JP2004100004A - Coated cemented carbide and production method therefor - Google Patents

Coated cemented carbide and production method therefor Download PDF

Info

Publication number
JP2004100004A
JP2004100004A JP2002265621A JP2002265621A JP2004100004A JP 2004100004 A JP2004100004 A JP 2004100004A JP 2002265621 A JP2002265621 A JP 2002265621A JP 2002265621 A JP2002265621 A JP 2002265621A JP 2004100004 A JP2004100004 A JP 2004100004A
Authority
JP
Japan
Prior art keywords
cemented carbide
coating
phase
coated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002265621A
Other languages
Japanese (ja)
Other versions
JP4330859B2 (en
Inventor
Akitoshi Shibamura
芝村 明俊
Satoshi Kinoshita
木下 聡
Hiroyuki Kodama
児玉 浩亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2002265621A priority Critical patent/JP4330859B2/en
Publication of JP2004100004A publication Critical patent/JP2004100004A/en
Application granted granted Critical
Publication of JP4330859B2 publication Critical patent/JP4330859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated cemented carbide which exhibits excellent wear resistance and/or chipping resistance even under severe cutting conditions such as high speed working and high efficiency working when used as a cutting tool, and to provide a production method therefor. <P>SOLUTION: In the coated cemented carbide, a film adhesive phase as layered particles with a mean thickness of 0.001 to 0.4 μm consisting of at least one kind of metallic compound selected from carbide, nitride and carbonitride comprising Ti and W is formed on the space between a film comprising the lowest layer consisting of titanium nitride and/or titanium carbonitride and the cemented carbide base material, so that the adhesion between the film and the cemented carbide base material improves, and the characteristics of the film can sufficiently be exhibited. The coated cemented carbide exhibits excellent wear resistance and/or chipping resistance even under severe cutting conditions when used as a cutting tool, and further, the improvement of its service life is made possible. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は切削工具、耐摩耗工具として用いられる耐摩耗性、耐欠損性に優れた被覆超硬合金に関する。
【0002】
【従来の技術】
被覆超硬合金の用途として切削工具が挙げられるが、被覆超硬合金を用いた切削工具の従来技術として特開昭62−99467号公報がある。超硬合金基材表面部に1〜50μmの深さに亘って硬化表面層を形成した表面被覆超硬合金が特開昭55−104475号公報に開示されている。
【0003】
【発明が解決しようとする課題】
特開昭62−99467号公報には、超硬合金母材の表面に中温CVD法によって厚さ0.5〜5.0μmのTiCNおよび/またはTiNを被覆させた被覆超硬合金が提案されているが、最下層であるTiCNおよび/またはTiNと超硬合金母材との密着性が十分でなく、被膜が剥がれやすいという問題がある。特開昭55−104475号公報には、被膜直下における超硬合金基材の表面部に1〜50μmの深さに亘って硬化表面層とした表面被覆超硬合金が提案されているが、硬化表面層が厚く切削工具として用いた場合、硬化表面層にクラックが生じやすいという問題がある。
【0004】
本発明は、このような従来の技術が有していた問題を解決しようとするものである。すなわち被膜の最下層を窒化チタンおよび/または炭窒化チタンとし、被膜と超硬合金基材との間にTiとWを含有した被膜密着相を形成させ、被膜と超硬合金基材とを強固に密着させた。密着性を向上させることにより、被膜が有する特性を十分に発揮させ、切削工具として用いた場合、耐摩耗性および/または耐欠損性に優れる被覆超硬合金とその製造方法の提供を目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、長年に亘って被覆超硬合金について研究に従事してきたが、窒化チタンおよび/または炭窒化チタンからなる最下層を含む被膜と超硬合金基材の間にTiとWを含んだ炭化物、窒化物、炭窒化物の中から選ばれた少なくとも1種の金属化合物からなる被膜密着相を形成させると、被膜と超硬合金基材が強固に密着することを見出した。
【0006】
被膜と超硬合金基材との間にTiとWを含んだ炭化物、窒化物、炭窒化物の中から選ばれた少なくとも1種の金属化合物からなる被膜密着相を形成させる作用は次の通りである。Wを含有させた被膜密着相は超硬合金基材と共通した元素を有するため超硬合金基材との密着性が高い。また、被膜密着相にTiを含有させることにより最下層が窒化チタンおよび/または炭窒化チタンである被膜との密着性が高い。したがって被膜密着相が被膜と超硬合金基材の間に存在すると、被膜と超硬合金基材とを強固に密着させることができる。また、被膜密着相の機械的特性が、被膜最下層の機械的特性と超硬合金基材表面部の機械的特性との間にあると機械的特性に連続性が生じるため好ましい。
【0007】
被膜密着相は、Ti、Wを含有する炭化物、窒化物、炭窒化物の中から選ばれた少なくとも1種の金属化合物で構成される。その中でもTi、Wを含有する炭窒化物は、Ti、Wを含有する炭化物よりも靱性が高く、Ti、Wを含有する窒化物よりも硬さが高いので好ましい。また、被膜密着相の金属成分は、Ti、W以外に、Al,Si,Zr,Hf,V,Nb,Ta,Cr,およびMoからなる群から選ばれた少なくとも1種を含んでも良い。
【0008】
具体的には、(Ti,W)C、(Ti,W,Nb)C、(Ti,W,Ta)C、(Ti,W,Ta,Nb)C、(Ti,W,Al)C、(Ti,W,Si)C、(Ti,W)(C,N)、(Ti,W,Nb)(C,N)、(Ti,W,Ta)(C,N)、(Ti,W,Ta,Nb)(C,N)、(Ti,W,Al)(C,N)、(Ti,W,Si)(C,N)、(Ti,W)N、(Ti,W,Nb)N、(Ti,W,Ta)N、(Ti,W,Ta,Nb)N、(Ti,W,Al)N、(Ti,W,Si)Nなどが挙げられる。被膜密着相は結晶質であると好ましく、その中でも立方晶であると硬さが高いため、さらに好ましい。
【0009】
被膜密着相の形態としては、被膜と超硬合金基材の間に平均厚さ0.001〜0.4μmの層状として存在するか、もしくは、平均厚さ0.001〜0.4μmの層状粒子が0.001〜10μm間隔で分散して存在している。被膜密着相が層状として存在する場合、平均厚さ0.001μm未満であると超硬合金基材と被膜を密着させる効果が減少し、平均厚さ0.4μmを超えると被覆超硬合金を切削工具として用いた場合に被膜密着相にクラックが生じやすく被膜の密着性が低下する。被膜密着相が層状である場合、平均厚さ0.01〜0.1μmの層状が好ましい。
【0010】
被膜密着相が層状粒子として存在する場合、平均厚さ0.001μm未満の層状粒子であると超硬合金基材と被膜を密着させる効果が減少し、平均厚さ0.4μmを超える層状粒子であると被覆超硬合金を切削工具として用いた場合に被膜密着相にクラックが生じやすく被膜の密着性が低下する。被膜密着相が層状粒子であると連続的な層状に比べ被膜または超硬合金基材との接触面積が増加するとともに被膜密着相に生じるクラックが進展しにくいことから好ましい。層状粒子の間隔が0.001μm未満では連続的な層状と変わらず、層状粒子の間隔が10μmを超えると被膜密着相の効果が少なく被膜の密着性が低下する。被膜密着相が層状粒子の場合、被膜と超硬合金基材の間に平均厚さ0.01〜0.1μmの被膜密着相の層状粒子が0.01〜1μm間隔で分散していると、被膜密着相による密着性向上の効果が高く好ましい。
【0011】
被膜密着相は、(Ti,W)(C,Nで表され、それぞれのモル比率が、0.6≦a≦0.94、0.06≦b≦0.4、a+b=1、0.1≦x≦0.9、0.1≦y≦0.9、x+y=1、zは金属元素Ti、W、の合計に対する非金属元素C,Nの合計のモル比率を示し、0.8≦z≦1であると好ましい。0.6≦a≦0.94としたのは、aが0.6未満であるとTi含有量が減少し被膜との密着性が減少する傾向が見られ、aが0.94を超えると相対的にW含有量が減少し超硬合金基材との密着性が減少する傾向が見られるためである。0.06≦b≦0.4としたのは、bが0.06未満であると超硬合金基材との密着性が減少する傾向が見られ、bが0.4を超えるとTi含有量が減少し被膜との密着性が減少する傾向が見られるためである。0.1≦x≦0.9としたのは、xが0.1未満であると被膜密着相の硬さが低下する傾向が見られ、xが0.9を超えると被膜密着相の靱性が低下する傾向が見られるためである。0.1≦y≦0.9としたのは、yが0.1未満であると被膜密着相の靱性が低下する傾向が見られ、yが0.9を超えると被膜密着相の硬さが低下する傾向が見られるためである。0.8≦z≦1としたのは、zが0.8未満では被膜密着相の硬さが低下し、zが1.0を超える金属化合物は、被覆または熱処理によって得られにくいためである。
【0012】
また、被膜密着相が(Ti,W,M)(C,Nで表され、MはAl,Si,Zr,Hf,V,Nb,Ta,Cr,およびMoから選ばれた少なくとも1種の元素を示し、それぞれのモル比率が、0.6≦a≦0.94、0.06≦b≦0.4、0<c≦0.1、a+b+c=1、0.1≦x≦0.9、0.1≦y≦0.9、x+y=1、zは金属元素Ti、W、Mの合計に対する非金属元素C,Nの合計のモル比率を示し、0.8≦z≦1であると好ましい。特に超硬合金基材または被膜にAl,Si,Zr,Hf,V,Nb,Ta,Cr,およびMoから選ばれた少なくとも1種の元素が含まれている場合、(Ti,W,M)(C,Nからなる被膜密着相による密着性向上の効果が高い。
【0013】
モル比率の中でcを0<c≦0.1としたのは、cが0.1を超えると、被膜密着相が立方晶以外の結晶型になることがあり硬さが低下する傾向が見られるためである。0.6≦a≦0.94としたのは、aが0.6未満であるとTi含有量が減少し被膜との密着性が減少する傾向が見られ、aが0.94を超えると相対的にW含有量が減少し超硬合金基材との密着性が減少する傾向が見られるためである。0.06≦b≦0.4としたのは、bが0.06未満であると超硬合金基材との密着性が減少する傾向が見られ、bが0.4を超えるとTi含有量が減少し被膜との密着性が減少する傾向が見られるためである。0.1≦x≦0.9としたのは、xが0.1未満であると被膜密着相の硬さが低下する傾向が見られ、xが0.9を超えると被膜密着相の靱性が低下する傾向が見られるためである。0.1≦y≦0.9としたのは、yが0.1未満であると被膜密着相の靱性が低下する傾向が見られ、yが0.9を超えると被膜密着相の硬さが低下する傾向が見られるためである。0.8≦z≦1としたのは、zが0.8未満では被膜密着相の硬さが低下し、zが1.0を超える金属化合物は、被覆または熱処理によって得られにくいためである。
【0014】
超硬合金基材は、周期律表の4a,5a,6aの炭化物、窒化物、炭窒化物の中の少なくとも1種からなる硬質相と鉄族金属を主成分とした結合相からなる超硬合金である。被覆超硬合金基材としてはCoを主成分とした結合相:3〜20重量%とWCを主成分とした硬質相:80〜97重量%からなるWC基超硬合金が好ましい。
【0015】
超硬合金の結合相にはCおよびWが固溶しているが、、結合相中のWの固溶量(以降、W固溶量と表す)が増加し、結合相中のCの固溶量(以降、炭素量と表す)が減少すると、被膜密着相と超硬合金基材の密着性が向上する。結合相のW固溶量と結合相の格子定数は関係し、結合相の格子定数laが3.560Å≦la≦3.575Åであると結合相中のW固溶量が高い。したがって、格子定数laが3.560Å≦la≦3.575Åであると、超硬合金基材と被膜密着相とは高い密着性を示す。また、格子定数laが、3.560Å≦la≦3.575Åを示す被覆超硬合金を熱処理すると被膜密着相の形成が容易になる。格子定数laが3.560Å未満であると、W固溶量が減少し被膜密着相との密着性が低下する傾向が見られる。なお、実用的な超硬合金の組成領域で、格子定数laが3.575Åを超えることはほとんどない。以上の理由から格子定数laが3.560Å≦la≦3.575Åである超硬合金が被覆超硬合金基材として好ましい。なお、結合相中のW固溶量を測定するために飽和磁化率を測定する場合には、飽和磁化率68%〜80%を示す超硬合金基材が好ましい。飽和磁化率は
飽和磁化率=(M/((Coの重量%)×0.01×161))×100(%)
として表すことができ、ここで、Mはemu/gにおける超硬合金基材の飽和磁化であり、Coの重量%は超硬合金中のCoの重量割合である。161はemu/gにおける純Coの飽和磁化である。
【0016】
被膜は、窒化チタンおよび/または炭窒化チタンからなる最下層を含んだ被膜である。窒化チタンおよび/または炭窒化チタンからなる最下層は、具体的にはTiN0.9、Ti(C0.1,N0.90.9を例示できる。被膜は窒化チタンおよび/または炭窒化チタンからなる最下層のみの単層膜、または、窒化チタンおよび/または炭窒化チタンからなる最下層を含む多層膜でもよい。最下層以外の上膜としては、周期律表の4a,5a,6a族元素、Al、Siの炭化物、窒化物、酸化物、ホウ化物、およびこれらの相互固溶体から選ばれた少なくとも1種の化合物からなる単層膜または多層膜であり、具体的な組成としては、TiC0.9、TiN0.9、Ti(C0.5,N0.50.9、Al、(Ti0.5,Al0.5)N0.9などが挙げられる。被膜は、化学蒸着法または物理蒸着法によって超硬合金基材に被覆される。
【0017】
被覆超硬合金の被膜と超硬合金基材の間に被膜密着相を形成させる方法としては、熱処理法と被膜法が挙げられる。被膜密着相の製造方法としては、被膜密着相が容易に得られることから熱処理法が好ましい。熱処理法は、通常の化学蒸着法または物理蒸着法によって窒化チタンおよび/または炭窒化チタンからなる最下層を超硬合金基材に被覆した後または上膜を被覆した後、還元雰囲気または真空雰囲気にして、最下層の被覆温度より20〜400℃高い温度で5〜400分間保持する熱処理をおこなう。具体的な熱処理条件としては温度1120〜1200℃、保持時間20〜120分が好ましい。結合相の格子定数laが3.560Å≦la≦3.575Åである超硬合金基材と窒化チタンおよび/または炭窒化チタンからなる最下層を被覆した被覆超硬合金を、最適な条件で熱処理すると被膜と超硬合金基材の間に被膜密着相が生成する。
【0018】
熱処理工程は、被膜の被覆工程中または被覆終了後のいずれにおこなっても良く、被覆工程終了後に別の炉でおこなっても良い。また、超硬合金基材の表面に窒化チタンおよび/または炭窒化チタンからなる最下層を被覆した後、被覆温度が高い被膜を被覆すると被膜密着相が生成することがある。このときの生成原理は熱処理法と同じであり、生成した被膜密着相の作用は熱処理法と同一である。
【0019】
熱処理法による被膜密着相として、被膜と超硬合金基材の結合相が接する界面に形成される層状粒子の被膜密着相を例示できる。被膜密着相形成には超硬合金基材の結合相が関与していると考えられる。図1に示すように熱処理法により生成した被膜密着相の層状粒子は、被膜側において平坦であるが、超硬合金基材側において層と粒子を組み合わせたような不規則な形状を示す。これは熱処理によって最下層と超硬合金基材の界面に最下層に含まれる元素Ti、C、Nと、結合相に含まれる元素W、Ti、Ta、Nb、C、Nとが、被膜と超硬合金基材の結合相との界面で固相反応し、(Ti,W)C、(Ti,W)(C,N)、(Ti,W,Nb,Ta)(C,N)などのTiとWを含有した炭化物、窒化物、炭窒化物の少なくとも1種からなる金属化合物が形成するためと考えられる。
【0020】
熱処理法により生成した被膜密着相の層状粒子は、超硬合金基材側において層と粒子を組み合わせたような不規則な形状を示すためアンカー効果が高く、例えば被膜法によって作製される界面に対して連続的な層状の被膜密着相に比較して被膜と超硬合金基材とを強固に密着させるため非常に好ましい。熱処理法においては、超硬合金基材の結合相W固溶量が高いほど被膜密着相を生成しやすいため、結合相の格子定数laが3.560Å≦la≦3.575Åである超硬合金基材が好ましい。
【0021】
被膜法は通常の化学蒸着法または物理蒸着法によって、TiとWを含んだ原料ガスまたはターゲットを用いて、TiとWを含んだ炭化物、窒化物、炭窒化物の中の少なくとも1種を被膜密着相として被覆する。
【0022】
【実施試験1】
最終成分組成が87.0%WC−2.0%TiC−2.0%TaC−9.0%Co(以上重量%)であり、結合相の格子定数は3.570ÅであるJIS規格CNMG120408形状の超硬合金基材を用意した。超硬合金基材の切刃には湿式ブラストホーニング処理をおこなった。超硬合金基材を外熱式化学蒸着装置内に置き、H雰囲気にて所定温度まで昇温した。被覆温度900℃,原料ガス2.5%TiCl−48.8%H―48.7%N(以上モル%),圧力40KPaの条件でTiN膜を厚さ0.5μm被覆し、続いて被覆温度900℃,原料ガス2.0%TiCl−87.0%H−1.0%CHCN−10%N(以上モル%),圧力6.7KPaの条件でTiCN柱状膜を厚さ6.0μm被覆した。引き続きH雰囲気で炉内を所定温度に調整し、表1に示す条件で熱処理をおこなって、発明品1〜10と比較品1、3〜9を作製した。比較品2は外熱式化学蒸着装置内での熱処理をおこなわず、真空焼結炉にて表1に示す条件で熱処理した。比較品10は発明品1と同じ製造条件から熱処理を除いた製造方法で作製した。
【0023】
【表1】

Figure 2004100004
【0024】
試料はダイヤモンドカッターで切断した後、試料の断面をダイヤモンドラップで鏡面研磨した。発明品1〜9および比較品3〜10については試料断面をTEM観察用のサンプルに加工してTEM観察し被膜密着相の形態と大きさを測定し、TEM付属のEDSで被膜密着相の元素分析をおこない、被膜密着相の結晶型をTEM付属の電子回折を用いて測定し、これらの結果を表2に記載した。発明品10および比較品1、2については鏡面研磨した断面をFE−SEMにより観察し、被膜密着相の形態と大きさを測定し、FE−SEM付属のEDSで被膜密着相の元素分析をおこない、これらの結果を表2に記載した。さらに、発明品10および比較品1、2の断面をTEM観察用のサンプルに加工した後、被膜密着相の結晶型をTEM付属の電子回折を用いて測定し、その結果を表2に記載した。
【0025】
【表2】
Figure 2004100004
【0026】
発明品1〜10および比較品1〜10について被削材:SUS304の丸棒、切削速度:V=100m/min、送り:f=0.25mm/rev.、切り込み:d=5.0mm、切削時の雰囲気:乾式、切削時間2分間という条件でステンレス鋼の乾式連続切削試験をおこなった。試料の切刃の境界部摩耗量を測定し、その結果を表3に記載した。
【0027】
【表3】
Figure 2004100004
【0028】
表3に示すように所定の厚さの被膜密着相が存在する発明品1〜10は、被膜密着相が厚い比較品1、2および被膜密着相が観察されない比較品3〜10に比較してステンレス鋼の乾式連続切削において優れた耐摩耗性を示す。
【0029】
【実施試験2】
原料粉末として、市販の平均粒径2μmのWC粉末、(Ti,W)C粉末、(Ta,Nb)C粉末、Ti(C,N)粉末、およびCo粉末を用意し、これらの原料粉末を配合組成が(Ti,W)C:5重量%、(Ta,Nb)C:4重量%、Ti(C,N):0.5重量%、Co:8重量%、WC:82.5重量%、となるように配合し、さらに結合相炭素量の調整用として平均粒径0.2μmの炭素粉末を所定量添加し、湿式ボールミルで24時間混合し、乾燥した後、117.6MPaの圧力でプレス成形し、この圧粉体を1300Paの真空中、1480℃の範囲で1時間保持し焼結して、最終組成が85.0%WC−3.0%Ti(C,N)−2.0%TaC−2.0%NbC−8.0%Co(以上重量%)であり、焼結合金結合相の格子定数が異なるJIS規格CNMG120408形状の発明品11〜15と比較品11〜15の超硬合金基材を作製した。
【0030】
作製した超硬合金基材の格子定数は表4に示す。作製した超硬合金基材には、表面から合金内部に向かって30μmの深さに亘り(W,Ti,Ta,Nb)(C,N)組成の複合炭化物が消失した結合相富加層が存在する。結合相富加層はWC粒子と結合相からなり結合相量が増加した組織を有する。発明11〜15と比較品11〜15における結合相富化層中心部の結合相量は16重量%であった。超硬合金基材の切刃部分には湿式ブラストホーニング処理をおこなった。
【0031】
超硬合金基材を外熱式化学蒸着装置内に置き、H雰囲気にて所定温度まで昇温した。被覆温度900℃,原料ガス2.5%TiCl−48.8%H―48.7%N(以上モル%),圧力40KPaの条件で厚さ0.5μmのTiN膜を被覆し、続いて被覆温度900℃,原料ガス2.0%TiCl−87.0%H−1.0%CHCN−10%N(以上モル%),圧力6.7KPaの条件で厚さ6.0μmのTiCN柱状膜を被覆した。引き続きH雰囲気で炉内を1000℃に調整し、被覆温度1000℃,原料ガス2.5%TiCl−48.8%H―48.7%N(以上モル%),圧力40KPaの条件で厚さ0.5μmのTiN膜を被覆し、被覆温度1000℃,原料ガス2.5%AlCl−93.0%H―1.5%HCl−3.0%CO(以上モル%),圧力13.3KPaの条件で厚さ1.0μmのAl膜を被覆し、被覆温度1000℃,原料ガス2.5%TiCl−48.8%H―48.7%N(以上モル%),圧力40KPaの条件で厚さ0.5μmのTiN膜を被覆した。その後、引き続きH雰囲気で炉内を1100℃に調整し、H雰囲気で炉内を1100℃、40分間熱処理をおこなって、発明品11〜15と比較品11〜15を作製した。
【0032】
【表4】
Figure 2004100004
【0033】
各試料をダイヤモンドカッターで切断した後、試料断面をダイヤモンドラップで鏡面研磨した。また発明品11〜15および比較品11〜15については、試料断面をTEM観察用のサンプルに加工してTEM観察し被膜密着相の形態と大きさを測定し、TEM付属のEDSで被膜密着相の元素分析をおこなった。これらの結果は表5に記載した。
【0034】
【表5】
Figure 2004100004
【0035】
次いで発明品11〜15および比較品11〜15を被削材:溝付きのS45Cの丸棒、切削速度:V=160m/min、送り:f=0.25mm/rev.、切り込み:d=2.0mm、切削時の雰囲気:水溶性切削液使用という条件で鋼の湿式断続切削試験をおこなった。試料に欠損または逃げ面摩耗量VBが0.3mmを超える時間を工具寿命とした。試料の工具寿命を測定し、その結果を表6に記載した。
【0036】
【表6】
Figure 2004100004
【0037】
表6に示されるように鋼の湿式断続切削試験において被膜密着相が存在する発明品11〜15は比較品11〜15にくらべ切削寿命を向上させることが明らかである。すなわち、発明品11〜15は比較品11〜15に比べて耐欠損性に優れる。
【0038】
【実施試験3】
最終成分組成が90.0%WC−10.0%Co(以上重量%)であり、結合相の格子定数は3.570ÅであるJIS規格CNMG120408形状のスローアウェイチップを用意した。アルカリ洗剤を使用し表面を洗浄した。スローアウェイチップは真空炉内に設置し真空排気をおこなった.真空炉内の圧力が1.33×10−2Pa以下になったら設定温度500℃まで加熱した.圧力が1.33×10−2Pa以下に戻ったことを確認し、Tiターゲット、アーク電圧38V、アーク電流120A、基材電圧−600V、Arガス流量50cc/分、加熱温度500℃、処理時間15分間の条件でエッチングした。次いで表8、表9に示す条件で被膜密着相を形成した後、Tiターゲット、アーク電圧38V、アーク電流150A、基材電圧−200V、Nガス流量200cc/分、加熱温度500℃、処理時間15分間の条件でTiN被膜を0.5μm厚さ被覆し、TiAlターゲット、アーク電圧38V、アーク電流150A、基材電圧−200V、Nガス流量200cc/分、加熱温度500℃、処理時間50分間の条件でTiAlN被膜を2.5μm厚さ被覆し、発明品16〜25と比較品16〜24を作製した。比較品25は被膜密着相の形成工程以外を除いた発明品25と同じ製造方法により作製した。
【0039】
【表7】
Figure 2004100004
【0040】
【表8】
Figure 2004100004
【0041】
作製した試料はダイヤモンドカッターで切断した後、試料断面を鏡面研磨した。発明品16〜25と比較品16〜24について試料断面をTEM観察用のサンプルに加工してTEM観察し被膜密着相の形態と大きさを測定し、TEM付属のEDSで元素分析をおこなった。これらの結果は表9に記載した。さらに被膜密着相の結晶型をTEM付属の電子回折を用いて測定し、その結果を表9に記載した。
【0042】
【表9】
Figure 2004100004
【0043】
発明品16〜25および比較品16〜25について、被削材:4本溝付きSNCM439(HB310)の丸棒、切削速度:V=180m/min、送り:f=0.1mm/rev.、切り込み:d=3.0mm、切削時の雰囲気:乾式という条件で乾式断続切削試験をおこなった。試料に欠損または平均逃げ面摩耗量VBが0.3mmを超える時間を工具寿命とした。試料の工具寿命を測定し、その結果を表10に記載した。
【0044】
【表10】
Figure 2004100004
【0045】
表10に示すように被膜密着相を有する発明品16〜25は比較品16〜25に比較してステンレス鋼の乾式断続切削において優れた耐欠損性を示す。
【0046】
【実施試験4】
原料粉末として、それぞれ市販の平均粒径2μmのWC粉末、Co粉末、TaC粉末、NbC粉末、およびTiC粉末を用意し、これらの原料粉末を最終成分組成が71.1%WC−10.5%Co―11.4%TaC―1.2%NbC−5.8%TiC(以上重量%)になるように配合し、結合相中の炭素量を調整するため平均粒径0.2μmのC粉末を所定量混合し、溶媒を加えボールミル中で48時間混合し、乾燥した後、プレス圧力147MPaでCNMG120408のスローアウェイチップ形状用の圧粉体を成形し、ついで真空中、温度:1400℃に1時間保持して焼結し、焼結後上下面を研磨加工により所定形状に調整するとともに切刃に乾式ブラシホーニングを施すことによってスローアウェイチップ形状をもった超硬合金基体を製造した。こうして作製した超硬合金基材を基材記号Aとする。基材Aの結合相格子定数は3.570Åであった。ついで上記超硬合金基体を、窒素分圧PN:20KPa、一酸化炭素分圧PCO:7KPaを有する圧力:27KPaの減圧雰囲気中で温度1400℃に2時間保持して再焼結することによって、前記超硬合金基材の表面部に、組成:35.9%TiC―2.0%TiN―17.7%TaC―1.9%NbC―6.4%Co―36.1%WC(以上重量%)、厚さ:30μm、およびビッカース硬さHv:1600を有する硬化表面層を形成した。なお、前記超硬合金基材の内部硬さはビッカース硬さHv:1450であった。こうして作製した硬化表面層がある超硬合金基材を基材記号Bとする。基材Bの結合相格子定数は3.570Åであった。ついで超硬合金基材A,Bを外熱式化学蒸着装置内に置き、H雰囲気にて所定温度まで昇温した。被覆温度900℃,原料ガス2.0%TiCl−87.0%H−1.0%CHCN−10%N(以上モル%),圧力7KPaの条件で厚さ5.0μmのTiCN柱状膜を被覆した。基材Bは被覆後、炉外に取り出し比較品26を得た。基材Aは、被覆後引き続き、H雰囲気で炉内を1140℃、60分間熱処理をおこなって発明品26を得た。
【0047】
発明品26はダイヤモンドカッターで切断した後、試料断面を鏡面研磨した。TEM観察用のサンプルに加工し、TEM観察によって被膜密着相の形態と大きさを測定した。被膜密着相の組成についてはTEM付属のEDSで被膜密着相の元素分析をおこなった。発明品26には被膜と超硬合金基材の間に(Ti0.7,W0.3)(C0.8,N0.2の組成である平均厚さ0.05μmの層状粒子を示す被膜密着相が0.5μm間隔で形成されていた。
【0048】
得られた試料について、被削材:4本溝入りS48C(硬さH:255)、切削速度:V=150m、送り:f=0.5mm/rev.、切り込み:d=2mm、切削時雰囲気:wetという条件で鋼の湿式断続旋削試験をおこない、欠損に至るまでの時間を表11に示した。
【0049】
【表11】
Figure 2004100004
【0050】
焼結時に生成する厚さ30μmの硬化表面層を有する比較品26に比較して、被覆後の熱処理によって生成する平均厚さ0.05μmの被膜密着相の層状粒子を有する発明品26は、鋼の湿式断続旋削試験において優れた耐欠損性を示す。
【0051】
【発明の効果】
上述したように窒化チタンおよび/または炭窒化チタンからなる最下層を含む被膜と超硬合金基材との間に、Ti、Wを含有する炭化物、窒化物、炭窒化物から選ばれた少なくとも1種の金属化合物からなる被膜密着相を形成することによって、被膜と超硬合金基材との密着性が向上する。被膜の密着性向上によって、被膜が有する特性を十分発揮させることが可能になる。本発明の被覆超硬合金を切削工具として用いた場合、過酷な切削条件下においても優れた耐摩耗性および/または耐欠損性を示すとともに工具寿命の向上が可能になる。
【図面の簡単な説明】
【図1】図1は本発明の被覆超硬合金の被膜と基材との界面部を示すFE−SEM組成像である。図1は被膜と超硬合金基材の間に熱処理法により被膜密着相が生成していることを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coated cemented carbide having excellent wear resistance and chipping resistance used as a cutting tool and a wear-resistant tool.
[0002]
[Prior art]
As a use of the coated cemented carbide, there is a cutting tool. As a conventional technique of the cutting tool using the coated cemented carbide, there is JP-A-62-99467. JP-A-55-104475 discloses a surface-coated cemented carbide in which a hardened surface layer is formed on the surface of a cemented carbide substrate over a depth of 1 to 50 μm.
[0003]
[Problems to be solved by the invention]
Japanese Patent Application Laid-Open No. 62-99467 proposes a coated cemented carbide in which the surface of a cemented carbide base material is coated with TiCN and / or TiN having a thickness of 0.5 to 5.0 μm by a medium temperature CVD method. However, there is a problem that the adhesion between the lowermost layer TiCN and / or TiN and the cemented carbide base material is not sufficient, and the coating is easily peeled off. Japanese Patent Application Laid-Open No. 55-104475 proposes a surface-coated cemented carbide in which a hardened surface layer is formed on a surface portion of a cemented carbide substrate immediately below a coating over a depth of 1 to 50 μm. When the surface layer is thick and used as a cutting tool, there is a problem that cracks easily occur in the hardened surface layer.
[0004]
The present invention is to solve such a problem of the related art. That is, the lowermost layer of the film is made of titanium nitride and / or titanium carbonitride, and a film adhesion phase containing Ti and W is formed between the film and the cemented carbide substrate, whereby the film and the cemented carbide substrate are firmly connected. In close contact. It is an object of the present invention to provide a coated cemented carbide having excellent wear resistance and / or fracture resistance when used as a cutting tool, and a method for producing the same, by sufficiently exhibiting the properties of the coating by improving the adhesion. Things.
[0005]
[Means for Solving the Problems]
The present inventors have been engaged in research on coated cemented carbides for many years. However, Ti and W are placed between the coating including the lowermost layer made of titanium nitride and / or titanium carbonitride and the cemented carbide substrate. It has been found that when a film adhesion phase made of at least one metal compound selected from the group consisting of carbides, nitrides and carbonitrides is formed, the film and the cemented carbide substrate are firmly adhered to each other.
[0006]
The effect of forming a coating adhesion phase composed of at least one metal compound selected from carbides, nitrides, and carbonitrides containing Ti and W between the coating and the cemented carbide substrate is as follows. It is. Since the coating adhesion phase containing W has an element common to the cemented carbide substrate, the adhesion to the cemented carbide substrate is high. In addition, by including Ti in the film adhesion phase, the adhesion to the film whose lowermost layer is titanium nitride and / or titanium carbonitride is high. Therefore, when the coating adhesion phase exists between the coating and the cemented carbide substrate, the coating and the cemented carbide substrate can be firmly adhered. Further, it is preferable that the mechanical properties of the coating adhesion phase be between the mechanical properties of the lowermost layer of the coating and the mechanical properties of the surface portion of the cemented carbide base material, since continuity occurs in the mechanical properties.
[0007]
The coating adhesion phase is composed of at least one metal compound selected from carbides, nitrides, and carbonitrides containing Ti and W. Among them, carbonitrides containing Ti and W are preferable because they have higher toughness than carbides containing Ti and W and have higher hardness than nitrides containing Ti and W. The metal component of the coating adhesion phase may include at least one selected from the group consisting of Al, Si, Zr, Hf, V, Nb, Ta, Cr, and Mo, in addition to Ti and W.
[0008]
Specifically, (Ti, W) C, (Ti, W, Nb) C, (Ti, W, Ta) C, (Ti, W, Ta, Nb) C, (Ti, W, Al) C, (Ti, W, Si) C, (Ti, W) (C, N), (Ti, W, Nb) (C, N), (Ti, W, Ta) (C, N), (Ti, W , Ta, Nb) (C, N), (Ti, W, Al) (C, N), (Ti, W, Si) (C, N), (Ti, W) N, (Ti, W, Nb) ) N, (Ti, W, Ta) N, (Ti, W, Ta, Nb) N, (Ti, W, Al) N, (Ti, W, Si) N. The film adhesion phase is preferably crystalline, and among them, a cubic crystal is more preferable because of high hardness.
[0009]
As a form of the coating adhesion phase, a layer having an average thickness of 0.001 to 0.4 μm exists between the coating and the cemented carbide substrate, or a layered particle having an average thickness of 0.001 to 0.4 μm. Are dispersed at intervals of 0.001 to 10 μm. When the coating adhesion phase exists as a layer, if the average thickness is less than 0.001 μm, the effect of adhering the coating to the cemented carbide substrate decreases, and if the average thickness exceeds 0.4 μm, the coated cemented carbide is cut. When used as a tool, cracks easily occur in the coating adhesion phase, and the adhesion of the coating decreases. When the coating adhesion phase is a layer, a layer having an average thickness of 0.01 to 0.1 μm is preferable.
[0010]
When the coating adhesion phase is present as layered particles, the effect of adhering the coating to the cemented carbide substrate and the coating is reduced when the layered particles have an average thickness of less than 0.001 μm, and the layered particles have an average thickness of more than 0.4 μm. If there is, when the coated cemented carbide is used as a cutting tool, cracks are easily generated in the coating adhesion phase, and the adhesion of the coating decreases. It is preferable that the coating adhesion phase is a layered particle because the contact area with the coating or the cemented carbide substrate increases as compared to a continuous layer, and cracks generated in the coating adhesion phase are less likely to develop. When the interval between the layered particles is less than 0.001 μm, the layer does not change to a continuous layered shape. When the interval between the layered particles exceeds 10 μm, the effect of the coating adhesion phase is small and the adhesion of the coating decreases. When the coating adhesion phase is a layered particle, when the layered particles of the coating adhesion phase having an average thickness of 0.01 to 0.1 μm are dispersed at an interval of 0.01 to 1 μm between the coating and the cemented carbide substrate, The effect of improving the adhesion by the coating adhesion phase is high and is preferable.
[0011]
The coating adhesion phase is (Ti a , W b ) (C x , N y ) z And each molar ratio is 0.6 ≦ a ≦ 0.94, 0.06 ≦ b ≦ 0.4, a + b = 1, 0.1 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.9, x + y = 1, and z indicate the molar ratio of the sum of the nonmetallic elements C and N to the sum of the metal elements Ti and W, and is preferably 0.8 ≦ z ≦ 1. The reason for setting 0.6 ≦ a ≦ 0.94 is that if a is less than 0.6, the Ti content tends to decrease and the adhesion to the coating tends to decrease, and if a exceeds 0.94, This is because there is a tendency that the W content relatively decreases and the adhesion to the cemented carbide base material decreases. The reason for setting 0.06 ≦ b ≦ 0.4 is that if b is less than 0.06, the adhesion to the cemented carbide substrate tends to decrease, and if b exceeds 0.4, the Ti content This is because there is a tendency that the amount decreases and the adhesion to the coating film decreases. The reason for setting 0.1 ≦ x ≦ 0.9 is that when x is less than 0.1, the hardness of the coating adhesion phase tends to decrease, and when x exceeds 0.9, the toughness of the coating adhesion phase is observed. Is a tendency to decrease. The reason for setting 0.1 ≦ y ≦ 0.9 is that if y is less than 0.1, the toughness of the coating adhesion phase tends to decrease, and if y exceeds 0.9, the hardness of the coating adhesion phase is high. Is a tendency to decrease. The reason for setting 0.8 ≦ z ≦ 1 is that if z is less than 0.8, the hardness of the coating adhesion phase decreases, and a metal compound having z exceeding 1.0 is difficult to obtain by coating or heat treatment. .
[0012]
In addition, the coating adhesion phase is (Ti a , W b , M c ) (C x , N y ) z And M represents at least one element selected from Al, Si, Zr, Hf, V, Nb, Ta, Cr, and Mo, and the molar ratio of each is 0.6 ≦ a ≦ 0. 94, 0.06 ≦ b ≦ 0.4, 0 <c ≦ 0.1, a + b + c = 1, 0.1 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.9, x + y = 1, z is It indicates the molar ratio of the sum of the nonmetallic elements C and N to the sum of the metal elements Ti, W and M, and is preferably 0.8 ≦ z ≦ 1. In particular, when the cemented carbide substrate or coating contains at least one element selected from Al, Si, Zr, Hf, V, Nb, Ta, Cr, and Mo, (Ti a , W b , M c ) (C x , N y ) z The effect of improving the adhesion by the coating adhesion phase of
[0013]
The reason why c is set to 0 <c ≦ 0.1 in the molar ratio is that if c exceeds 0.1, the coating adhesion phase may have a crystal form other than cubic and the hardness tends to decrease. To be seen. The reason for setting 0.6 ≦ a ≦ 0.94 is that if a is less than 0.6, the Ti content tends to decrease and the adhesion to the coating tends to decrease, and if a exceeds 0.94, This is because there is a tendency that the W content relatively decreases and the adhesion to the cemented carbide base material decreases. The reason for setting 0.06 ≦ b ≦ 0.4 is that if b is less than 0.06, the adhesion to the cemented carbide substrate tends to decrease, and if b exceeds 0.4, the Ti content This is because there is a tendency that the amount decreases and the adhesion to the coating film decreases. The reason for setting 0.1 ≦ x ≦ 0.9 is that when x is less than 0.1, the hardness of the coating adhesion phase tends to decrease, and when x exceeds 0.9, the toughness of the coating adhesion phase is observed. Is a tendency to decrease. The reason for setting 0.1 ≦ y ≦ 0.9 is that if y is less than 0.1, the toughness of the coating adhesion phase tends to decrease, and if y exceeds 0.9, the hardness of the coating adhesion phase is high. Is a tendency to decrease. The reason for setting 0.8 ≦ z ≦ 1 is that if z is less than 0.8, the hardness of the coating adhesion phase decreases, and a metal compound having z exceeding 1.0 is difficult to obtain by coating or heat treatment. .
[0014]
The cemented carbide substrate is a cemented carbide composed of a hard phase composed of at least one of carbides, nitrides and carbonitrides of 4a, 5a and 6a in the periodic table and a binder phase mainly composed of an iron group metal. Alloy. As the coated cemented carbide substrate, a WC-based cemented carbide composed of a binder phase containing Co as a main component: 3 to 20% by weight and a hard phase containing WC as a main component: 80 to 97% by weight is preferable.
[0015]
Although C and W are dissolved in the binder phase of the cemented carbide, the amount of solid solution of W in the binder phase (hereinafter referred to as the amount of solid solution of W) increases, and the solid solution of C in the binder phase increases. When the amount of dissolution (hereinafter referred to as the amount of carbon) decreases, the adhesion between the coating adhesion phase and the cemented carbide substrate improves. The amount of W solid solution in the binder phase and the lattice constant of the binder phase are related. When the lattice constant la of the binder phase is 3.560 {≦ la ≦ 3.575}, the amount of W solid solution in the binder phase is high. Therefore, when the lattice constant la is 3.560 ° ≦ la ≦ 3.575 °, the cemented carbide substrate and the coating adhesion phase exhibit high adhesion. Further, when a coated cemented carbide having a lattice constant la of 3.560 ° ≦ la ≦ 3.575 ° is heat-treated, formation of a coating adhesion phase is facilitated. When the lattice constant la is less than 3.560 °, there is a tendency that the amount of solid solution of W decreases and the adhesion to the coating adhesion phase tends to decrease. The lattice constant la rarely exceeds 3.575 ° in the composition region of a practical cemented carbide. For the above reasons, a cemented carbide having a lattice constant la of 3.560Å ≦ la ≦ 3.575Å is preferred as the coated cemented carbide substrate. When measuring the saturation magnetic susceptibility to measure the amount of W solid solution in the binder phase, a cemented carbide base material exhibiting a saturation magnetic susceptibility of 68% to 80% is preferable. The saturation susceptibility is
Saturation susceptibility = (M / ((% by weight of Co) × 0.01 × 161)) × 100 (%)
Where M is the saturation magnetization of the cemented carbide substrate in emu / g and the weight percent of Co is the weight fraction of Co in the cemented carbide. 161 is the saturation magnetization of pure Co at emu / g.
[0016]
The coating is a coating including a lowermost layer made of titanium nitride and / or titanium carbonitride. The lowermost layer made of titanium nitride and / or titanium carbonitride is specifically TiN 0.9 , Ti (C 0.1 , N 0.9 ) 0.9 Can be exemplified. The coating may be a single-layer film of only the lowermost layer made of titanium nitride and / or titanium carbonitride, or a multilayer film including the lowermost layer of titanium nitride and / or titanium carbonitride. As the upper film other than the lowermost layer, at least one compound selected from the group consisting of elements of groups 4a, 5a and 6a of the periodic table, carbides, nitrides, oxides and borides of Al and Si, and mutual solid solutions thereof A single-layer film or a multi-layer film made of 0.9 , TiN 0.9 , Ti (C 0.5 , N 0.5 ) 0.9 , Al 2 O 3 , (Ti 0.5 , Al 0.5 ) N 0.9 And the like. The coating is applied to the cemented carbide substrate by chemical vapor deposition or physical vapor deposition.
[0017]
As a method of forming a coating adhesion phase between the coating of the coated cemented carbide and the cemented carbide substrate, there are a heat treatment method and a coating method. As a method for producing the film adhesion phase, a heat treatment method is preferable because the film adhesion phase is easily obtained. The heat treatment is performed by coating the lowermost layer made of titanium nitride and / or titanium carbonitride on the cemented carbide base material or by coating the upper film by a usual chemical vapor deposition method or physical vapor deposition method, and then setting the atmosphere in a reducing atmosphere or a vacuum atmosphere. Then, heat treatment is performed at a temperature 20 to 400 ° C. higher than the lowermost layer coating temperature for 5 to 400 minutes. As specific heat treatment conditions, a temperature of 1120 to 1200 ° C. and a holding time of 20 to 120 minutes are preferable. Heat treatment of a cemented carbide substrate having a lattice constant la of the binder phase of 3.560 ° ≦ la ≦ 3.575 ° and a coated cemented carbide coated with a lowermost layer made of titanium nitride and / or titanium carbonitride under optimal conditions Then, a coating adhesion phase is generated between the coating and the cemented carbide substrate.
[0018]
The heat treatment step may be performed during or after the coating step of the coating, or may be performed in another furnace after the coating step. Further, if the surface of the cemented carbide substrate is coated with the lowermost layer made of titanium nitride and / or titanium carbonitride and then coated with a coating having a high coating temperature, a coating adhesion phase may be formed. The formation principle at this time is the same as that of the heat treatment method, and the action of the formed film adhesion phase is the same as that of the heat treatment method.
[0019]
An example of the coating adhesion phase by the heat treatment method is a coating adhesion phase of layered particles formed at the interface where the coating and the binder phase of the cemented carbide substrate are in contact. It is considered that the binder phase of the cemented carbide substrate is involved in the formation of the coating adhesion phase. As shown in FIG. 1, the layered particles of the coating adhesion phase formed by the heat treatment method are flat on the coating film side, but have an irregular shape such as a combination of layers and particles on the cemented carbide base material side. This is because the elements Ti, C, and N contained in the lowermost layer and the elements W, Ti, Ta, Nb, C, and N contained in the binder phase are formed at the interface between the lowermost layer and the cemented carbide substrate by the heat treatment. Solid phase reaction occurs at the interface with the binder phase of the cemented carbide substrate, and (Ti, W) C, (Ti, W) (C, N), (Ti, W, Nb, Ta) (C, N), etc. It is considered that a metal compound composed of at least one of carbide, nitride, and carbonitride containing Ti and W is formed.
[0020]
The layered particles of the coating adhesion phase generated by the heat treatment method have a high anchor effect because they show an irregular shape such as a combination of layers and particles on the cemented carbide base material side. It is very preferable because the film and the cemented carbide substrate are firmly adhered to each other as compared with a continuous layered film adhesion phase. In the heat treatment method, the higher the amount of the binder phase W dissolved in the cemented carbide base material, the easier the film adhesion phase is formed. Therefore, the cemented carbide having a lattice constant la of the binder phase of 3.560Å ≦ la ≦ 3.575Å. Substrates are preferred.
[0021]
The coating method is to coat at least one of carbides, nitrides, and carbonitrides containing Ti and W using a source gas or a target containing Ti and W by an ordinary chemical vapor deposition method or physical vapor deposition method. Coating as an adhesive phase.
[0022]
[Execution test 1]
The final component composition is 87.0% WC-2.0% TiC-2.0% TaC-9.0% Co (more than weight%), and the lattice constant of the binder phase is 3.570 °. Was prepared. The cutting edge of the cemented carbide substrate was subjected to wet blast honing. Place the cemented carbide substrate in the external thermal chemical vapor deposition 2 The temperature was raised to a predetermined temperature in an atmosphere. Coating temperature 900 ° C, raw material gas 2.5% TiCl 4 -48.8% H 2 -48.7% N 2 (At least mol%), a pressure of 40 KPa, and a TiN film of 0.5 μm in thickness, followed by a coating temperature of 900 ° C. and a source gas of 2.0% TiCl. 4 -87.0% H 2 -1.0% CH 3 CN-10% N 2 (At least mol%) and a pressure of 6.7 KPa, the column was coated with a TiCN columnar film having a thickness of 6.0 μm. Continue H 2 The inside of the furnace was adjusted to a predetermined temperature in an atmosphere, and heat treatment was performed under the conditions shown in Table 1 to produce Invention Products 1 to 10 and Comparative Products 1, 3 to 9. Comparative product 2 was heat-treated in a vacuum sintering furnace under the conditions shown in Table 1 without performing a heat treatment in an external heating type chemical vapor deposition apparatus. The comparative product 10 was manufactured by the same manufacturing method as the invention product 1 except that the heat treatment was omitted.
[0023]
[Table 1]
Figure 2004100004
[0024]
After the sample was cut with a diamond cutter, the cross section of the sample was mirror-polished with diamond wrap. For the inventive products 1 to 9 and the comparative products 3 to 10, the sample cross section was processed into a sample for TEM observation, and the TEM observation was performed to measure the form and size of the coating adhesion phase. Analysis was carried out, and the crystal form of the film adhesion phase was measured using electron diffraction attached to the TEM. The results are shown in Table 2. For the inventive product 10 and the comparative products 1 and 2, the mirror-polished cross sections were observed by FE-SEM, the form and size of the coating adhesion phase were measured, and the elemental analysis of the coating adhesion phase was performed using the EDS attached to the FE-SEM. The results are shown in Table 2. Furthermore, after processing the cross-sections of the inventive product 10 and the comparative products 1 and 2 into samples for TEM observation, the crystal form of the coating adhesion phase was measured using the electron diffraction attached to the TEM, and the results are shown in Table 2. .
[0025]
[Table 2]
Figure 2004100004
[0026]
Work material: round bar of SUS304, cutting speed: V = 100 m / min, feed: f = 0.25 mm / rev. A continuous cutting test of stainless steel was performed under the following conditions: cutting depth: d = 5.0 mm; cutting atmosphere: dry; cutting time: 2 minutes. The boundary wear of the cutting edge of the sample was measured, and the results are shown in Table 3.
[0027]
[Table 3]
Figure 2004100004
[0028]
As shown in Table 3, invention products 1 to 10 in which a film adhesion phase having a predetermined thickness is present are compared with comparative products 1 and 2 in which the film adhesion phase is thick and comparative products 3 to 10 in which no film adhesion phase is observed. It shows excellent wear resistance in dry continuous cutting of stainless steel.
[0029]
[Execution test 2]
Commercially available WC powder, (Ti, W) C powder, (Ta, Nb) C powder, Ti (C, N) powder, and Co powder having an average particle diameter of 2 μm are prepared as raw material powders. The composition is (Ti, W) C: 5% by weight, (Ta, Nb) C: 4% by weight, Ti (C, N): 0.5% by weight, Co: 8% by weight, WC: 82.5% by weight %, And a predetermined amount of carbon powder having an average particle diameter of 0.2 μm is added for adjusting the amount of carbon in the binder phase, mixed in a wet ball mill for 24 hours, dried, and then dried at a pressure of 117.6 MPa. This green compact is held in a vacuum of 1300 Pa in a range of 1480 ° C. for 1 hour and sintered to have a final composition of 85.0% WC-3.0% Ti (C, N) -2. 2.0% TaC-2.0% NbC-8.0% Co (or more by weight). Cemented carbide substrates of invention products 11 to 15 and comparison products 11 to 15 having JIS standard CNMG120408 shapes having different lattice constants were produced.
[0030]
Table 4 shows the lattice constants of the manufactured cemented carbide substrates. In the manufactured cemented carbide base material, there is a binder phase rich layer in which the complex carbide of (W, Ti, Ta, Nb) (C, N) composition has disappeared over a depth of 30 μm from the surface toward the inside of the alloy. I do. The binder phase rich layer has a structure composed of WC particles and a binder phase and having an increased binder phase amount. In the inventions 11 to 15 and the comparative products 11 to 15, the amount of the binder phase at the center of the binder phase-enriched layer was 16% by weight. The cutting edge portion of the cemented carbide substrate was subjected to wet blast honing.
[0031]
Place the cemented carbide substrate in the external thermal chemical vapor deposition 2 The temperature was raised to a predetermined temperature in an atmosphere. Coating temperature 900 ° C, raw material gas 2.5% TiCl 4 -48.8% H 2 -48.7% N 2 (At least mol%), a pressure of 40 KPa, a 0.5 μm-thick TiN film is coated, followed by a coating temperature of 900 ° C. and a source gas of 2.0% 4 -87.0% H 2 -1.0% CH 3 CN-10% N 2 (At least mol%) and a pressure of 6.7 KPa, a TiCN columnar film having a thickness of 6.0 μm was coated. Continue H 2 The furnace was adjusted to 1000 ° C in an atmosphere, the coating temperature was 1000 ° C, and the raw material gas was 2.5% TiCl. 4 -48.8% H 2 -48.7% N 2 (At least mol%), a pressure of 40 KPa, a TiN film having a thickness of 0.5 μm, a coating temperature of 1000 ° C., a raw material gas of 2.5% AlCl. 3 -93.0% H 2 -1.5% HCl-3.0% CO 2 (More than mol%), pressure of 13.3 KPa, thickness of 1.0 μm Al 2 O 3 Coating the film, coating temperature 1000 ° C, raw material gas 2.5% TiCl 4 -48.8% H 2 -48.7% N 2 (At least mol%) and a pressure of 40 KPa, a 0.5 μm thick TiN film was coated. After that, continue to H 2 The atmosphere inside the furnace was adjusted to 1100 ° C. 2 Heat treatment was performed in the furnace at 1100 ° C. for 40 minutes in an atmosphere to produce invention products 11 to 15 and comparative products 11 to 15.
[0032]
[Table 4]
Figure 2004100004
[0033]
After each sample was cut with a diamond cutter, the cross section of the sample was mirror-polished with diamond wrap. For the invention products 11 to 15 and the comparative products 11 to 15, the sample cross section was processed into a sample for TEM observation, and the TEM observation was performed to measure the form and size of the coating adhesion phase. Was subjected to elemental analysis. These results are shown in Table 5.
[0034]
[Table 5]
Figure 2004100004
[0035]
Then, the invention products 11 to 15 and the comparison products 11 to 15 were cut with a work material: a round bar of S45C having a groove, a cutting speed: V = 160 m / min, and a feed: f = 0.25 mm / rev. The steel was subjected to a wet intermittent cutting test under the following conditions: cutting depth: d = 2.0 mm; atmosphere during cutting: use of a water-soluble cutting fluid. The tool life was defined as the time during which the sample had a chipped or flank wear VB of more than 0.3 mm. The tool life of the sample was measured and the results are shown in Table 6.
[0036]
[Table 6]
Figure 2004100004
[0037]
As shown in Table 6, it is clear that the invention products 11 to 15 having the film adhesion phase in the wet intermittent cutting test of steel improve the cutting life as compared with the comparative products 11 to 15. That is, invention products 11 to 15 are more excellent in fracture resistance than comparison products 11 to 15.
[0038]
[Execution test 3]
A throw-away chip having a JIS standard CNMG120408 shape having a final component composition of 90.0% WC-10.0% Co (weight% or more) and a lattice constant of a binder phase of 3.570 ° was prepared. The surface was cleaned using an alkaline detergent. The throw-away tip was installed in a vacuum furnace and evacuated. The pressure inside the vacuum furnace is 1.33 × 10 -2 When it became Pa or less, it was heated to the set temperature of 500 ° C. The pressure is 1.33 × 10 -2 After confirming that the pressure returned to Pa or less, etching was performed under the conditions of a Ti target, an arc voltage of 38 V, an arc current of 120 A, a substrate voltage of −600 V, an Ar gas flow rate of 50 cc / min, a heating temperature of 500 ° C., and a processing time of 15 minutes. Next, after forming a coating adhesion phase under the conditions shown in Tables 8 and 9, a Ti target, an arc voltage of 38 V, an arc current of 150 A, a substrate voltage of -200 V, N 2 A TiN film was coated at a thickness of 0.5 μm under the conditions of a gas flow rate of 200 cc / min, a heating temperature of 500 ° C., and a processing time of 15 minutes, a TiAl target, an arc voltage of 38 V, an arc current of 150 A, a substrate voltage of −200 V, and N 2 Under conditions of a gas flow rate of 200 cc / min, a heating temperature of 500 ° C., and a processing time of 50 minutes, a TiAlN film was coated to a thickness of 2.5 μm to produce invention products 16 to 25 and comparative products 16 to 24. The comparative product 25 was produced by the same manufacturing method as that of the inventive product 25 except for the step of forming the coating adhesion phase.
[0039]
[Table 7]
Figure 2004100004
[0040]
[Table 8]
Figure 2004100004
[0041]
The prepared sample was cut with a diamond cutter, and the cross section of the sample was mirror-polished. The cross-sections of the inventive products 16 to 25 and the comparative products 16 to 24 were processed into TEM observation samples, the TEM observation was performed, the form and size of the coating adhesion phase were measured, and the element analysis was carried out with an EDS attached to the TEM. These results are shown in Table 9. Further, the crystal form of the film adhesion phase was measured using electron diffraction attached to the TEM, and the results are shown in Table 9.
[0042]
[Table 9]
Figure 2004100004
[0043]
Work material: round bar of SNCM439 (HB310) with four grooves, cutting speed: V = 180 m / min, feed: f = 0.1 mm / rev. , Depth of cut: d = 3.0 mm, atmosphere at the time of cutting: dry type, a dry intermittent cutting test was performed. The tool life was defined as the time during which the sample was defective or the average flank wear amount VB exceeded 0.3 mm. The tool life of the sample was measured, and the results are shown in Table 10.
[0044]
[Table 10]
Figure 2004100004
[0045]
As shown in Table 10, the invention products 16 to 25 having the coating adhesion phase show excellent fracture resistance in dry interrupted cutting of stainless steel as compared with the comparison products 16 to 25.
[0046]
[Test 4]
As raw material powders, commercially available WC powder, Co powder, TaC powder, NbC powder, and TiC powder each having an average particle diameter of 2 μm are prepared, and these raw material powders have a final component composition of 71.1% WC-10.5% Co-11.4% TaC-1.2% NbC-5.8% TiC (more than weight%), C powder having an average particle size of 0.2 μm to adjust the amount of carbon in the binder phase Is mixed in a ball mill for 48 hours after adding a solvent, and after drying, a green compact for a throw-away tip shape of CNMG120408 is formed at a pressing pressure of 147 MPa, and then, in a vacuum at a temperature of 1400 ° C. Carbide with a throw-away tip shape by sintering while holding for a while, adjusting the upper and lower surfaces to a predetermined shape by sintering and applying dry brush honing to the cutting blade after sintering A substrate was manufactured. The cemented carbide base material thus manufactured is referred to as base material symbol A. The binder phase lattice constant of Substrate A was 3.570 °. Then, the above-mentioned cemented carbide substrate was subjected to nitrogen partial pressure PN. 2 : 20 KPa, carbon monoxide partial pressure PCO: 7 KPa Pressure: 27 KPa in a reduced pressure atmosphere at a temperature of 1400 ° C. for 2 hours and re-sintering, the composition on the surface of the cemented carbide base material: 35.9% TiC-2.0% TiN-17.7% TaC-1.9% NbC-6.4% Co-36.1% WC (or more by weight), thickness: 30 μm, and Vickers hardness A cured surface layer having an Hv of 1600 was formed. The internal hardness of the cemented carbide substrate was Vickers hardness Hv: 1,450. The cemented carbide base material having the hardened surface layer thus produced is referred to as base material symbol B. Substrate B had a bound phase lattice constant of 3.570 °. Then, the cemented carbide substrates A and B are placed in an external heat type chemical vapor deposition apparatus, 2 The temperature was raised to a predetermined temperature in an atmosphere. 900 ° C coating temperature, 2.0% TiCl source gas 4 -87.0% H 2 -1.0% CH 3 CN-10% N 2 (At least mol%) and a pressure of 7 KPa, a TiCN columnar film having a thickness of 5.0 μm was coated. After coating, the base material B was taken out of the furnace to obtain a comparative product 26. Substrate A is continuously coated with H 2 A heat treatment was performed in the furnace at 1140 ° C. for 60 minutes in an atmosphere to obtain invention product 26.
[0047]
After cutting the inventive product 26 with a diamond cutter, the cross section of the sample was mirror-polished. The sample was processed into a sample for TEM observation, and the form and size of the coating adhesion phase were measured by TEM observation. With respect to the composition of the coating adhesion phase, an elemental analysis of the coating adhesion phase was performed using an EDS attached to the TEM. Inventive product 26 includes (Ti) between the coating and the cemented carbide substrate. 0.7 , W 0.3 ) (C 0.8 , N 0.2 ) 1 Was formed at intervals of 0.5 μm showing layered particles having an average thickness of 0.05 μm and having a composition of 0.5 μm.
[0048]
For the obtained sample, work material: S48C with four grooves (hardness H B : 255), cutting speed: V = 150 m, feed: f = 0.5 mm / rev. The steel was subjected to a wet intermittent turning test under the following conditions: cutting depth: d = 2 mm; cutting atmosphere: wet;
[0049]
[Table 11]
Figure 2004100004
[0050]
Compared to the comparative product 26 having a 30 μm thick hardened surface layer formed during sintering, the invention product 26 having the layered particles of the coating adhesion phase having an average thickness of 0.05 μm formed by heat treatment after coating is made of steel. It shows excellent fracture resistance in wet intermittent turning tests.
[0051]
【The invention's effect】
As described above, at least one selected from carbides, nitrides, and carbonitrides containing Ti and W is provided between the coating including the lowermost layer made of titanium nitride and / or titanium carbonitride and the cemented carbide substrate. The adhesion between the coating and the cemented carbide substrate is improved by forming the coating adhesion phase composed of the various metal compounds. By improving the adhesion of the coating, the properties of the coating can be fully exhibited. When the coated cemented carbide of the present invention is used as a cutting tool, excellent wear resistance and / or chipping resistance can be exhibited even under severe cutting conditions, and the tool life can be improved.
[Brief description of the drawings]
FIG. 1 is an FE-SEM composition image showing an interface between a coating of a coated cemented carbide according to the present invention and a substrate. FIG. 1 shows that a coating adhesion phase is formed between the coating and the cemented carbide substrate by a heat treatment method.

Claims (7)

超硬合金基材に、窒化チタンおよび/または炭窒化チタンからなる最下層を含む被膜を被覆した被覆超硬合金において、該被膜と該超硬合金基材との間に、Ti、Wを含有する炭化物、窒化物、炭窒化物から選ばれた少なくとも1種の金属化合物からなる平均厚さ0.001〜0.4μmの層状である被膜密着相が形成された被覆超硬合金。A coated cemented carbide in which a cemented carbide substrate is coated with a coating including a lowermost layer made of titanium nitride and / or titanium carbonitride, wherein Ti and W are contained between the coating and the cemented carbide substrate. A coated cemented carbide having a layered coating adhesion phase having an average thickness of 0.001 to 0.4 μm, comprising at least one metal compound selected from carbides, nitrides, and carbonitrides. 超硬合金基材に、窒化チタンおよび/または炭窒化チタンからなる最下層を含む被膜を被覆した被覆超硬合金において、該被膜と該超硬合金基材との間に、Ti、Wを含有する炭化物、窒化物、炭窒化物から選ばれた少なくとも1種の金属化合物からなる平均厚さ0.001〜0.4μmの層状粒子である被膜密着相が0.001〜10μm間隔で分散した被覆超硬合金。A coated cemented carbide in which a cemented carbide substrate is coated with a coating including a lowermost layer made of titanium nitride and / or titanium carbonitride, wherein Ti and W are contained between the coating and the cemented carbide substrate. Coating phase, which is a layered particle having an average thickness of 0.001 to 0.4 μm and composed of at least one metal compound selected from carbides, nitrides, and carbonitrides, is dispersed at an interval of 0.001 to 10 μm. Cemented carbide. 前記被膜密着相は、(Ti,W)(C,Nで表した場合、それぞれのモル比率が、0.6≦a≦0.94、0.06≦b≦0.4、a+b=1、0.1≦x≦0.9、0.1≦y≦0.9、x+y=1、zは金属元素の合計に対する非金属元素の合計のモル比率を示し、0.8≦z≦1である請求項1または2に記載の被覆超硬合金。The film adhesion phase, (Ti a, W b) (C x, N y) when expressed in z, the respective molar ratios, 0.6 ≦ a ≦ 0.94,0.06 ≦ b ≦ 0. 4, a + b = 1, 0.1 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.9, x + y = 1, z indicates the molar ratio of the total amount of non-metallic elements to the total amount of metal elements. The coated cemented carbide according to claim 1, wherein 8 ≦ z ≦ 1. 前記被膜密着相は、(Ti,W,M)(C,Nで表した場合、MがAl,Si,Zr,Hf,V,Nb,Ta,Cr,およびMoからなる群から選ばれた少なくとも1種の元素であり、それぞれのモル比率が、0.6≦a≦0.94、0.06≦b≦0.4、0<c≦0.1、a+b+c=1、0.1≦x≦0.9、0.1≦y≦0.9、x+y=1、zは金属元素の合計に対する非金属元素の合計のモル比率を示し、0.8≦z≦1である請求項1または2に記載の被覆超硬合金。The film adhesion phase, the (Ti a, W b, M c) (C x, N y) when expressed in z, M is Al, Si, Zr, Hf, V, Nb, Ta, Cr, and Mo At least one element selected from the group consisting of: 0.6 ≦ a ≦ 0.94, 0.06 ≦ b ≦ 0.4, 0 <c ≦ 0.1, a + b + c = 1, 0.1 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.9, x + y = 1, z indicates the molar ratio of the total of the nonmetal elements to the total of the metal elements, and 0.8 ≦ z ≦ The coated cemented carbide according to claim 1 or 2, wherein 前記超硬合金は硬質相と結合相からなり、該結合相の格子定数laは3.560Å≦la≦3.575Åである請求項1〜4のいずれか1項に記載の被覆超硬合金。5. The coated cemented carbide according to claim 1, wherein the cemented carbide comprises a hard phase and a binder phase, and a lattice constant la of the binder phase is 3.560 ° ≦ la ≦ 3.575 °. 前記超硬合金の飽和磁化率が68〜80%である請求項1〜4のいずれか1項に記載の被覆超硬合金。The coated cemented carbide according to any one of claims 1 to 4, wherein a saturation magnetic susceptibility of the cemented carbide is 68 to 80%. 超硬合金基材に窒化チタンおよび/または炭窒化チタンからなる最下層を含む被膜を被覆する被覆超硬合金の製造方法において、熱処理により該被膜と該超硬合金基材との間にTi、Wを含有する金属化合物からなる被膜密着相を形成する被覆超硬合金の製造方法。In a method for producing a coated cemented carbide in which a cemented carbide base material is coated with a coating including a lowermost layer made of titanium nitride and / or titanium carbonitride, a heat treatment is performed between the coating and the cemented carbide base material, A method for producing a coated cemented carbide which forms a coating adhesion phase made of a metal compound containing W.
JP2002265621A 2002-09-11 2002-09-11 Coated cemented carbide and method for producing the same Expired - Fee Related JP4330859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265621A JP4330859B2 (en) 2002-09-11 2002-09-11 Coated cemented carbide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265621A JP4330859B2 (en) 2002-09-11 2002-09-11 Coated cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004100004A true JP2004100004A (en) 2004-04-02
JP4330859B2 JP4330859B2 (en) 2009-09-16

Family

ID=32264715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265621A Expired - Fee Related JP4330859B2 (en) 2002-09-11 2002-09-11 Coated cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4330859B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330540A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Wear resistant coated member
JP2007031779A (en) * 2005-07-27 2007-02-08 Tungaloy Corp Film-coated sintered alloy
WO2008078592A1 (en) * 2006-12-25 2008-07-03 Kyocera Corporation Surface-coated tool and method of working cutting object
EP1992713A2 (en) 2004-09-30 2008-11-19 Kabushiki Kaisha Kobe Seiko Sho Hard coating excellent in wear resistance and in oxidation resistance and target for forming the same
US7540912B2 (en) 2005-11-02 2009-06-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard films and sputtering targets for the deposition thereof
US20100129168A1 (en) * 2008-03-26 2010-05-27 Kyocera Corporation Cutting tool
JP2010137348A (en) * 2008-12-15 2010-06-24 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer being excellent in chipping resistance and wear resistance
JPWO2009025112A1 (en) * 2007-08-22 2010-11-18 住友電気工業株式会社 Surface coated cutting tool
WO2011052767A1 (en) * 2009-10-30 2011-05-05 三菱マテリアル株式会社 Surface coated cutting tool with excellent chip resistance
JP2012012676A (en) * 2010-07-01 2012-01-19 Okayama Prefecture Hard coating, and method for producing the same
JP2013244548A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
WO2014156699A1 (en) * 2013-03-29 2014-10-02 日立ツール株式会社 Coated cutting tool
WO2017199730A1 (en) * 2016-05-20 2017-11-23 株式会社神戸製鋼所 Hard coating film and mold
WO2018181272A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Coated tool and cutting tool
WO2019189774A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Cemented carbide and coated tool using same, and cutting tool
CN111663093A (en) * 2020-06-05 2020-09-15 广东电网有限责任公司 Cermet material, cermet coating and preparation method thereof
CN115038539A (en) * 2020-04-24 2022-09-09 住友电工硬质合金株式会社 Cutting tool
JP7412679B2 (en) 2020-03-26 2024-01-15 三菱マテリアル株式会社 Surface coated cutting tool with excellent fracture resistance
WO2024018889A1 (en) * 2022-07-21 2024-01-25 京セラ株式会社 Coated tool and cutting tool

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330540A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Wear resistant coated member
US7601440B2 (en) 2004-09-30 2009-10-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating excellent in wear resistance and in oxidation resistance and target for forming the same
EP1992713A2 (en) 2004-09-30 2008-11-19 Kabushiki Kaisha Kobe Seiko Sho Hard coating excellent in wear resistance and in oxidation resistance and target for forming the same
US7521131B2 (en) 2004-09-30 2009-04-21 Kobe Steel, Ltd. Hard coating excellent in wear resistance and in oxidation resistance and target for forming the same
JP2007031779A (en) * 2005-07-27 2007-02-08 Tungaloy Corp Film-coated sintered alloy
US7540912B2 (en) 2005-11-02 2009-06-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard films and sputtering targets for the deposition thereof
US7648781B2 (en) 2005-11-02 2010-01-19 Kobe Steel, Ltd. Hard films and sputtering targets for the deposition thereof
WO2008078592A1 (en) * 2006-12-25 2008-07-03 Kyocera Corporation Surface-coated tool and method of working cutting object
US8062776B2 (en) 2006-12-25 2011-11-22 Kyocera Corporation Surface coated tool and method of working cutting object
CN101557896B (en) * 2006-12-25 2010-09-29 京瓷株式会社 Surface-coated tool and method of working cutting object
JP5662680B2 (en) * 2007-08-22 2015-02-04 住友電気工業株式会社 Surface coated cutting tool
JP2013233652A (en) * 2007-08-22 2013-11-21 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JPWO2009025112A1 (en) * 2007-08-22 2010-11-18 住友電気工業株式会社 Surface coated cutting tool
US8236411B2 (en) * 2008-03-26 2012-08-07 Kyocera Corporation Cutting tool
US20100129168A1 (en) * 2008-03-26 2010-05-27 Kyocera Corporation Cutting tool
JP2010137348A (en) * 2008-12-15 2010-06-24 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer being excellent in chipping resistance and wear resistance
CN102596456A (en) * 2009-10-30 2012-07-18 三菱综合材料株式会社 Surface coated cutting tool with excellent chip resistance
WO2011052767A1 (en) * 2009-10-30 2011-05-05 三菱マテリアル株式会社 Surface coated cutting tool with excellent chip resistance
US8758907B2 (en) 2009-10-30 2014-06-24 Mitsubishi Materials Corporation Surface coated cutting tool with excellent chipping resistance
JP2012012676A (en) * 2010-07-01 2012-01-19 Okayama Prefecture Hard coating, and method for producing the same
JP2013244548A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP5700171B2 (en) * 2013-03-29 2015-04-15 日立ツール株式会社 Coated cutting tool
WO2014156699A1 (en) * 2013-03-29 2014-10-02 日立ツール株式会社 Coated cutting tool
WO2017199730A1 (en) * 2016-05-20 2017-11-23 株式会社神戸製鋼所 Hard coating film and mold
WO2018181272A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Coated tool and cutting tool
JPWO2018181272A1 (en) * 2017-03-29 2020-02-06 京セラ株式会社 Coated and cutting tools
WO2019189774A1 (en) * 2018-03-29 2019-10-03 京セラ株式会社 Cemented carbide and coated tool using same, and cutting tool
CN112004954A (en) * 2018-03-29 2020-11-27 京瓷株式会社 Hard alloy, and coated cutting tool and cutting tool using the same
JP7412679B2 (en) 2020-03-26 2024-01-15 三菱マテリアル株式会社 Surface coated cutting tool with excellent fracture resistance
CN115038539A (en) * 2020-04-24 2022-09-09 住友电工硬质合金株式会社 Cutting tool
CN111663093A (en) * 2020-06-05 2020-09-15 广东电网有限责任公司 Cermet material, cermet coating and preparation method thereof
CN111663093B (en) * 2020-06-05 2022-07-26 广东电网有限责任公司 Cermet material, cermet coating and preparation method thereof
WO2024018889A1 (en) * 2022-07-21 2024-01-25 京セラ株式会社 Coated tool and cutting tool

Also Published As

Publication number Publication date
JP4330859B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
EP2446987B1 (en) Tool having coated cubic boron nitride sintered body
JP2004100004A (en) Coated cemented carbide and production method therefor
JP4786800B2 (en) Cutting tool coated with PVD-
JP5597786B1 (en) Cutting tools
JP4427271B2 (en) Alumina protective film and method for producing the same
JP5235607B2 (en) Surface coating tool
JP5710008B2 (en) Cutting tools
JP2012196726A (en) Cutting tool
JP2010253594A (en) Surface coated tool
JP2012144766A (en) Coated member
JP4351521B2 (en) Surface coated cutting tool
JP2004291162A (en) Surface coated cutting tool
JP5515734B2 (en) Surface coated cutting tool
JP5321360B2 (en) Surface coated cutting tool
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP4663248B2 (en) Surface coated cutting tool
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP4484500B2 (en) Surface coated cutting tool
JP5121486B2 (en) Cutting tools
JP2005262323A (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP3900523B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JP2005205582A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Ref document number: 4330859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees