JP2006212725A - Drill for high efficiency machining of aluminum - Google Patents

Drill for high efficiency machining of aluminum Download PDF

Info

Publication number
JP2006212725A
JP2006212725A JP2005026010A JP2005026010A JP2006212725A JP 2006212725 A JP2006212725 A JP 2006212725A JP 2005026010 A JP2005026010 A JP 2005026010A JP 2005026010 A JP2005026010 A JP 2005026010A JP 2006212725 A JP2006212725 A JP 2006212725A
Authority
JP
Japan
Prior art keywords
drill
thinning
aluminum
cutting edge
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026010A
Other languages
Japanese (ja)
Inventor
Takenori Shimizu
武則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005026010A priority Critical patent/JP2006212725A/en
Publication of JP2006212725A publication Critical patent/JP2006212725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of increasing cutting resistance to impede stable machining of a workpiece caused by deposition to a thinning cut face or the like when thinning a drill center part to improve centripetal property and to reduce cutting resistance in a drill for high efficiency machining of aluminum for boring aluminum or the like. <P>SOLUTION: The drill for high efficiency machining of aluminum has a cutting edge at a drill groove tip part and is thinned at the center part viewed from the cutting edge side axial end. An intersection formed by the thinning cut face 4 and a thinning heel face 5 is formed in round shape, and the curvature of the intersection R is set to ≥5% and ≤50% of a drill web thickness. The connection parts of a round part and the thinning heel face are spaced over the drill center, and the position of the intersection R is located within a range of +2 mm to -3 mm from the drill center axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、アルミ等の穴あけ加工に用いられ、ドリル中心部のシンニング形状の改善により中心付近の切屑処理性に優れ切削抵抗を軽減し耐溶着性が改善され高能率加工が可能なシンニング形状を有するアルミ高能率加工用ドリルに関する。   The invention of the present application is used for drilling of aluminum, etc., and has a thinning shape that improves cutting efficiency near the center by improving the thinning shape of the center of the drill, reduces cutting resistance, improves welding resistance, and enables high-efficiency machining. The present invention relates to a drill for machining aluminum with high efficiency.

アルミ等の穴明け加工を一般的なアルミ用アルミ高能率加工用ドリルで行った場合、切刃中心部のシンニング掬い面に早期溶着が発生し中心付近の切屑排出性が悪くなり、切削抵抗の増大を招き、しいてはドリルの折損にいたる。特許文献1には切削時のスラストを軽減させる為と求心性と切屑処理改善の為にドリル切刃中心部にX型シンニングを施している。しかし従来のX型シンニングはシンニング掬い面とシンニングヒール面で構成される谷底の曲率がほぼ0と小さくシンニング谷底がV字状の為、シンニング切刃で切削された切屑がシンニング谷底に堆積し、スムーズに流れないのでシンニング切刃に溶着を誘発させ主切刃にも影響を及ぼす。その結果スラスト抵抗の増大や求心性の低下を招き安定した切削ができない。
特開平2−124207号公報
When drilling aluminum, etc., with a general aluminum high-efficiency drill for aluminum, early welding occurs on the thinning surface at the center of the cutting edge, resulting in poor chip evacuation and cutting resistance. This leads to an increase, and eventually breaks the drill. In Patent Document 1, X-type thinning is applied to the center portion of a drill cutting edge in order to reduce thrust during cutting and to improve centripetality and chip disposal. However, in the conventional X-type thinning, the curvature of the valley bottom composed of the thinning scooping surface and the thinning heel surface is as small as almost 0, and the thinning valley bottom is V-shaped, so the chips cut by the thinning cutting edge accumulate on the thinning valley bottom, Since it does not flow smoothly, it induces welding on the thinning cutting edge and affects the main cutting edge. As a result, the thrust resistance is increased and the centripetality is lowered, so that stable cutting cannot be performed.
JP-A-2-124207

本願発明はアルミ等の穴あけ加工用のアルミ高能率加工用ドリルで、求心性の向上と切削抵抗軽減の為にドリル中心部にシンニングを施した際に生じる加工物が、シンニング掬い面等への溶着により、切削抵抗が増大し安定加工ができなくなる等の課題を解決する。   The present invention is an aluminum high-efficiency machining drill for drilling aluminum, etc., and the work that occurs when thinning the center of the drill to improve centripetality and reduce cutting resistance is applied to the thinning scoop surface, etc. Welding solves problems such as increased cutting resistance and inability to perform stable machining.

本願発明は、ドリル溝先端部に切刃を有し、切刃側軸端視において中心部にシンニングが施されたアルミ高能率加工用ドリルにおいて、該シンニング掬い面とシンニングヒール面とで構成される交点をR状にし、交点R曲率をドリル芯厚の5%以上50以下とし、該R状部とシンニングヒール面の接続部がドリル中心を超えて離間し、交点R位置がドリル中心軸から+2mm〜−3mmの範囲に位置していることを特徴とするアルミ高能率加工用ドリルであり、更に好ましくは、該R状部の最大離間距離をドリル心厚の5%以上70%以下とし、シンニング切刃の行き違いの幅をドリル直径の0.1%以上50%以下にドリル中心側へ小さくなっており、シンニング掬い面、シンニング谷底R曲率面、シンニングヒール面及び切屑排出溝面の面粗さをRz0.2以上1.5以下とし、切削油剤又は切削ミスト又はエアー等を供給する流体供給用のスパイラル貫通孔を施し、該ドリルの心厚は、刃先側からシャンク側に向けて厚みが略一定の第一心厚部、第二心厚部、第三心厚部の1つ以上を備え、該第一心厚部の心厚を該第二心厚部の心厚より大とし、ドリル直径の1.5%以上厚くして該第三心厚部は該第二心厚部の心厚より小とし、ドリル直径の0.5%以上薄くし、ドリル表面にTiN、Ti(CN)、(TiAl)N、(TiAlSi)N、(TiAlCr)N、(AlSi)N、(AlCr)N、(TiSi)N、(TiCr)N、DLC、ダイヤモンド等の硬質潤滑被膜を一層又は複層被覆したことを特徴としたアルミ高能率加工用ドリルである。   The invention of the present application is an aluminum high-efficiency machining drill having a cutting edge at the tip of the drill groove and thinned at the center when viewed from the cutting edge side axial end, and is composed of the thinning scoop surface and the thinning heel surface. The intersection point R has a radius of curvature of 5% to 50% of the drill core thickness, the connecting portion of the R-shaped portion and the thinning heel surface is spaced beyond the center of the drill, and the intersection R position is away from the drill center axis. It is an aluminum high-efficiency machining drill characterized by being located in a range of +2 mm to -3 mm, more preferably, the maximum separation distance of the R-shaped portion is 5% to 70% of the drill core thickness, The crossing width of the thinning cutting edge is reduced from 0.1% to 50% of the drill diameter toward the center of the drill. The thickness of the thinning scooping surface, thinning bottom R curvature surface, thinning heel surface and chip discharge groove surface The roughness is Rz 0.2 or more and 1.5 or less, and a spiral through hole for fluid supply for supplying cutting fluid, cutting mist, air, or the like is provided, and the core thickness of the drill is the thickness from the cutting edge side toward the shank side. Is provided with one or more of a first core thickness portion, a second core thickness portion, and a third core thickness portion that are substantially constant, wherein the core thickness of the first core thickness portion is greater than the core thickness of the second core thickness portion. The third core thick part is made thicker by 1.5% or more of the drill diameter and smaller than the core thickness of the second core thick part, and is made 0.5% or more thinner than the drill diameter, and TiN, Ti ( CN), (TiAl) N, (TiAlSi) N, (TiAlCr) N, (AlSi) N, (AlCr) N, (TiSi) N, (TiCr) N, DLC, diamond, etc. It is a drill for high-efficiency machining of aluminum characterized by layer coating.

本願発明は、アルミ等の穴あけ加工に用いられ、ドリル中心部のシンニング形状の改善により該中心付近の切屑処理性、求心性に優れ切削抵抗の軽減ならびに耐溶着性が改善され安定した加工が可能なアルミ高能率加工用ドリルを提供する。   The invention of the present application is used for drilling of aluminum and the like, and by improving the thinning shape of the center of the drill, it is excellent in chip disposal and centripetalness near the center, reducing cutting resistance and improving welding resistance, enabling stable machining A drill for high-efficiency aluminum machining.

本願発明は、アルミ等の加工の際、主切刃での切削抵抗や発熱を抑える為に、先ず、刃溝のねじれ角を25°〜40°とし、次に、その先端刃中心部にシンニングを施し、図1において、シンニング掬い面とシンニングヒール面とで構成される交点をR状にすることにより、シンニング切刃で形成された切屑が交点Rにスムーズに流れ、やがて、ドリル溝中に流れ込むことで切屑の堆積によるシンニング掬い面の溶着が防止され、シンニング切刃の効果が持続されるのでスラスト抵抗が軽減し求心性に優れ安定した穴加工ができる。
第3に、図1において、シンニング掬い面とシンニングヒール面とで構成される交点Rの曲率は、ドリル心厚の5%以上50%以下にすることにより、シンニング切刃で形成された切屑が交点Rにスムーズに流れ、シンニング掬い面の溶着が防止され、シンニング切刃の効果が持続されるのでスラスト抵抗が軽減しする。ドリル心厚の50%以上ではシンニングヒール面が大きくなり、ドリル刃先の強度の低下によりチッピングや折損の危険性が大きくなる。ドリル心厚の5%以下では切屑がスムーズに流れず、切屑は堆積しシンニング掬い面に溶着する。図2、図3において、シンニング掬い面とシンニングヒール面とで構成される交点Rの底位置を、ドリル中心軸から、+2mm乃至−3mmの範囲にすることで、中心付近の押し潰し切屑の排出が向上し、スラスト抵抗を軽減することができる。+2mm以上だと刃先研磨時のチゼル部分の平坦部分残し幅が多くなり、スラスト抵抗が増加する。−3mm以下では、交点Rの底位置が、主切刃側に近くなり、切刃強度不足にてチッピングの危険性が大きくなる。図4において、交点Rに該シンニングヒール面の接続するR状部最大離間距離Bは、ドリル心厚の5%以上70%とすることで、ドリル中心付近の切屑処理が良くなりスラスト抵抗が軽減され、高送り加工も安定して可能となる。5%以下では切屑処理が悪く、70%以上ではドリル溝ヒール面が減少してドリル強度の低下により欠損の危険性が大きくなる。
第4に、シンニング切刃の行き違い幅をドリル直径の0.1%以上50%以下とドリル中心側へ、小さくすることにより刃先研磨時のチゼル部分の平坦部残し幅が少なくなり、求心性が向上しスラスト抵抗が軽減できる。ドリル直径の50%以上では、チゼル部分の平坦部残し幅が多くなり、スラスト抵抗が増加する。ドリル直径の0.1%以下ではチゼル部分の平坦部が小さくすぎてドリル中心部が欠損する。
第5に、シンニング掬い面、シンニング谷底R曲率面、シンニングヒール面及び切屑排出溝面の面粗さをRz0.2以上、1.5以下と滑らかにすることで、シンニング切刃で形成された切屑は更にスムーズにシンニング掬い面からシンニングR曲率面へ、シンニングR曲率面から切屑排出溝面へと排出され更に溶着が防止される。切屑排出溝も滑らかにすることにより、主切刃で形成された切屑がスムーズに流れるので、主切刃と切屑排出溝が接する部分と切屑排出溝面の溶着が軽減できると共に切屑排出もスムーズになりスラスト抵抗が軽減できるが、Rz0.2以下にするにはドリル溝全般にわたって加工するのは困難であり、Rz1.5以上では主切刃やシンニング切刃で形成された切屑がスムーズに流れず溶着したり、切屑排出を阻害する場合がある。
第6に、切削油剤又は切削ミスト又はエアー等を供給する流体供給用のスパイラル貫通孔を施すことにより、切削加工中の刃先に直接、潤滑、冷却を供給することができる為、切削加工中の発熱を減少することができ、溶着を減じられるし、加工被削材の熱変形等も少なくなる。
第7に、直径の3倍以上を超える深穴加工を安定して能率よくノンステップで加工するには、刃先先端で生成された切屑をスムーズに排出することが必要で、切屑のドリル溝部と加工穴内壁との接触による切屑詰りを防止する為、ドリルの心厚を刃先端側からシャンク側へ向けて厚みが略一定の第一心厚部、第二心厚部を設け、該第一心厚部の心厚部の心厚を該第二心厚部の心厚よりドリル直径の1.5%以上厚くすることで、切屑は第二心厚部で加工内壁に接しないので、切屑詰りが防止され、第二心厚部の心厚がドリル直径の1.5%以下では充分に加工穴内壁との間に隙間が得られないので切屑が詰る場合がある。直径の10倍以上を超える深穴加工の場合には、刃先側からシャンク側に向けて厚みが略一定の第一心厚部、第二心厚部、第三心厚部を設け、該第一心厚部の心厚部の心厚を該第二心厚部の心厚よりドリル直径の1.5%以上厚く、該第三心厚部は該第二心厚部の心厚より小とし、ドリル直径の0.5%以上薄くすることにより、さらに切屑詰りが防止され、第三心厚がドリル直径の0.5%以下では切屑が詰る場合がある。
第8に、ドリル表面にTiN、Ti(CN)、(TiAl)N、(TiAlSi)N、(TiAlCr)N、(AlSi)N、(AlCr)N、(TiSi)N、(TiCr)N、DLC、ダイヤモンド等の硬質潤滑被膜を一層又は複層形成することにより、主切刃やシンニング切刃に生ずる圧縮応力に対し、耐磨耗性が向上しシンニング切刃の低い切削速度でも潤滑性により切削作用を補い、シンニング切刃、シンニング掬い面、主切刃と切屑排出溝が接する部分と切屑排出溝面の溶着を少なくする。これらの硬質潤滑皮膜を被覆後に表面の凹凸を機械的に平滑にすることが好ましい。被膜被覆法は、アーク放電式イオンプレーティング法及び/若しくはスパッタリング方式イオンプレーティング法が上げられる。以下、実施例に基づき本発明を詳細に説明する。
In the present invention, in order to suppress cutting resistance and heat generation at the main cutting edge when machining aluminum or the like, first, the twist angle of the blade groove is set to 25 ° to 40 °, and then thinning is performed at the center of the tip edge. In FIG. 1, by making the intersection formed by the thinning scooping surface and the thinning heel surface into an R shape, chips formed by the thinning cutting edge smoothly flow to the intersection R, and eventually into the drill groove. By flowing in, the welding of the thinning scooping surface due to the accumulation of chips is prevented, and the effect of the thinning cutting edge is maintained, so that the thrust resistance is reduced and the centripetality is excellent and stable drilling can be performed.
Third, in FIG. 1, the curvature of the intersection R formed by the thinning scooping surface and the thinning heel surface is set to 5% or more and 50% or less of the drill core thickness, so that the chips formed by the thinning cutting edge are reduced. It flows smoothly at the intersection R, prevents welding of the thinning scooping surface, and the effect of the thinning cutting edge is maintained, so that the thrust resistance is reduced. If the drill core thickness is 50% or more, the thinning heel surface becomes large, and the risk of chipping and breakage increases due to a decrease in the strength of the drill edge. When the drill core thickness is 5% or less, the chips do not flow smoothly, and the chips accumulate and adhere to the thinning scooping surface. 2 and 3, the bottom position of the intersection R formed by the thinning scooping surface and the thinning heel surface is set within a range of +2 mm to −3 mm from the drill center axis, thereby discharging crushing chips near the center. The thrust resistance can be reduced. If it is +2 mm or more, the remaining width of the flat portion of the chisel during polishing of the blade edge increases, and the thrust resistance increases. If it is −3 mm or less, the bottom position of the intersection R is close to the main cutting edge side, and the risk of chipping increases due to insufficient cutting edge strength. In FIG. 4, the R-shaped portion maximum separation distance B at which the thinning heel surface is connected to the intersection R is 5% or more and 70% of the drill core thickness, so that the chip treatment near the center of the drill is improved and the thrust resistance is reduced. Therefore, high feed machining can be stably performed. When it is 5% or less, the chip disposal is poor, and when it is 70% or more, the drill groove heel surface is reduced and the risk of breakage is increased due to a decrease in drill strength.
Fourth, by reducing the crossing width of the thinning cutting edge to 0.1% or more and 50% or less of the drill diameter toward the center of the drill, the remaining width of the flat part of the chisel during polishing of the cutting edge is reduced, and centripetality is improved. Improves and reduces thrust resistance. When the drill diameter is 50% or more, the flat portion remaining width of the chisel portion increases, and the thrust resistance increases. If the drill diameter is 0.1% or less, the flat portion of the chisel portion is too small and the center portion of the drill is lost.
Fifth, the surface roughness of the thinning scooping surface, the thinning valley bottom R curvature surface, the thinning heel surface, and the chip discharge groove surface was smoothed to Rz 0.2 or more and 1.5 or less, and formed with a thinning cutting blade. Chips are more smoothly discharged from the thinning-curved surface to the thinning R curvature surface, and from the thinning R curvature surface to the chip discharge groove surface, further preventing welding. By smoothing the chip discharge groove, the chips formed by the main cutting edge flow smoothly, so the welding between the part where the main cutting edge and the chip discharge groove are in contact with the chip discharge groove surface can be reduced and chip discharge is also smooth. Thrust resistance can be reduced, but it is difficult to machine the entire drill groove to make Rz 0.2 or less, and chips formed with the main cutting edge and thinning cutting edge do not flow smoothly at Rz 1.5 or more. It may be welded or chip discharge may be hindered.
Sixth, by providing a spiral through hole for fluid supply that supplies cutting fluid, cutting mist, air, etc., lubrication and cooling can be supplied directly to the cutting edge during cutting, Heat generation can be reduced, welding can be reduced, and thermal deformation or the like of the work material can be reduced.
Seventh, in order to stably and efficiently process deep holes exceeding 3 times the diameter, it is necessary to smoothly discharge chips generated at the tip of the cutting edge. In order to prevent chip clogging due to contact with the inner wall of the hole, a first core thick portion and a second core thick portion having a substantially constant thickness are provided with the core thickness of the drill from the blade tip side to the shank side. By making the core thickness of the thick part thicker than the core thickness of the second core thicker by 1.5% or more of the drill diameter, the chip does not contact the inner wall of the machining at the second core thick part. If the core thickness of the second core thickness portion is 1.5% or less of the drill diameter, a sufficient gap may not be obtained between the inner wall of the machined hole and chips may be clogged. In the case of deep hole machining exceeding 10 times the diameter, a first core thick part, a second core thick part, and a third core thick part having a substantially constant thickness are provided from the cutting edge side toward the shank side. The core thickness of one core thick part is 1.5% or more of the drill diameter larger than the core thickness of the second core thick part, and the third core thick part is smaller than the core thickness of the second core thick part. Further, by making the drill diameter 0.5% or more thinner, chip clogging is further prevented, and when the third core thickness is 0.5% or less of the drill diameter, chips may be clogged.
Eighth, TiN, Ti (CN), (TiAl) N, (TiAlSi) N, (TiAlCr) N, (AlSi) N, (AlCr) N, (TiSi) N, (TiCr) N, DLC on the drill surface By forming one or more layers of hard lubricant film such as diamond, the wear resistance is improved against the compressive stress generated on the main cutting edge and thinning cutting edge, and it is possible to cut by lubrication even at the low cutting speed of the thinning cutting edge. Supplementing the action, the welding of the thinning cutting edge, the thinning scooping surface, the portion where the main cutting edge and the chip discharge groove are in contact with the chip discharge groove surface is reduced. It is preferable to mechanically smooth the surface irregularities after coating these hard lubricant films. Examples of the coating method include an arc discharge ion plating method and / or a sputtering ion plating method. Hereinafter, the present invention will be described in detail based on examples.

(実施例1)
本発明例1は、超硬合金製でドリル直径6.0mm、溝長45mm、全長100mm、ドリル捩れ角30°、ドリル先端角130°、スパイラル貫通孔の径0.7mm、スパイラル貫通孔のピッチ2.5mm、第一心厚1.8mm、第二心厚1.65mm、図5のランド部とヒール部に一対のマージンを設けたドリルに図1、図2、図4のシンニングを施し、シンニング掬い面とシンニングヒール面とで構成される交点Rの曲率Rドリル心厚×30%、シンニング掬い面とシンニングヒール面とで構成される交点R底位置をドリル中心軸から−0.6mm、シンニング切刃の行き違い量ドリル直径×2.5%、交点Rに該シンニングヒール面の接続するR状部最大離間距離Bは、ドリル心厚×50%、シンニング掬い面、シンニング谷底R曲率面、シンニングヒール面の面粗さをRz0.6、切屑排出溝面の面粗さをRz0.8としたものを製作した。
従来例2は、図6に示す従来X型シンニングを施したシンニング掬い面とシンニングヒール面とで構成される交点Rの曲率Rドリル心厚×0%、交点Rに該シンニングヒール面の接続するR状部最大離間距離ドリル心厚×0%、それ以外、本発明例1と同仕様のドリルを製作した。
本発明例1、従来例2を各3本用いて、切削条件をVc100m/min、f0.18mm/rev、Vf955mm/min、加工穴深さ30mm、水溶性切削油を2.0Mpaでシャンク部スパイラル貫通孔に供給し、被削材AC2A−T6をノンステップで加工し、100穴加工後のシンニング切刃の溶着物を最大幅(mm)を左右の切刃で測定して、平均したものを測定値とした。測定は図7に示す模式図の様に測定した。10穴目加工時のスラスト抵抗の比較も行なった。更に、本発明例3は、切刃側にのみマージンを1対設け、それ以外を発明例1と同仕様のドリルも3本、同様に調査を行ない、その加工後の刃先状態を図6、図7に示し、その結果を表1に、スラスト抵抗値を表2に示す。
Example 1
Invention Example 1 is made of cemented carbide and has a drill diameter of 6.0 mm, a groove length of 45 mm, a total length of 100 mm, a drill twist angle of 30 °, a drill tip angle of 130 °, a spiral through hole diameter of 0.7 mm, and a pitch of the spiral through hole. 2.5 mm, first core thickness 1.8 mm, second core thickness 1.65 mm, thinning of FIG. 1, FIG. 2, FIG. 4 is applied to a drill having a pair of margins in the land portion and the heel portion of FIG. Curvature R of the intersection point R composed of the thinning scooping surface and the thinning heel surface R Drill core thickness x 30%, the bottom position of the intersection point R consisting of the thinning scooping surface and the thinning heel surface is -0.6 mm from the center axis of the drill Crossing amount of the thinning cutting edge Drill diameter x 2.5%, R-shaped maximum separation distance B connecting the thinning heel surface to the intersection R is drill core thickness x 50%, thinning scoop surface, thinning valley bottom R curvature surface The surface roughness of the thinning heel surface was Rz 0.6, and the surface roughness of the chip discharge groove surface was Rz 0.8.
In the conventional example 2, the curvature R of the intersection R formed by the thinning scooping surface and the thinning heel surface subjected to the conventional X-type thinning shown in FIG. 6 is connected to the thinning heel surface at the intersection R. A drill having the same specification as that of Example 1 of the present invention was manufactured except that the R-shaped portion maximum separation distance drill core thickness x 0%.
The invention example 1 and the conventional example 2 are used for each of the three, the cutting conditions are Vc 100 m / min, f 0.18 mm / rev, Vf 955 mm / min, the machining hole depth 30 mm, the water-soluble cutting oil is 2.0 Mpa and the shank part spiral Supplied to the through-hole, processed the workpiece AC2A-T6 non-step, measured the maximum width (mm) of the welded material of the thinning cutting edge after processing 100 holes with the left and right cutting edges, and measured the average Value. The measurement was performed as shown in the schematic diagram of FIG. The thrust resistance during the 10th hole processing was also compared. In addition, the present invention example 3 is provided with a pair of margins only on the cutting edge side, and other than that, three drills having the same specifications as the invention example 1 are also investigated, and the state of the cutting edge after the machining is shown in FIG. FIG. 7 shows the results, and Table 1 shows the results and Table 2 shows the thrust resistance values.

表1より、本発明例1、本発明例3のそれぞれ3本は、シンニング切刃部での切屑処理がスムーズに行なわれるため、加工後のシンニング切刃、シンニング掬い面の溶着物はほとんど観察されず、図8に示す程度で、溶着物の幅も従来例2の1/20程度に大幅に減少しており、シンニング切刃の効果が充分に継続作用していることとシンニング切刃の行き違い幅を小さいことにより、求心性に優れ、表2より、スラスト抵抗も本発明例1で450N、本発明例3で495N、従来例2では925Nであり、従来例2の1/2程度軽減された。従来例2は、図9の様にシンニング切刃に0.8〜1.0mm程度の溶着物が観察された。表2より、マージン1対の本発明例3の3本よりも、マージン2対の本発明例1の3本のほうが、切削中のドリルの刃先は加工した内壁に4箇所からガイドされるので刃先部のふらつきが抑制され切削抵抗が軽減された。   From Table 1, since each of the three examples of the present invention example 1 and the present invention example 3 is smoothly processed by the thinning cutting edge portion, the welded material on the thinning cutting edge and the thinning scoop surface after processing is almost observed. However, as shown in FIG. 8, the width of the welded material is significantly reduced to about 1/20 of that of the conventional example 2, and the effect of the thinning cutting edge is sufficiently continued and the thinning cutting edge By reducing the crossing width, the centripetality is excellent, and from Table 2, the thrust resistance is 450 N in the present invention example 1, 495 N in the present invention example 3, and 925 N in the conventional example 2, which is reduced by about 1/2 of the conventional example 2. It was done. In Conventional Example 2, welds of about 0.8 to 1.0 mm were observed on the thinning cutting edge as shown in FIG. From Table 2, the three cutting edges of the invention example 1 with two pairs of margins are guided by the machined inner wall from four points in comparison with the three of the invention examples 1 with two pairs of margins. Fluctuation of the cutting edge was suppressed and cutting resistance was reduced.

(実施例2)
更に、本発明例1、従来例2と同様のドリルを用いて、高送り加工の比較調査を行なった。切削条件を切削速度Vc150m/min、送り量f0.18、0.3、0.6、1.0mm/revと送り量fを上げ、送り速度Vf1430、2390、4780、7960mm/minと加工能率を上げて、水溶性切削油を2.0Mpaでシャンク部スパイラル貫通孔に供給し、被削材AC2A−T6を加工深さ30mmノンステップ加工し、各3穴目のスラスト抵抗の比較調査をした。その結果を、表3に示す。
(Example 2)
Furthermore, a comparative investigation of high-feed machining was performed using the same drills as those of Invention Example 1 and Conventional Example 2. Cutting conditions are as follows: cutting speed Vc 150 m / min, feed amount f0.18, 0.3, 0.6, 1.0 mm / rev and feed amount f increased, feed rate Vf1430, 2390, 4780, 7960 mm / min and machining efficiency Then, the water-soluble cutting oil was supplied to the shank part spiral through hole at 2.0 Mpa, the work material AC2A-T6 was non-step processed at a processing depth of 30 mm, and the comparative investigation of the thrust resistance of each third hole was conducted. The results are shown in Table 3.

表3より、本発明例1は、高送り加工においても、シンニング切刃部での切屑処理とドリル中心部付近での押し潰しの切屑処理がスムーズに行なわれるため、スラスト抵抗は従来例2の1/2以下に本発明例1は軽減された。従来例2は送り量f0.6mm/revで異音が発生し、送り量f1.0では折損した。本発明例1を更に、高送り加工し、送り量f1.5、2.0、2.5、3.0mm/revと上げて加工を行なった結果、送り量f2.5mm/revまで加工は可能で、送り量f3.0mm/revでは折損となったが、従来例2より8倍以上の高送り、高能率加工が可能となった。   From Table 3, the present invention example 1 can smoothly perform chip processing at the thinning cutting edge portion and crushing chip processing near the center of the drill even in high-feed machining. Invention Example 1 was reduced to 1/2 or less. In Conventional Example 2, abnormal noise was generated at a feed amount of f0.6 mm / rev, and breakage occurred at a feed amount of f1.0. The present invention example 1 was further processed at a high feed rate and processed by increasing the feed amounts f1.5, 2.0, 2.5, and 3.0 mm / rev. As a result, the machining was performed up to the feed amount f2.5 mm / rev. Although it was possible to break at a feed amount of f3.0 mm / rev, it was possible to perform high feed and high-efficiency machining 8 times or more than in the conventional example 2.

(実施例3)
本発明例4は、本発明例1と同仕様で、第一心厚1.8mm、第二心厚1.65mm、本発明例5は、本発明例1と同仕様で、第一心厚1.8mm、第二心厚1.75mm、本発明例6は、第一心厚、第二心厚とも1.8mm、それぞれ各2本用意し、切削条件を切削速度Vc150m/min、送り量f0.3mm/rev、水溶性切削油を2.0Mpaでシャンク部スパイラル貫通孔に供給し、被削材AC2A−T6を加工深さ30mmノンステップ加工し調査した。その結果、本発明例4は2本とも200穴を問題なく安定加工したのに対し、本発明例5は2本とも加工中に異常音が発生し30穴と18穴加工中に折損し、本発明例6は2本とも1穴目から大きな異常音が発生して2穴と1穴加工途中で折損した。
(Example 3)
Invention Example 4 has the same specifications as Invention Example 1, with a first core thickness of 1.8 mm, a second core thickness of 1.65 mm, and Invention Example 5 with the same specifications as Invention Example 1 with the first core thickness. 1.8 mm, second core thickness 1.75 mm, Invention Example 6 is prepared for each of the first core thickness and the second core thickness of 1.8 mm, two each, cutting conditions Vc 150 m / min, feed rate f0.3mm / rev, water-soluble cutting oil was supplied to the shank part spiral through hole at 2.0Mpa, and the work material AC2A-T6 was non-step processed to a processing depth of 30mm and investigated. As a result, both of the present invention example 4 stably processed 200 holes without problems, while both of the present invention example 5 generated an abnormal sound during processing and broke during processing of 30 holes and 18 holes, In Example 6 of the present invention, both of the two holes produced a large abnormal noise from the first hole and broke during the processing of the second hole and the first hole.

(実施例4)
本発明例7は、全長200mm、溝長150mm、心厚以外は本発明例1と同仕様で、第一心厚2.0mm、第二心厚1.85mm、本発明例8は、本発明例1と同仕様で、第一心厚2.0mm、第二心厚1.85mm、第三心厚1.75mm、本発明例9は、第一心厚、第二心厚とも2.0mm、各2本用意し、切削条件を切削速度Vc150m/min、送り量f0.3mm/rev、水溶性切削油を2.0Mpaでシャンク部スパイラル貫通孔に供給し、被削材AC2A−T6を加工深さ120mm(ドリル直径の20倍)ノンステップ加工し調査した。その結果、本発明例8は2本とも200穴を問題なく安定加工したのに対し、本発明例7は、加工深さ70mmをこえた付近から異音が発生と切削動力が安定せず、14穴と22穴目で折損し、本発明例9は2本とも加工深さ60mm付近で1穴目にて折損した。
Example 4
Invention Example 7 has the same specifications as Invention Example 1 except for a total length of 200 mm, a groove length of 150 mm, and a core thickness. The first core thickness is 2.0 mm, the second core thickness is 1.85 mm, and the invention example 8 is the present invention. Same specifications as in Example 1, with a first core thickness of 2.0 mm, a second core thickness of 1.85 mm, a third core thickness of 1.75 mm, and the inventive example 9 is 2.0 mm in both the first core thickness and the second core thickness. Prepare two each, cutting conditions Vc 150m / min, feed rate f0.3mm / rev, water-soluble cutting oil is supplied to the shank spiral through hole at 2.0Mpa to machine the workpiece AC2A-T6 Non-step processing was conducted with a depth of 120 mm (20 times the drill diameter). As a result, both of the present invention example 8 stably processed 200 holes without any problem, while the present invention example 7 generated abnormal noise from the vicinity of the processing depth exceeding 70 mm and the cutting power was not stable, It broke at the 14th hole and the 22nd hole, and both of the present invention examples 9 broke at the first hole at a processing depth of about 60 mm.

(実施例5)
本発明例10は、超硬合金製でドリル直径5.0mm、溝長30mm、全長90mm、ドリル捩れ角30°、ドリル先端角130°、マージン2対、第一心厚、第二心厚ともに1.5mm、に図1、図2、図4、に示すシンニングを施され、シンニング掬い面とシンニングヒール面とで構成される交点Rの曲率Rドリル心厚×30%、シンニング掬い面とシンニングヒール面とで構成される交点R底位置をドリル中心軸から+0.1mm、シンニング切刃の行き違い量ドリル直径×2%、交点Rに該シンニングヒール面の接続するR状部最大離間距離Bをドリル心厚×50%、シンニング掬い面、シンニング谷底R曲率面、シンニングヒール面の面粗さをRz0.5、切屑排出溝面の面粗さをRz0.9、本発明例11は、シンニング掬い面、シンニング谷底R曲率面、シンニングヒール面の面粗さをRy1.3、切屑排出溝面の面粗さをRy1.6とし、それ以外を本発明例10と同仕様とし、切削条件をVc80m/min、f0.20mm/rev、Vf1000mm/min、水溶性切削油を外部給油方式にて、被削材AC4B−T6を加工深さ15mmノンステップ加工して調査した。その結果、本発明例10は2本とも200穴問題なく加工ですることができ、シンニング切刃、シンニング掬い面の溶着が小さいため、シンニング切刃の効果が充分に継続作用しているので求心性に優れているので穴拡大も+0.02と安定しているのに対して、本発明例11は加工初期よりシンニング切刃、シンニング掬い面に大きな溶着が発生して、加工5穴目より、穴拡大が+0.08〜0.1と大きく、切屑排出溝面にも大きく溶着し、24穴と31穴目で折損した。
(Example 5)
Invention Example 10 is made of cemented carbide and has a drill diameter of 5.0 mm, a groove length of 30 mm, a total length of 90 mm, a drill twist angle of 30 °, a drill tip angle of 130 °, a margin of 2 pairs, both the first core thickness and the second core thickness. 1.5 mm, thinned as shown in FIGS. 1, 2 and 4, curvature R at the intersection R composed of a thinning scooping surface and a thinning heel surface R drill core thickness x 30%, thinning scooping surface and thinning The bottom position of the intersection R formed by the heel surface is +0.1 mm from the center axis of the drill, the amount of thinning cutting edge drill diameter x 2%, and the maximum separation distance B of the R-shaped portion to which the thinning heel surface connects at the intersection R Drill core thickness x 50%, thinning scooping surface, thinning valley bottom R curvature surface, thinning heel surface roughness Rz0.5, chip discharge groove surface roughness Rz0.9, Invention Example 11 is thinning scooping Face The surface roughness of the Nning valley bottom R curvature surface and the thinning heel surface is Ry1.3, the surface roughness of the chip discharge groove surface is Ry1.6, the other specifications are the same as those of the present invention example 10, and the cutting conditions are Vc80 m / min. , F0.20 mm / rev, Vf 1000 mm / min, water-soluble cutting oil was investigated by externally supplying the work material AC4B-T6 with a machining depth of 15 mm. As a result, both of Example 10 of the present invention can be machined without a problem of 200 holes, and since the welding of the thinning cutting edge and the thinning scooping surface is small, the effect of the thinning cutting edge is sufficiently continued. Since the hole expansion is stable at +0.02 because it is excellent in mind, the present invention example 11 has a large welding on the thinning cutting edge and thinning scooping surface from the initial stage of machining, and from the fifth hole of machining. The enlargement of the hole was as large as +0.08 to 0.1, and it was also welded to the chip discharge groove surface and broke at the 24th and 31st holes.

(実施例6)
本発明例12は、実施例1と同仕様としたものと、本発明例13は、本発明例1と同仕様としたもの表面にDLCコーティングを被覆し、被覆後に機械的(エアロラップ等)にて平滑処理を行なったものを用意して、エアー圧0.6Mpaで植物性MQLオイルを10CC/Hをミスト状にしてシャンク部スパイラル貫通孔に共に供給して、切削条件をVc100m/min、f0.30mm/rev、Vf1590mm/min、被削材A5052にて加工深さ30mmの加工し調査を行なった。その結果、本発明例12の加工初期でのスラスト抵抗は670Nで、本発明例13の加工初期スラスト抵抗は650Nと大差は観察されなかったが、1000穴加工時のスラスト抵抗は、本発明例12が730Nと上昇し、本発明例13は670Nと大きな上昇は観察されず、本発明例12よりも溶着の改善がされた。本発明例12、本発明例13とも図1、図2、図3、図4のシンニングを施すことにより、従来、加工困難なMQL(ミスト)加工も安定するようになった。
(Example 6)
Example 12 of the present invention has the same specifications as Example 1, and Example 13 of the present invention has the same specifications as Example 1 of the present invention. The surface is coated with DLC coating, and mechanically (aero wrap etc.) after coating Prepared with a smoothing process at, and supplied the plant MQL oil in a mist of 10 CC / H at an air pressure of 0.6 Mpa to the spiral through hole of the shank, and the cutting conditions were Vc 100 m / min, A f0.30 mm / rev, Vf1590 mm / min, work material A5052 was machined at a machining depth of 30 mm and investigated. As a result, the thrust resistance at the beginning of machining of Example 12 of the present invention was 670 N, and the initial thrust resistance of Example 13 of the invention was not significantly different from 650 N. However, the thrust resistance at the time of 1000 hole machining was the example of the present invention. No. 12 increased to 730 N, and Example 13 of the invention did not show a large increase of 670 N, and the welding was improved more than Example 12 of the present invention. By applying the thinning of FIGS. 1, 2, 3, and 4 to both Invention Example 12 and Invention Example 13, MQL (mist) machining, which has been difficult to machine, has been stabilized.

(実施例7)
本発明例14は、本発明例1と同仕様に、主切刃及び、シンニング切刃に0.06mmのホーニングを行ない、ドリル表面にTiAlSiNコーティングを被覆し、被覆後に機械的に(エアロラップ等)にて平滑処理を行なったもの、本発明例15は、従来例2と同仕様に、主切刃及び、シンニング切刃に0.06mmのホーニングを行ない、ドリル表面にTiAlSiNコーティングを被覆し、被覆後に機械的に(エアロラップ等)にて平滑処理を行なったものを用意して、切削条件を切削速度Vc100m/min、送り量f0.18、0.24、0.30、0.40、0.60mm/revと送り量fを上げ、送り速度Vf954、1272、1590、2122、3180mm/minと加工能率を上げて、水溶性切削油を2.0Mpaでシャンク部スパイラル貫通孔に供給し、被削材SCM440鋼(硬さHRC30)を加工深さ30mmノンステップ加工し、鋼での加工効果を確認した。その結果、本発明例14は、送り量f0.18〜0.6mm/revまで安定加工したのに対し、本発明例15は、送り量f0.18mm/revは加工可能だが、送り量f0.24mm/revにて折損した。本発明例14は、図1、図2、図3、図4のシンニングの効果で、鋼加工にても、本発明例15よりも2.5倍以上の高送り、高能率加工が可能となることが確認された。
(Example 7)
Inventive Example 14 has the same specifications as Inventive Example 1, except that the main cutting edge and the thinning cutting edge are subjected to 0.06 mm honing, the drill surface is coated with TiAlSiN coating, and mechanically (aero wrap etc. after coating) ), The example 15 of the present invention was subjected to honing of 0.06 mm on the main cutting edge and the thinning cutting edge in the same specifications as the conventional example 2, and the drill surface was coated with a TiAlSiN coating, A material that has been subjected to a smoothing process mechanically (aero lap etc.) after coating is prepared, and the cutting conditions are cutting speed Vc 100 m / min, feed amount f 0.18, 0.24, 0.30, 0.40, Raise feed rate f to 0.60 mm / rev, raise feed efficiency Vf 954, 1272, 1590, 2122, 3180 mm / min and increase machining efficiency to 2.0M water-soluble cutting oil. Is supplied to the shank portion a spiral through-hole in a, and machining depth 30mm Nonstep processed workpiece SCM440 steel (hardness HRC 30), confirmed the working effect of the steel. As a result, the present invention example 14 was stably machined to the feed amount f0.18 to 0.6 mm / rev, whereas the present invention example 15 was able to machine the feed amount f0.18 mm / rev, but the feed amount f0. Broken at 24 mm / rev. Invention Example 14 is capable of high feed and high-efficiency machining 2.5 times or more than Invention Example 15 due to the thinning effect of FIG. 1, FIG. 2, FIG. 3, and FIG. It was confirmed that

図1は、本発明例のシンニングの例を示す。FIG. 1 shows an example of thinning according to the present invention. 図2は、本発明例のシンニングの例を示す。FIG. 2 shows an example of thinning according to the present invention. 図3は、本発明例のシンニングの交点R曲率底マイナス位置を示す。FIG. 3 shows the intersection R curvature bottom minus position of the thinning of the example of the present invention. 図4は、本発明例のシンニングの交点R曲率底+位置示す。FIG. 4 shows the intersection R curvature base + position of the thinning of the example of the present invention. 図5は、ドリルの各部名称を示す。FIG. 5 shows the names of each part of the drill. 図6は、従来例のX型シンニングを示す。FIG. 6 shows a conventional X-type thinning. 図7は、図8、図9の溶着物の測定例を示す。FIG. 7 shows a measurement example of the welded material shown in FIGS. 図8は、本発明例の加工後の刃先状態を示す。FIG. 8 shows the state of the cutting edge after processing of the example of the present invention. 図9は、従来例の加工後の刃先状態を示す。FIG. 9 shows the state of the cutting edge after processing of the conventional example. 図10は、ドリルの各部名称を示す。FIG. 10 shows the names of each part of the drill.

符号の説明Explanation of symbols

1:ドリル本体
2:主切刃
3:シンニング切刃
4:シンニング掬い面
5:シンニングヒール面
6:ランド部マージン
7:ヒール部マージン
8:切屑排出溝
A:交点R曲率
B:離間距離
C:シンニング行き違い量
D:交点R曲率位置−範囲
E:交点R曲率位置+範囲
F:シンニング切刃溶着物測定幅
G:シンニング切刃溶着物
H:スパイラル貫通孔
1: Drill body 2: Main cutting edge 3: Thinning cutting edge 4: Thinning scooping surface 5: Thinning heel surface 6: Land margin 7: Heel margin 8: Chip discharge groove A: Intersection R curvature B: Separation distance C: Thinning misalignment amount D: intersection R curvature position-range E: intersection R curvature position + range F: thinning cutting edge welded measurement width G: thinning cutting edge welding H: spiral through hole

Claims (7)

ドリル溝先端部に切刃を有し、切刃側軸端視において中心部にシンニングが施されたアルミ高能率加工用ドリルにおいて、該シンニング掬い面とシンニングヒール面とで構成される交点をR状にし、交点R曲率をドリル芯厚の5%以上50以下とし、該R状部とシンニングヒール面の接続部がドリル中心を超えて離間し、交点R位置がドリル中心軸から+2mm〜−3mmの範囲に位置していることを特徴とするアルミ高能率加工用ドリル。 In an aluminum high-efficiency machining drill that has a cutting edge at the tip of the drill groove and is thinned at the center when viewed from the side of the cutting edge, the intersection formed by the thinning scoop surface and the thinning heel surface is R The intersection R curvature is 5% or more and 50 or less of the drill core thickness, the connecting portion of the R-shaped part and the thinning heel surface is separated beyond the drill center, and the intersection R position is +2 mm to -3 mm from the drill center axis. Aluminum high-efficiency machining drill characterized by being located in the range of 請求項1記載のアルミ高能率加工用ドリルにおいて、該R状部の最大離間距離をドリル心厚の5%以上70%以下とした事を特徴とするアルミ高能率加工用ドリル。 The aluminum high-efficiency machining drill according to claim 1, wherein the maximum separation distance of the R-shaped portion is 5% or more and 70% or less of the drill core thickness. 請求項1又は2記載のアルミ高能率加工用ドリルにおいて、シンニング切刃の行き違いの幅をドリル直径の0.1%以上50%以下にドリル中心側へ小さくなっていることを特徴とするアルミ高能率加工用ドリル。 The aluminum high-efficiency drill according to claim 1 or 2, wherein the width of the crossing of the thinning cutting edge is reduced from 0.1% to 50% of the drill diameter toward the center of the drill. Drill for efficiency machining. 請求項1乃至3いずれかに記載のアルミ高能率加工用ドリルにおいて、シンニング掬い面、シンニング谷底R曲率面、シンニングヒール面及び切屑排出溝面の面粗さをRz0.2以上1.5以下としたことを特徴としたアルミ高能率加工用ドリル。 The aluminum high-efficiency machining drill according to any one of claims 1 to 3, wherein the surface roughness of the thinning scoop surface, the thinning valley bottom R curvature surface, the thinning heel surface, and the chip discharge groove surface is Rz 0.2 or more and 1.5 or less. Aluminum high-efficiency machining drill characterized by 請求項1乃至4いずれかに記載のアルミ高能率加工用ドリルにおいて、切削油剤又は切削ミスト又はエアー等を供給する流体供給用のスパイラル貫通孔を施したことを特徴としたアルミ高能率加工用ドリル。 The aluminum high-efficiency machining drill according to any one of claims 1 to 4, wherein a spiral through-hole for supplying fluid for supplying cutting fluid, cutting mist, air, or the like is provided. . 請求項1乃至5いずれかに記載のアルミ高能率加工用ドリルにおいて、該ドリルの心厚は、刃先側からシャンク側に向けて厚みが略一定の第一心厚部、第二心厚部、第三心厚部の1つ以上を備え、該第一心厚部の心厚を該第二心厚部の心厚より大とし、ドリル直径の1.5%以上厚くして該第三心厚部は該第二心厚部の心厚より小とし、ドリル直径の0.5%以上薄くしたことを特徴とするアルミ高能率加工用ドリル。 The aluminum high-efficiency machining drill according to any one of claims 1 to 5, wherein the core thickness of the drill is a first core thick part, a second core thick part having a substantially constant thickness from the cutting edge side to the shank side, One or more third core thick portions, wherein the first core thick portion is thicker than the second core thick portion and is thicker than 1.5% of the drill diameter to increase the third core thickness. A drill for high-efficiency machining of aluminum, characterized in that the thick part is smaller than the core thickness of the second core thick part and is 0.5% or more thinner than the drill diameter. 請求項1乃至6いずれかに記載のアルミ高能率加工用ドリルにおいて、ドリル表面にTiN、Ti(CN)、(TiAl)N、(TiAlSi)N、(TiAlCr)N、(AlSi)N、(AlCr)N、(TiSi)N、(TiCr)N、DLC、ダイヤモンド等の硬質潤滑被膜を一層又は複層被覆したことを特徴としたアルミ高能率加工用ドリル。
The aluminum high efficiency drill according to any one of claims 1 to 6, wherein the drill surface has TiN, Ti (CN), (TiAl) N, (TiAlSi) N, (TiAlCr) N, (AlSi) N, (AlCr ) A drill for high-efficiency machining of aluminum, characterized in that a hard lubricating film such as N, (TiSi) N, (TiCr) N, DLC, diamond or the like is coated on one or more layers.
JP2005026010A 2005-02-02 2005-02-02 Drill for high efficiency machining of aluminum Pending JP2006212725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026010A JP2006212725A (en) 2005-02-02 2005-02-02 Drill for high efficiency machining of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026010A JP2006212725A (en) 2005-02-02 2005-02-02 Drill for high efficiency machining of aluminum

Publications (1)

Publication Number Publication Date
JP2006212725A true JP2006212725A (en) 2006-08-17

Family

ID=36976355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026010A Pending JP2006212725A (en) 2005-02-02 2005-02-02 Drill for high efficiency machining of aluminum

Country Status (1)

Country Link
JP (1) JP2006212725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137701A1 (en) * 2009-05-29 2010-12-02 株式会社タンガロイ Indexable drill and drill body
JP2014087873A (en) * 2012-10-30 2014-05-15 Sumitomo Electric Hardmetal Corp Two-blade double margin drill
JP6975353B1 (en) * 2021-03-16 2021-12-01 ダイジ▲ェ▼ット工業株式会社 Drill

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137701A1 (en) * 2009-05-29 2010-12-02 株式会社タンガロイ Indexable drill and drill body
CN102448647A (en) * 2009-05-29 2012-05-09 株式会社钨钛合金 Indexable drill and drill body
JPWO2010137701A1 (en) * 2009-05-29 2012-11-15 株式会社タンガロイ Replaceable tip drill and drill body
RU2496612C2 (en) * 2009-05-29 2013-10-27 Тунгалой Корпорейшн Drill with indexable cutting plates and drill body
JP2014087873A (en) * 2012-10-30 2014-05-15 Sumitomo Electric Hardmetal Corp Two-blade double margin drill
JP6975353B1 (en) * 2021-03-16 2021-12-01 ダイジ▲ェ▼ット工業株式会社 Drill
JP2022142055A (en) * 2021-03-16 2022-09-30 ダイジ▲ェ▼ット工業株式会社 Drill

Similar Documents

Publication Publication Date Title
Roy et al. A brief review on machining of Inconel 718
Diniz et al. Tool wear mechanisms in the machining of steels and stainless steels
JP5600765B2 (en) Twist drill and laminating method
JP3720010B2 (en) Deep hole drill
JP2004160651A (en) Gundrill
JP2006281407A (en) Machining drill for nonferrous metal
CN100475393C (en) Single-lip drill and method for the production thereof
TWI438047B (en) Drilling tools
JP2008142834A (en) Drill
JP2006212725A (en) Drill for high efficiency machining of aluminum
JP2006212724A (en) Drill for high efficiency machining of aluminum
JP4070581B2 (en) Drill with spiral hole
JP2006212723A (en) Drill for high efficiency machining of aluminum
WO2007083967A1 (en) Drill provided with fluid guide means
JP2006231468A (en) Nonferrous metal machining twist drill
JP2006212722A (en) Deep hole drill with through hole for feeding fluid
CN214417736U (en) Diamond CVD drilling and reaming composite twist drill
JP2008087077A (en) Cutting tool
JP2004090148A (en) Cemented carbide end mill
Kharlamov et al. Assurance of cutting tools reliability
JP2005205526A (en) Deep hole boring tool
JP2001341022A (en) Drill for perforating high hardness material
JP2003220507A (en) Twist drill
JP2005288669A (en) Three-groove drill with oil hole
JP2001096416A (en) Twist drill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080603

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080822