any application to a high speed tool steel drill.
High-speed tool steel tools have high strength and are unlikely to cause chipping or the like even if a sharp blade is adopted.
When the torsion becomes severe, if the cutting edge processing is performed on a part of the cutting edge, the plus surface becomes larger. The same effect is obtained when the cutting edge treatment is performed before or after coating, but when performed before coating, about 0.002 to 0.20 mm can be applied. The form is near the thinning of the tip blade,
The range was 0.002 to 0.20 mm, including differences depending on locations such as the vicinity of the outer periphery and application of negative honing treatment and the like. 0.
If it is less than 002, the effect of the cutting edge treatment is small, and
If it exceeds mm, it will be too large. In addition, the cutting edge treatment can be performed by a known method such as a brush or magnetic polishing. Furthermore, when performing after coating,
The processing amount of the cutting edge was 0.1 to 10 μm. 0.1μ
When the diameter is less than m, the effect is not substantially obtained. When the diameter exceeds 10 μm, the film is completely removed, and the superhard alloy as the base is excessively exposed.

【0008】次に、先端刃を凸状とすることにより、先
端刃で受ける切削抵抗を外周側、内周側に強制的に分断
し、更に、外周刃側の繋ぎ部分を大きな角度で設けるこ
とが出来るため、先端刃と外周の繋ぎ部分の強度を高め
ることができる。また、生成された切り屑は凸状部によ
り拘束されて切り屑排出溝の軸方向に強制的に移動さ
れ、排出される。更に、図5に示すように、先端刃の外
周端は上記説明した凸部の最凸部より曲面状に繋ぎ、よ
り大きな角度となるように設ける。大きな角度とするこ
とにより、切れ刃の耐欠損性を高める。
Next, by making the tip blade convex, the cutting resistance received by the tip blade is forcibly divided into the outer peripheral side and the inner peripheral side, and the connecting portion on the outer peripheral blade side is provided at a large angle. Therefore, the strength of the connecting portion between the tip blade and the outer periphery can be increased. Further, the generated chips are constrained by the convex portions and are forcibly moved in the axial direction of the chip discharge grooves and discharged. Further, as shown in FIG. 5, the outer peripheral end of the tip blade is connected to the most convex portion of the above-described convex portion in a curved shape and provided at a larger angle. By increasing the angle, the chipping resistance of the cutting edge is increased.

【0009】ドリルの芯厚は、0.20D〜0.35D
の範囲とした。0.20D未満では工具剛性が不足し
て、穴加工時の被削材入口の拡大代の精度が悪くなり、
0.35Dを越えると溝自体のスペースを狭くなりすぎ
るため、壁との接触が増え、切削抵抗が大きくなると共
に切屑排出性が悪くなり、切屑詰まりを起し易くなるめ
である。更に、溝幅比は(断面図における、切屑排出溝
の溝幅を工具外周長さで除し、百分率で表す。)50〜
65%とした。ここで、溝幅比50%未満では、強ねじ
れと相まって溝幅が狭くなり切屑詰まりを引き起こすこ
とになり、65%を超えると、溝幅が広い分、ランド部
が狭くなり、強度が低下するため、溝幅比は50〜65
%の範囲とした。更に、大きな溝幅比は、溝のヒール部
の形状により調整することもできる。ヒール部の先端を
円弧状に形成することにより、溝幅比を大きくとり、前
述のような切り屑の内壁との接触を少なめることができ
る。
The core thickness of the drill is 0.20D to 0.35D
Range. If it is less than 0.20D, the rigidity of the tool is insufficient, and the precision of the enlargement allowance of the work material entrance at the time of drilling becomes poor.
If it exceeds 0.35D, the space of the groove itself becomes too narrow, so that the contact with the wall increases, the cutting resistance increases, and the chip discharge property deteriorates, so that chip clogging is likely to occur. Further, the groove width ratio is 50 to 50 (in the sectional view, the groove width of the chip discharge groove is divided by the tool outer peripheral length and expressed as a percentage).
65%. Here, when the groove width ratio is less than 50%, the groove width becomes narrow in combination with strong torsion, causing chip clogging. When the groove width ratio exceeds 65%, the land portion becomes narrower due to the wide groove width, and the strength decreases. Therefore, the groove width ratio is 50 to 65
%. Furthermore, a large groove width ratio can be adjusted by the shape of the heel portion of the groove. By forming the tip of the heel portion in an arc shape, the groove width ratio can be increased and the contact of the chip with the inner wall as described above can be reduced.

【0010】本発明のツイストドリルは、高速度鋼を用
いて説明してきたが、より好ましくは粉末ハイスのほう
が良い。通常の溶製ハイスに比して炭化物の粒度が細か
いため、ねじれ角が強い本発明のドリルには好都合であ
る。また、溶製ハイスでもねじれを生かし、切れ刃処理
の大小により適用することができる。更に、ステンレス
鋼等の延性に富む材料には被覆が必須なものであり、本
発明においても公知な被膜、例えばTiNやTiAlN
等の物理蒸着法を用いて行われる膜が適している。特
に、切り屑の溶着や圧着を生じやすい先端刃のチゼル近
傍には、潤滑性に富む2硫化モリブデンや固体潤滑剤等
の被膜も有効である。
Although the twist drill of the present invention has been described using high-speed steel, powdered high-speed steel is more preferred. Since the carbide has a finer grain size as compared with the ordinary ingot high-speed steel, it is advantageous for the drill of the present invention having a large torsion angle. In addition, it is possible to apply the shape of the cutting edge treatment by utilizing the torsion even in the case of the melted high-speed steel. Further, a coating is essential for a highly ductile material such as stainless steel, and a coating known in the present invention, for example, TiN or TiAlN
A film formed using a physical vapor deposition method such as described above is suitable. In particular, a coating of molybdenum disulfide, a solid lubricant, or the like, which is rich in lubricity, is effective in the vicinity of the chisel of the tip blade where chip welding and pressure bonding are likely to occur.

【0011】10〜45度のねじれ角を採用することに
より、切れ味がよく高い穴精度が得られる。更に、穴精
度をより高めるため、シンニング形状をより求心性の高
い形状とした。図5の先端視の様に、シンニング角度を
大きく採り、図4に示すように、軸方向のすくい角を−
5度以上の負角とし、刃溝まで十分な距離を、滑らかに
結ぶように設けることにより、切り屑のつまりを防止
し、上記先端刃の凸状の作用と相まって、軸方向後方に
排出される。以下、実施例に基づき、本発明を具体的に
説明する。
By employing a twist angle of 10 to 45 degrees, sharpness and high hole accuracy can be obtained. Furthermore, in order to further improve the hole accuracy, the thinning shape is made a shape with higher centripetality. As shown in FIG. 5, the thinning angle is large, and as shown in FIG.
By providing a negative angle of 5 degrees or more and providing a sufficient distance to the blade groove so as to smoothly tie, chips are prevented from being clogged, and in combination with the convex action of the tip blade, the chips are discharged rearward in the axial direction. You. Hereinafter, the present invention will be specifically described based on examples.

【0012】[0012]

【実施例】図1は、本発明の実施例によるドリルの正面
図、図2は、図1に示すドリルの90度回転させた上面
図、図3は、図1の先端視である。本実施例によるツイ
ストドリル1は、超微粒子超硬合金製製、刃径8mm、
2枚刃、ねじれ角2は40度で、心厚は、25%Dと
し、十分なドリル剛性が得られるようにし、ホーニング
処理後、TiAlNを被覆した。図3に示すように、O
の周りの先端切れ刃3には凸部4が設けられ、最凸部5
との差6は径の2%である。また、先端切れ刃3の外周
端7は面取り状に滑らかに繋ぎ、切屑排出溝8が形成さ
れている。先端刃のシンニングは、クロス型とした。
1 is a front view of a drill according to an embodiment of the present invention, FIG. 2 is a top view of the drill shown in FIG. 1 rotated by 90 degrees, and FIG. 3 is a front view of FIG. The twist drill 1 according to the present embodiment is made of ultra-fine-grain cemented carbide, and has a blade diameter of 8 mm.
The two blades, the torsion angle 2 was 40 degrees, the core thickness was 25% D, sufficient drill rigidity was obtained, and after honing treatment, TiAlN was coated. As shown in FIG.
The protruding part 4 is provided on the tip cutting edge 3 around the
6 is 2% of the diameter. Further, the outer peripheral end 7 of the tip cutting edge 3 is smoothly connected in a chamfered shape, and a chip discharge groove 8 is formed. The thinning of the tip blade was of a cross type.

【0013】切削テストは、被削材として、硬度がHR
C45のプレハードン鋼を用いた。切削速度は20m/
minで、送り量は0.10mm/revとした。穴の
加工長さはドリル径の2倍の16mmの止まり穴で行っ
た。この諸元は、ドリル外周部の耐欠損性を把握するた
めである。尚、比較のため、上記ドリルと同仕様で、面
取りを設けないものも製作し、小梨切削諸元で試験を実
施した。10穴加工した後、切れ刃の状況を確認した。
先ず、本発明例では先端切れ刃の外周端にチッピングが
無く、正常な摩耗を示した。比較例は、先端切れ刃の外
周端部のチッピングが大きくなり、切削テストを中止し
た。更に、切削テストを継続し、100穴加工時の状況
も、先端切れ刃の外周端にチッピングが無く、正常な摩
耗を示した。
In the cutting test, the hardness of the work material was HR.
C45 pre-hardened steel was used. Cutting speed is 20m /
min, the feed amount was 0.10 mm / rev. The processing length of the hole was a blind hole of 16 mm twice the drill diameter. This specification is for grasping the fracture resistance of the outer peripheral portion of the drill. For comparison, a drill having the same specifications as the above-mentioned drill but without chamfering was also manufactured, and a test was carried out with Konashi cutting specifications. After machining 10 holes, the condition of the cutting edge was confirmed.
First, in the example of the present invention, there was no chipping at the outer peripheral end of the tip cutting edge, and normal wear was exhibited. In the comparative example, the chipping of the outer peripheral end of the leading edge became large, and the cutting test was stopped. Further, the cutting test was continued, and the condition at the time of machining 100 holes showed normal wear without chipping at the outer peripheral end of the tip cutting edge.

【0014】最凸部の位置50%の試料を用いて、差6
を径の0.5%、2%、3%、4%、5%、10%の試
料を製作し、同様に切削試験を行った。その結果、1穴
目で欠損を生じたのは、10%の差6を設けた試料のみ
で他は正常な摩耗を示した。凸部が出っ張りすぎている
ため集中し欠損した。更に試験を継続し、100穴加工
では、差6が5%の試料で凸部の摩耗が大きくなった。
他の試料は正常な摩耗を示した。更に、200穴まで試
験を継続すると、差6が0.5%の試料で、切り屑形態
が変化し、連続する切り屑が排出されようになった。他
の試料は正常な摩耗を示した。
Using a sample having a position of 50% of the most convex portion, the difference 6
Were prepared with 0.5%, 2%, 3%, 4%, 5%, and 10% of the diameter, and the cutting test was performed in the same manner. As a result, only the sample having a 10% difference 6 caused a defect in the first hole, and the others showed normal wear. Concentration was lost due to the overhang of the projections. The test was further continued, and in the 100-hole processing, abrasion of the convex portion was increased in the sample having the difference 6 of 5%.
Other samples showed normal wear. Further, when the test was continued up to 200 holes, the chip morphology changed in the sample having a difference 6 of 0.5%, and continuous chips began to be discharged. Other samples showed normal wear.

【0015】上記実施例で用いたツイストドリルを用い
て、5ミクロンのTiAlNを被覆した後、磁気研磨に
より被覆後の刃先処理を行った。被覆後の刃先処理によ
り、切れ刃部は、被覆後の被膜表面の凹凸が交差するた
め、その凹凸をならし、刃先稜線を滑らかにすることが
できる。また、チゼル部に対しても同様な効果に加え、
被膜表面に存在するドロップレットや大きな粒子をなら
し、膜の表面を滑らかにできる。特に、軟鋼等の延性の
ある材料では、膜のドロップレット等の突部が圧着等の
原因となるため、効果が大きい。
After coating with 5 μm of TiAlN using the twist drill used in the above embodiment, the coated edge was treated by magnetic polishing. Since the unevenness of the coating surface after coating intersects with the cutting edge after coating by the edge processing, the unevenness can be smoothed and the edge line of the cutting edge can be smoothed. In addition, in addition to the effect similar to the chisel,
Droplets and large particles existing on the surface of the coating can be smoothed out, and the surface of the coating can be smoothed. In particular, in the case of a ductile material such as mild steel, the projections such as the droplets of the film cause pressure bonding and the like, so that the effect is large.

【0016】尚、上述の実施例においては高速度鋼を用
いて説明したが、これに限定されることなく、超硬ソリ
ッドタイプやスローアウェイタイプのドリル等であって
も、同様に本発明を適用できる。
Although the above embodiment has been described using high-speed steel, the present invention is not limited to this, and the present invention is similarly applicable to a solid carbide type or a throw-away type drill. Applicable.

【0017】[0017]

【発明の効果】上記のように、本発明に係る穴明け工具
を用いることにより、切削抵抗が小さく、穴精度(拡大
代)の良い加工が行え、また、切れ刃処理との組み合わ
せにより摩耗が安定し、優れた工具寿命を発揮する。
As described above, by using the drilling tool according to the present invention, machining with small cutting resistance and high hole accuracy (enlargement allowance) can be performed, and wear is reduced by combination with the cutting edge treatment. Provides stable and excellent tool life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明例の実施例のドリルの正面図を
示す。
FIG. 1 shows a front view of a drill according to an embodiment of the present invention.

【図2】図2は、図1の要部拡大図を示す。FIG. 2 is an enlarged view of a main part of FIG. 1;

【図3】図3は、図1の先端視を示す。FIG. 3 shows a front view of FIG. 1;

【符号の説明】[Explanation of symbols]

1 ツイストドリル 2 ねじれ角 3 先端刃 4 凸部 5 最凸部 6 最凸部と外周部との差 7 先端刃3の外周端 8 切屑排出溝 DESCRIPTION OF SYMBOLS 1 Twist drill 2 Helix angle 3 Tip blade 4 Convex part 5 Most convex part 6 Difference between the most convex part and outer peripheral part 7 Peripheral end of distal end blade 3 8 Chip discharge groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被覆した超硬質合金製からなる高硬度材穴
あけ用ドリルツイストドリルにおいて、ねじれ角を10
度〜45度とし、該ドリルの先端視で、先端切れ刃をを
凸状とし、かつ、該凸状部の最凸部とシンニング刃とを
結ぶ仮想線に対して、先端切れ刃を刃径の1〜10%回
転方向後方側に設け、先端刃と外周の繋ぎ部を面取り状
の面としたことを特徴とする高硬度材穴あけ用ドリル。
1. A twist twist drill for drilling a high-hardness material made of a coated super-hard alloy, the twist angle of which is 10
Degrees to 45 degrees, and when viewed from the tip of the drill, the tip cutting edge has a convex shape, and the tip cutting edge has a blade diameter with respect to an imaginary line connecting the most convex portion of the convex portion and the thinning blade. A drill for drilling a high-hardness material, wherein the drill is provided on the rear side in the rotation direction by 1 to 10%, and the connecting portion between the tip blade and the outer periphery is a chamfered surface.
【請求項2】請求項1記載の高硬度材穴あけ用ドリルに
おいて、該面取りを回転中心線の垂線に対して20度〜
60度の角度で設けたことを特徴とする高硬度材穴あけ
用ドリル。
2. The drill for drilling high-hardness material according to claim 1, wherein the chamfer is formed at an angle of 20 ° to a perpendicular to a rotation center line.
A high-hardness material drilling drill provided at an angle of 60 degrees.
JP2001069802A 2000-03-31 2001-03-13 Drill for perforating high hardness material Pending JP2001341022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069802A JP2001341022A (en) 2000-03-31 2001-03-13 Drill for perforating high hardness material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-96828 2000-03-31
JP2000096828 2000-03-31
JP2001069802A JP2001341022A (en) 2000-03-31 2001-03-13 Drill for perforating high hardness material

Publications (1)

Publication Number Publication Date
JP2001341022A true JP2001341022A (en) 2001-12-11

Family

ID=26589062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069802A Pending JP2001341022A (en) 2000-03-31 2001-03-13 Drill for perforating high hardness material

Country Status (1)

Country Link
JP (1) JP2001341022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088267A (en) * 2004-09-24 2006-04-06 Big Tool Co Ltd Drill
US20110081215A1 (en) * 2008-05-15 2011-04-07 Sumitomo Electric Hardmetal Corp. Twist drill
JP2014113661A (en) * 2012-12-10 2014-06-26 Mitsubishi Materials Corp Drill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088267A (en) * 2004-09-24 2006-04-06 Big Tool Co Ltd Drill
US20110081215A1 (en) * 2008-05-15 2011-04-07 Sumitomo Electric Hardmetal Corp. Twist drill
JP2014113661A (en) * 2012-12-10 2014-06-26 Mitsubishi Materials Corp Drill

Similar Documents

Publication Publication Date Title
EP0559961B1 (en) Highly stiff end mill
JP5762547B2 (en) drill
US9352399B2 (en) Drill
JPH0780714A (en) Ultra-hard drill
JP2008142834A (en) Drill
JP3337804B2 (en) End mill
JP4097515B2 (en) Ball end mill
JP2006231430A (en) Centering drill and machining method using the same
JP2001341022A (en) Drill for perforating high hardness material
JP2001328016A (en) Twist drill
JP4725369B2 (en) Drill
JP2538864Y2 (en) Hard film coated drill for difficult-to-cut materials
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP2007229899A (en) Drill
JP2010058179A (en) Cutting tool and method of manufacturing the same
JP2006212725A (en) Drill for high efficiency machining of aluminum
JP2006212724A (en) Drill for high efficiency machining of aluminum
JP2001341019A (en) Twist drill
JP2002172506A (en) Covered twist drill
JP2006326752A (en) Drill
JP2001341020A (en) Drilling tool
JP2004330373A (en) Throw away type drill tip and throw away type drill
JP2001341021A (en) Twist drill
WO2021230176A1 (en) Drill and method for manufacturing cut workpiece
JP2001300810A (en) Twist drill