JP5235607B2 - Surface coating tool - Google Patents
Surface coating tool Download PDFInfo
- Publication number
- JP5235607B2 JP5235607B2 JP2008272618A JP2008272618A JP5235607B2 JP 5235607 B2 JP5235607 B2 JP 5235607B2 JP 2008272618 A JP2008272618 A JP 2008272618A JP 2008272618 A JP2008272618 A JP 2008272618A JP 5235607 B2 JP5235607 B2 JP 5235607B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thin layer
- average
- thin
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は基体の表面に被覆層を成膜してなる表面被覆工具に関する。 The present invention relates to a surface-coated tool formed by forming a coating layer on the surface of a substrate.
現在、表面被覆工具は、WC基超硬合金、TiCN基サーメット等の硬質材料の表面に様々な被覆層を成膜して摺動性、耐摩耗性、耐欠損性を向上させる手法が使われており、中でも物理蒸着法にて成膜された被覆層は高硬度で耐摩耗性が高く、種々の用途に広く採用されている。 Currently, surface coating tools are used to improve slidability, wear resistance, and fracture resistance by forming various coating layers on the surface of hard materials such as WC-based cemented carbide and TiCN-based cermet. In particular, a coating layer formed by physical vapor deposition has high hardness and high wear resistance, and is widely used in various applications.
最近、かかる物理蒸着法において、チャンバ内に組成の異なる複数種類のターゲットを装着してそれぞれのターゲットから異なる組成の金属元素を蒸発させるとともに、試料を載置する試料台を回転させながら被覆層を成膜することによって、金属組成が極薄い層厚の周期で変化する多層構造の構成とした被覆層が提案されており、ターゲットの組成を調整すること等によって被覆層の硬度や潤滑性、放熱性、耐熱性等を高める試みがなされている(例えば特許文献1〜4参照)。 Recently, in such a physical vapor deposition method, a plurality of types of targets having different compositions are mounted in a chamber to evaporate metal elements having different compositions from each target, and a coating layer is formed while rotating a sample stage on which the sample is placed. A coating layer with a multilayer structure in which the metal composition changes with an extremely thin layer thickness by forming a film has been proposed. By adjusting the composition of the target, the hardness and lubricity of the coating layer, heat dissipation, etc. Attempts have been made to improve the properties, heat resistance and the like (see, for example, Patent Documents 1 to 4).
中でも特許文献3では、A+B+A+・・・という多層構造からなる被膜において、A+Bを一組とした各層の厚みをランダムに変動させたことが開示されている。また、特許文献4では、MX/LX/MX/LX積層の多層状をなして、個々の層の厚みには繰り返し周期がなくて全体に亘って非周期的な被膜を具備する切削工具が開示されている。
しかしながら、極薄い被覆層を特許文献1〜4のような方法で変化させた繰返し多層の被覆層では、被覆層全体としての耐摩耗性や耐欠損性が必ずしも十分とは言えず、特に耐欠損性を改善する必要があった。 However, the repeated multilayer coating layer obtained by changing the extremely thin coating layer by the method as described in Patent Documents 1 to 4 does not necessarily have sufficient wear resistance and fracture resistance as the entire coating layer, and is particularly resistant to fracture. There was a need to improve sex.
本発明は前記課題を解決するためのものであり、その目的は、耐摩耗性および耐欠損性が向上する被覆層を備えた表面被覆工具を提供することにある。 The present invention is for solving the above-described problems, and an object thereof is to provide a surface-coated tool provided with a coating layer that improves wear resistance and fracture resistance.
本発明の表面被覆工具は、基体と、この基体の表面を被覆する被覆層とからなる切削工具であって、前記被覆層が、Ti1−aMa(C1−xNx)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.35≦a≦0.55、0≦x≦1)からなる第1薄層と、Ti1−bMb(C1−yNy)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.40≦b≦0.60、ただしb>a、0≦y≦1)からなる第2薄層とが交互に一定の周期で積層された下層と、
Ti1−cMc(C1−xNx)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.40≦c≦0.60、0≦x≦1)からなる第3薄層と、Ti1−dMd(C1−yNy)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.45≦d≦0.65、ただしd>c、0≦y≦1)からなる第4薄層とが交互に一定の周期で積層された上層(ただし、a≠c、b≠dの少なくとも一方を満たす。)と、を具備するとともに、前記第1薄層の平均層厚t1と前記第2薄層の平均層厚t2との比が1.2≦t2/t1≦2.5であるとともに、前記第3薄層の平均層厚t3と前記第4薄層の平均層厚t4との比が2.5≦t4/t3≦18(ただし、(t2/t1)<(t4/t3))の構成からなる。
The surface-coated tool of the present invention is a cutting tool comprising a substrate and a coating layer that covers the surface of the substrate, wherein the coating layer is Ti 1-a M a (C 1-x N x ) (however, , M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.35 ≦ a ≦ 0.55, 0 ≦ x ≦ 1), Ti 1-b M b (C 1-y N y ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.40 ≦ b ≦ 0.60, However, the lower layer in which the second thin layers of b> a, 0 ≦ y ≦ 1) are alternately laminated at a constant period,
Ti 1-c M c (C 1-x N x ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.40 ≦ c ≦ 0.60) , 0 ≦ x ≦ 1) and Ti 1-d M d (C 1-y N y ) (where M is a group of Nb, Mo, Ta, Hf, Al, Si, and Y) An upper layer in which at least one selected from the fourth thin layers of 0.45 ≦ d ≦ 0.65, d> c, 0 ≦ y ≦ 1) is alternately laminated at a constant period (where a ≠ c and b ≠ d are satisfied.) and the ratio of the average layer thickness t 1 of the first thin layer to the average layer thickness t 2 of the second thin layer is 1.2 ≦ t 2 / t 1 ≦ 2.5 with a ratio between the average layer thickness t 4 of the fourth thin layer with an average layer thickness t 3 of the third thin layer 2.5 ≦ t 4 t 3 ≦ 18 (provided that, (t 2 / t 1) <(t 4 / t 3)) configured in the.
ここで、前記構成において、前記下層の第1薄層と第2薄層との積層の周期TAと、上層の第3薄層と第4薄層との積層の周期TBとが0.8≦TB/TA≦1.2であることが望ましく、前記第1薄層の平均層厚t1が10〜20nm、前記第2薄層の平均層厚t2が12〜45nmであるとともに、前記第3薄層の平均層厚t3が2〜15nm、前記第4薄層の平均層厚t4が10〜40nmであることが望ましい。 Here, in the configuration, the period T A of the lamination of the first thin layer and the second thin layer of the lower layer, and the period T B of the lamination of the third thin layer and the fourth thin layer of the upper layer is 0. It is desirable that 8 ≦ T B / T A ≦ 1.2, the average layer thickness t 1 of the first thin layer is 10 to 20 nm, and the average layer thickness t 2 of the second thin layer is 12 to 45 nm. together, the third thin layer average thickness t 3 of 2 to 15 nm, the fourth average layer thickness of the thin layer t 4 that is preferably a 10 to 40 nm.
本発明の表面被覆工具によれば、第1薄層と第2薄層とが交互に一定の周期で積層された下層と、第3薄層と第4薄層とが交互に一定の周期で積層された上層とを具備するとともに、前記第1薄層の平均層厚t1と前記第2薄層の平均層厚t2との比が1.2≦t2/t1≦2.5であるとともに、前記第3薄層の平均層厚t3と前記第4薄層の平均層厚t4との比が2.5≦t4/t3≦18(ただし、(t2/t1)<(t4/t3))であることによって、被覆層の剥離が防止できるとともに耐欠損性が高く、また被覆層の表面における耐酸化性が高くて耐摩耗性が高いものである。 According to the surface-coated tool of the present invention, the lower layer in which the first thin layer and the second thin layer are alternately laminated at a constant period, and the third thin layer and the fourth thin layer are alternately alternately arranged at a constant period. And a ratio of the average layer thickness t 1 of the first thin layer to the average layer thickness t 2 of the second thin layer is 1.2 ≦ t 2 / t 1 ≦ 2.5. with it, the third thin layer of an average layer thickness t 3 and the ratio between the average layer thickness t 4 of the fourth thin layers 2.5 ≦ t 4 / t 3 ≦ 18 ( provided that, (t 2 / t 1 ) <(t 4 / t 3 )), the peeling of the coating layer can be prevented, the chipping resistance is high, the oxidation resistance on the surface of the coating layer is high, and the wear resistance is high. .
ここで、前記構成において、前記下層の第1薄層と第2薄層との積層の周期TAと、上層の第3薄層と第4薄層との積層の周期TBとが0.8≦TB/TA≦1.2の構成とすることが、耐摩耗性と耐欠損性のバランスのよい被覆層となる点で望ましい。 Here, in the configuration, the period T A of the lamination of the first-thin layer and a second thin layer of the lower layer, and the period T B of the lamination of the third thin layer and the fourth thin layer of the upper layer is 0. The constitution of 8 ≦ T B / T A ≦ 1.2 is desirable in terms of providing a coating layer with a good balance between wear resistance and fracture resistance.
また、前記構成において、前記第1薄層の平均層厚t1が10〜20nm、前記第2薄層の平均層厚t2が12〜45nmであるとともに、前記第3薄層の平均層厚t3が2〜15nm、前記第4薄層の平均層厚t4が10〜40nmであることが、被覆層の硬度を高くして耐摩耗性を向上できる点で望ましい。 Also, in the configuration, the average layer thickness t 1 of the first thin layer: 10 to 20 nm, with an average layer thickness t 2 of the second thin layer is 12~45Nm, average layer thickness of the third thin layer t 3 is 2 to 15 nm, the fourth average layer thickness t 4 of the thin layer to be 10 to 40 nm, preferably in that it can improve wear resistance by increasing the hardness of the coating layer.
本発明の表面被覆工具の一例について、好適な実施態様例である表面被覆切削工具の(a)概略斜視図、(b)概略断面図である図1、および被覆層の要部についての走査型電子顕微鏡写真である図2を用いて説明する。 As for an example of the surface-coated tool of the present invention, (a) a schematic perspective view of a surface-coated cutting tool which is a preferred embodiment, (b) a schematic sectional view of FIG. This will be described with reference to FIG. 2 which is an electron micrograph.
図1によれば、本発明の表面被覆工具(以下、単に工具と略す。)1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有し、基体2の表面に被覆層6を成膜した構成となっている。 According to FIG. 1, a surface-coated tool (hereinafter simply referred to as a tool) 1 of the present invention has a rake face 3 as a main surface, a flank face 4 as a side face, and a cross ridge line between the rake face 3 and the flank face 4. And a coating layer 6 is formed on the surface of the substrate 2.
被覆層6は、図1(b)および図2に示すように、Ti1−aMa(C1−xNx)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.35≦a≦0.55、0≦x≦1)からなる第1薄層7と、
Ti1−bMb(C1−yNy)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.40≦b≦0.60、ただしb>a、0≦y≦1)からなる第2薄層8とが交互に一定の周期で積層された下層9と、
Ti1−cMc(C1−xNx)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.40≦c≦0.60、0≦x≦1)からなる第3薄層11と、
Ti1−dMd(C1−yNy)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.45≦d≦0.65、ただしd>c、0≦y≦1)からなる第4薄層12とが交互に一定の周期で積層された上層13(ただし、a≠c、b≠dの少なくとも一方を満たす。)と、
からなる。なお、第1薄層7(暗色部)、第2薄層8(明色部)、第3薄層11(暗色部)、第4薄層12(明色部)は、個々の平均層厚が1〜200nmである。
As shown in FIGS. 1B and 2, the coating layer 6 is made of Ti 1−a M a (C 1−x N x ) (where M is Nb, Mo, Ta, Hf, Al, Si, and Y). A first thin layer 7 comprising at least one selected from the group of: 0.35 ≦ a ≦ 0.55, 0 ≦ x ≦ 1),
Ti 1-b M b (C 1-y N y ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.40 ≦ b ≦ 0.60) However, the lower layer 9 in which the second thin layers 8 made of b> a, 0 ≦ y ≦ 1) are alternately laminated at a constant period;
Ti 1-c M c (C 1-x N x ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.40 ≦ c ≦ 0.60) , 0 ≦ x ≦ 1), a third thin layer 11;
Ti 1-d M d (C 1-y N y ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.45 ≦ d ≦ 0.65) However, the upper layer 13 (where at least one of a ≠ c and b ≠ d is satisfied) in which the fourth thin layers 12 having d> c and 0 ≦ y ≦ 1) are alternately laminated at a constant period . ,
Consists of. The first thin layer 7 (dark color portion), the second thin layer 8 (light color portion), the third thin layer 11 (dark color portion), and the fourth thin layer 12 (light color portion) have individual average layer thicknesses. Is 1 to 200 nm.
そして、第1薄層7一層の平均層厚t1と第2薄層8一層の平均層厚t2との比が1.2≦t2/t1≦2.5であるとともに、第3薄層11一層の平均層厚t3と第4薄層12一層の平均層厚t4との比が2.5≦t4/t3≦18(ただし、(t2/t1)<(t4/t3))の構成とすることによって、被覆層6が剥離することなく耐欠損性も高く、また被覆層6の表面における耐酸化性が高くて耐摩耗性が高いものである。 Then, the ratio between the average layer thickness t 2 of the average layer thickness t 1 of the further first thin layer 7 more second thin layer 8 is 1.2 ≦ t 2 / t 1 ≦ 2.5, third thin layer 11 further average layer thickness t 3 and the ratio of the fourth lamina 12 further average layer thickness t 4 is 2.5 ≦ t 4 / t 3 ≦ 18 ( provided that, (t 2 / t 1) <( By adopting the structure of t 4 / t 3 )), the coating layer 6 is not peeled off and the chipping resistance is high, and the surface of the coating layer 6 has high oxidation resistance and high wear resistance.
すなわち、t2/t1が1.2より小さいと、下層9の密着性が低下して被覆層6が剥離しやすくなる。逆に、t2/t1が2.5より大きいと、被覆層6に残存する歪みが大きくなってチッピングが発生するおそれがある。また、t4/t3が(t2/t1)より小さいかまたは2.5より小さいと、上層13の耐欠損性が低下して被覆層6がチッピングしやすくなってしまう。逆に、t4/t3が18より大きいと、被覆層6の耐酸化性が低下して摩耗が進行しやすくなる。 That is, when t 2 / t 1 is smaller than 1.2, the adhesion of the lower layer 9 is lowered and the coating layer 6 is easily peeled off. On the other hand, if t 2 / t 1 is greater than 2.5, the strain remaining in the coating layer 6 may increase and chipping may occur. On the other hand, if t 4 / t 3 is smaller than (t 2 / t 1 ) or smaller than 2.5, the chipping resistance of the upper layer 13 is lowered and the covering layer 6 is likely to be chipped. On the other hand, if t 4 / t 3 is larger than 18, the oxidation resistance of the coating layer 6 is lowered and the wear tends to proceed.
なお、被覆層6の全体平均層厚が0.8〜10μmにて構成されている。この層厚であれば、工具1の耐摩耗性が高く、かつ被覆層6の内部応力が高くなり過ぎず被覆層6の耐欠損性が低下することもない。被覆層6の望ましい全体平均層厚は1〜6μmである。また、第1薄層7と第2薄層8の個々の平均層厚が1nm以上であると積層構造の効果が顕著に表れ、かつ200nm以下であれば硬度向上効果が期待できる。 In addition, the whole average layer thickness of the coating layer 6 is comprised by 0.8-10 micrometers. With this layer thickness, the wear resistance of the tool 1 is high, the internal stress of the coating layer 6 is not excessively increased, and the fracture resistance of the coating layer 6 is not lowered. A desirable overall average layer thickness of the covering layer 6 is 1 to 6 μm. Further, if the average thickness of each of the first thin layer 7 and the second thin layer 8 is 1 nm or more, the effect of the laminated structure is remarkably exhibited, and if it is 200 nm or less, a hardness improvement effect can be expected.
ここで、下層9の第1薄層7と第2薄層8との積層の周期TAと、上層13の第3薄層11と第4薄層との積層の周期TBとが0.8≦TB/TA≦1.2であることが、被覆層6の耐摩耗性と耐欠損性のバランスが良い点で望ましい。 Here, the first thin layer 7 of the lower layer 9 and the period T A of the lamination of the second thin layer 8, and the period T B of the stack of the third thin layer 11 of the upper layer 13 and the fourth thin layer zero. 8 ≦ T B / T A ≦ 1.2 is desirable in terms of a good balance between wear resistance and fracture resistance of the coating layer 6.
また、第1薄層7の平均層厚t1が10〜20nm、第2薄層8の平均層厚t2が12〜45nmであるとともに、第3薄層11の平均層厚t3が2〜15nm、第4薄層12の平均層厚t4が10〜40nmであることが、被覆層6の硬度を高めて被覆層6の耐摩耗性を向上できる点で望ましい。 Further, the average layer thickness t 1 of the first thin layer 7 is 10 to 20 nm, the average layer thickness t 2 of the second thin layer 8 is 12 to 45 nm, and the average layer thickness t 3 of the third thin layer 11 is 2 ~15Nm, average layer thickness t 4 of a fourth lamina 12 that is 10 to 40 nm, preferably in that it can improve the abrasion resistance of the coating layer 6 to increase the hardness of the coating layer 6.
なお、各層の望ましい層厚は、第1薄層7の平均層厚t1が13〜16nm、第2薄層8の平均層厚t2が15〜30nm、かつ1.6≦t2/t1≦2.2であるとともに、第3薄層11の平均層厚t3が5〜12nm、第4薄層12の平均層厚t4が20〜35nm、かつ4≦t4/t3≦14である。 The desirable layer thickness of each layer is as follows: the average layer thickness t 1 of the first thin layer 7 is 13 to 16 nm, the average layer thickness t 2 of the second thin layer 8 is 15 to 30 nm, and 1.6 ≦ t 2 / t 1 ≦ 2.2, the average layer thickness t 3 of the third thin layer 11 is 5 to 12 nm, the average layer thickness t 4 of the fourth thin layer 12 is 20 to 35 nm, and 4 ≦ t 4 / t 3 ≦ 14.
また、被覆層6は第1薄層7と第2薄層8との積層面に対して垂直な方向においては該垂直な方向に長く伸びる柱状結晶(図示せず。)が形成されているとともに、隣接して存在する2つの柱状結晶同士の界面において第1薄層7と第2薄層8の積層面が途切れることなく連続していることが望ましい。これによって、クラックの進展を抑制する効果が高く被覆層6の耐チッピング性を高めることができる。 The covering layer 6 is formed with columnar crystals (not shown) extending in the perpendicular direction in the direction perpendicular to the laminated surface of the first thin layer 7 and the second thin layer 8. It is desirable that the laminated surface of the first thin layer 7 and the second thin layer 8 is continuous without interruption at the interface between two adjacent columnar crystals. Thereby, the effect of suppressing the progress of cracks is high, and the chipping resistance of the coating layer 6 can be enhanced.
ここで、本発明においては、基体2の表面と平行な方向の結晶幅に対して基体表面と垂直な方向の結晶長さが1.5倍以上長い結晶で特定される結晶を柱状結晶と定義する。そして、被覆層6が柱状結晶にて構成されることによって、工具1の靭性をさらに高めることができる。 Here, in the present invention, a crystal specified by a crystal whose crystal length in the direction perpendicular to the substrate surface is 1.5 times longer than the crystal width in the direction parallel to the surface of the substrate 2 is defined as a columnar crystal. To do. And the toughness of the tool 1 can further be improved by the coating layer 6 being comprised with a columnar crystal.
また、柱状結晶の平均結晶幅(第1薄層7と第2薄層8との積層面方向についての粒径)が0.05μm以上であると被覆層6の耐酸化性が低下することなく、一方、柱状結晶の平均結晶幅が0.3μm以下であると被覆層6の硬度および耐欠損性が高いものとなる。被覆層6の平均結晶幅の望ましい範囲は、0.1〜0.2μmである。なお、本発明において、被覆層6の平均結晶幅を測定するには、被覆層6の断面写真において、被覆層6の中間の厚さにあたる部分に線A(図示せず。)を引いて測定する。具体的には、被覆層6中の柱状結晶の平均結晶幅は線Aの100nm以上の長さL(図示せず。)を特定し、この長さLの線Aを横切る粒界の数を数えて、長さL/粒界の数によって算出する。 Further, when the average crystal width of the columnar crystals (the particle diameter in the direction of the laminated surface of the first thin layer 7 and the second thin layer 8) is 0.05 μm or more, the oxidation resistance of the coating layer 6 does not deteriorate. On the other hand, when the average crystal width of the columnar crystals is 0.3 μm or less, the coating layer 6 has high hardness and fracture resistance. A desirable range of the average crystal width of the coating layer 6 is 0.1 to 0.2 μm. In the present invention, the average crystal width of the coating layer 6 is measured by drawing a line A (not shown) at a portion corresponding to the intermediate thickness of the coating layer 6 in the cross-sectional photograph of the coating layer 6. To do. Specifically, the average crystal width of the columnar crystals in the covering layer 6 specifies a length L (not shown) of the line A of 100 nm or more, and the number of grain boundaries crossing the line A having this length L is determined. Count and calculate by length L / number of grain boundaries.
さらに、被覆層6の組成において、金属元素Mとしては、特に硬度の高いTiおよびAlを含むことが望ましく、他にNb、Mo、Ta、W、CrおよびSiの少なくとも1種を併せて含むことが望ましい。 Furthermore, in the composition of the coating layer 6, it is desirable that the metal element M includes Ti and Al having particularly high hardness, and additionally includes at least one of Nb, Mo, Ta, W, Cr and Si. Is desirable.
また、基体2としては、炭化タングステンや炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの硬質合金、窒化ケイ素や酸化アルミニウムを主成分とするセラミックス、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相とセラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。
(製造方法)
次に、本発明の表面被覆工具の製造方法について説明する。
Further, as the substrate 2, a cemented carbide or a cermet hard alloy comprising a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt or nickel, silicon nitride, or the like. Hard materials such as ultra-high pressure sintered bodies that fire ceramics and aluminum oxide as a main component, hard phases composed of polycrystalline diamond and cubic boron nitride and binder phases such as ceramics and iron group metals under ultra-high pressure Preferably used.
(Production method)
Next, the manufacturing method of the surface coating tool of this invention is demonstrated.
まず、工具形状の基体2を従来公知の方法を用いて作製する。次に、基体2の表面に被覆層6を成膜する。被覆層6の成膜方法としてはイオンプレーティング法等の物理蒸着(PVD)法が好適に適応可能である。詳細な成膜方法の一例について、アークイオンプレーティング成膜装置(以下、AIP装置と略す。)20の模式図である図3、および成膜中の試料の回転状態を示す模式図である図4を参照して説明する。 First, the tool-shaped substrate 2 is manufactured using a conventionally known method. Next, the coating layer 6 is formed on the surface of the substrate 2. A physical vapor deposition (PVD) method such as an ion plating method can be suitably applied as a method for forming the coating layer 6. FIG. 3 is a schematic view of an arc ion plating film forming apparatus (hereinafter abbreviated as AIP apparatus) 20 and an exemplary diagram showing a rotation state of a sample during film formation, for an example of a detailed film forming method. This will be described with reference to FIG.
図3のAIP装置20は、真空チャンバ21の中にN2やAr等のガスをガス導入口22から導入し、カソード電極23とアノード電極24とを配置して、両者間に高電圧を印加してプラズマを発生させ、このプラズマによってターゲット25から所望の金属あるいはセラミックスを蒸発させるとともにイオン化させて高エネルギー状態とし、このイオン化した金属を試料(基体2)の表面に付着させて基体2の表面に被覆層6を被覆する構造となっている。また、図3によれば、基体2はタワー27にセットされて試料支持台26上に複数個ずつ載置され、この試料支持台26が複数(図3では2セット、図4では6セットが図示されている。)配置されたテーブル28に載置された構成となっている。さらに、図3によれば、基体2を加熱するためのヒータ29と、ガスを系外に排出するためのガス排出口30と、基体2にバイアス電圧を印加するためのバイアス電源31が配置されている。 The AIP apparatus 20 of FIG. 3 introduces a gas such as N 2 or Ar into the vacuum chamber 21 from the gas inlet 22, arranges the cathode electrode 23 and the anode electrode 24, and applies a high voltage therebetween. Then, a plasma is generated, and a desired metal or ceramic is evaporated from the target 25 and ionized by the plasma to be ionized to a high energy state, and the ionized metal is adhered to the surface of the sample (base 2) to thereby surface the base 2 The covering layer 6 is covered. Further, according to FIG. 3, the substrate 2 is set on the tower 27 and placed on the sample support base 26 by a plurality, and a plurality of sample support bases 26 (two sets in FIG. 3 and six sets in FIG. 4). It is configured to be placed on the arranged table 28. Further, according to FIG. 3, a heater 29 for heating the substrate 2, a gas discharge port 30 for discharging gas out of the system, and a bias power supply 31 for applying a bias voltage to the substrate 2 are arranged. ing.
なお、ターゲット25としては、例えば、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲット、これらを複合化した合金ターゲット、これらの炭化物、窒化物、硼化物化合物粉末または焼結体からなる混合物ターゲットを用いることができる。 The target 25 is, for example, metal titanium (Ti), metal aluminum (Al), metal M (where M is a group selected from Group 4, 5, 6 elements of the periodic table excluding Ti, rare earth elements, and Si). It is possible to use a metal target containing each of the seeds independently, an alloy target obtained by compounding these, a mixture target composed of these carbides, nitrides, boride compound powders or sintered bodies.
そして、ターゲット25を用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N2)ガスや炭素源のメタン(CH4)/アセチレン(C2H2)ガスと反応させることにより、基体2の表面に被覆層6が堆積する。 Then, using the target 25, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) as a carbon source. By reacting with the gas, the coating layer 6 is deposited on the surface of the substrate 2.
また、成膜に際しては、図3における基体2の各位置においてターゲット25に対して最も近づく向きになる周期を試料の回転数としたとき、回転数が2〜6rpmの周期となるように基体2および試料支持台26の回転数を調整することが望ましい。 Further, when forming the film, the substrate 2 is set so that the number of rotations is 2 to 6 rpm when the number of rotations of the sample is defined as the cycle in which each position of the substrate 2 in FIG. It is desirable to adjust the rotation speed of the sample support 26.
ここで、本発明においては、基体2がターゲット25に近づいて対向する向きに配置された場合には、ターゲット25からの金属成分が直線的に飛来する形態となり、しかも、チャンバ内に導入するガスの濃度分布によってガス圧が低いことから金属のほうが非金属よりも多く堆積する形態で成膜される。一方、基体2が上記位置に対してターゲット25から遠ざかりかつ対向しない向きとなった場合には、成膜される金属成分は回り込んで堆積する形態になるので金属成分の堆積量は減少する。しかも、試料台の中心から非金属成分のガスが導入されるので、基体2がターゲット25から遠ざかるにつれてガスの濃度は高くなり、非金属のほうが金属よりも多く堆積する形態で成膜される。 Here, in the present invention, when the substrate 2 is arranged in a direction facing and close to the target 25, the metal component from the target 25 comes in a linear form, and the gas introduced into the chamber. Since the gas pressure is low due to the concentration distribution of the metal, the metal is deposited in a form in which more metal is deposited than the nonmetal. On the other hand, when the substrate 2 is away from the target 25 and does not face the position with respect to the position, the deposited metal component wraps around and deposits, so the deposition amount of the metal component decreases. In addition, since the nonmetallic component gas is introduced from the center of the sample stage, the concentration of the gas increases as the base 2 moves away from the target 25, and the nonmetal is deposited in a form in which more metal is deposited than the metal.
また、基体2が載置された試料支持台26は、図4に示すように、タワー27が自転しながら、それぞれの試料支持台26が自転し、さらに複数の試料支持台26が公転するようにテーブル28が回転しながら成膜される。本発明によれば、この回転のタイミングを不連続な動きとし、かつ基体2がターゲット25に近づいて対向する向きに配置される時間と、基体2がターゲット25から遠ざかって配置される時間とを調整することによって、第1薄層7と第2薄層8、および第3薄層11と第4薄層12の層厚を制御することが可能である。 Further, as shown in FIG. 4, the sample support table 26 on which the substrate 2 is placed is rotated so that each sample support table 26 rotates while the tower 27 rotates, and a plurality of sample support tables 26 revolve. The film is formed while the table 28 rotates. According to the present invention, the rotation timing is a discontinuous movement, and the time during which the base 2 is disposed in the direction facing the target 25 and facing the target 25 and the time during which the base 2 is disposed away from the target 25 are set. By adjusting, it is possible to control the layer thicknesses of the first thin layer 7 and the second thin layer 8, and the third thin layer 11 and the fourth thin layer 12.
そして、第3薄層11と第4薄層12とが交互に一定の周期で積層された上層13の積層周期を、第1薄層7と第2薄層8とが交互に一定の周期で積層された下層9の積層周期よりも長い構成とするには、ターゲット25の表面形状を変化させる。すなわち、下層9を成膜する際に用いるターゲット25は、図5(a)に示すようにターゲット25(a)の表面が凹状のものを用いる。そして、上層13を成膜する際に用いるターゲット25(b)は、図5(b)に示すようにターゲット25の表面が平坦または凸状のものを用いる。なお、ターゲット25(a)の表面が平坦で、ターゲット25(b)の表面が凸状のものを用いてもよい。これによって、各層の成膜速度を変化させて、同じ成膜条件パラメータでありながら各層の層厚を制御することができる。 Then, the stacking cycle of the upper layer 13 in which the third thin layer 11 and the fourth thin layer 12 are alternately stacked at a constant cycle, and the first thin layer 7 and the second thin layer 8 are alternately switched at a constant cycle. In order to make the structure longer than the stacking cycle of the stacked lower layers 9, the surface shape of the target 25 is changed. That is, as the target 25 used when forming the lower layer 9, a target 25 (a) whose surface is concave as shown in FIG. The target 25 (b) used when forming the upper layer 13 is a target whose surface of the target 25 is flat or convex as shown in FIG. 5 (b). Note that the target 25 (a) may have a flat surface and the target 25 (b) may have a convex surface. This makes it possible to control the layer thickness of each layer while changing the deposition rate of each layer while maintaining the same deposition condition parameters.
さらに、下層9を成膜する際と上層13を成膜する際のテーブル28、タワー27、試料支持台26の回転速度を調整して、TB/TAを制御することができる。 Furthermore, you are possible to table 28 in forming the upper layer 13 when forming the lower layer 9, the tower 27, to adjust the rotational speed of the sample holder 26, to control the T B / T A.
なお、プラズマを発生するためにはアーク放電やグロー放電などを用い、導入ガスは窒素源の窒素(N2)ガスや炭素源のメタン(CH4)/アセチレン(C2H2)ガスを用いることができる。さらに、成膜時のバイアス電圧は、被覆層の結晶構造を考慮して高硬度な被覆層6を作製できるとともに基体2との密着性を高めるために、成膜初期が50〜200Vに設定することが望ましい。 In order to generate plasma, arc discharge or glow discharge is used, and nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) gas as a carbon source is used as an introduction gas. be able to. Further, the bias voltage at the time of film formation is set to 50 to 200 V at the initial stage of film formation in order to produce a highly hard coating layer 6 in consideration of the crystal structure of the coating layer and to improve the adhesion to the substrate 2. It is desirable.
平均粒径0.8μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化バナジウム(VC)粉末を0.1質量%、平均粒径1.0μmの炭化クロム(Cr3C2)粉末を0.3質量%の割合で添加し混合して、プレス成形によりエンドミル(型番:京セラ製6HFSM060−170−06)形状に成形した後、脱バインダ処理を施し、0.01Paの真空中、1450℃で1時間焼成して超硬合金を作製した。また、各試料のすくい面表面をブラスト加工、ブラシ加工等によって研磨加工した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニング)を施した。 Mainly composed of tungsten carbide (WC) powder having an average particle diameter of 0.8 μm, 10% by mass of metallic cobalt (Co) powder having an average particle diameter of 1.2 μm, and vanadium carbide (VC) powder having an average particle diameter of 1.0 μm. Add 0.1 wt% chromium carbide (Cr 3 C 2 ) powder with an average particle diameter of 1.0 μm at a ratio of 0.3 wt%, mix by press molding and end mill (model number: 6HFSM060-170- manufactured by Kyocera). 06) After forming into a shape, a binder removal treatment was performed and fired in a vacuum of 0.01 Pa at 1450 ° C. for 1 hour to produce a cemented carbide. Further, the rake face surface of each sample was polished by blasting, brushing or the like. Further, the prepared cemented carbide was subjected to blade edge processing (honing) by brushing.
このようにして作製した基体に対してアークイオンプレーティング法により表1に示す種々の組成にて被覆層を成膜した。なお、窒素ガス導入孔は図3のように試料台の中心部となるように設定した。また、第1薄層と第2薄層の厚みを調整するために試料がターゲットを向く時間を制御できるように試料台の回転のうちの自転する回転は不連続な回転とした。また、ターゲットの形状において凹部の深さまたは凸部の高さは括弧書きで記載した。 Coating layers having various compositions shown in Table 1 were formed on the substrate thus prepared by arc ion plating. The nitrogen gas introduction hole was set to be the center of the sample stage as shown in FIG. Further, the rotation of the rotation of the sample stage was a discontinuous rotation so that the time for the sample to face the target could be controlled to adjust the thickness of the first thin layer and the second thin layer. Further, in the target shape, the depth of the concave portion or the height of the convex portion is described in parentheses.
得られた試料に対して、被覆層の表面を含む断面について透過型電子顕微鏡(TEM)にて観察し、被覆層を構成する結晶の平均結晶幅を求めた。また、TEMにて観察する際に、各被覆層の任意3箇所における組成をエネルギー分散分光分析(EDS)によって測定し、これらの平均値を各被覆層の組成として算出した。 With respect to the obtained sample, the cross section including the surface of the coating layer was observed with a transmission electron microscope (TEM), and the average crystal width of the crystals constituting the coating layer was determined. Moreover, when observing with TEM, the composition in arbitrary three places of each coating layer was measured by energy dispersive spectroscopy (EDS), and these average values were computed as a composition of each coating layer.
次に、得られたエンドミル(型番:京セラ製6HFSM060−170−06)を用いて以下の切削条件にて切削試験を行った。結果は表3に示した。
切削方法:エンドミル加工
被削材 :SKD11
切削速度:69.7m/分
送り :0.04mm/rev
切り込み:深さ×横切り込み=5mm×0.15mm
切削状態:乾式
評価方法:90分切削後の横逃げ面摩耗と先端摩耗、チッピングの有無を顕微鏡にて
測定した。
Next, a cutting test was performed under the following cutting conditions using the obtained end mill (model number: 6HFSM060-170-06 manufactured by Kyocera). The results are shown in Table 3.
Cutting method: End mill work material: SKD11
Cutting speed: 69.7 m / min Feed: 0.04 mm / rev
Cutting: Depth x Transverse cutting = 5mm x 0.15mm
Cutting state: Dry evaluation method: 90 minutes after cutting, side flank wear, tip wear, and chipping
It was measured.
表1〜3に示す結果より、下層のみで上層のない構成からなる試料No.10は早期に欠損した。また、下層のt2/t1が1.2より小さい試料No.11では被覆層の剥離によって摩耗の進行が早かった。逆に、下層のt2/t1が2.5より大きい試料No.13では、微小チッピングが発生した。 From the results shown in Tables 1 to 3, Sample No. having a structure having only the lower layer and no upper layer was used. 10 was lost early. In addition, the sample No. 1 in which the lower layer t 2 / t 1 is smaller than 1.2. In No. 11, the progress of wear was rapid due to peeling of the coating layer. On the contrary, the sample No. 1 in which the lower layer t 2 / t 1 is larger than 2.5. In No. 13, minute chipping occurred.
さらに、上層のt4/t3が2.5より小さい試料No.14では被覆層のチッピングによって摩耗の進行が早かった。逆に、上層のt4/t3が18を超える試料No.12では被覆層の酸化が早いためか摩耗の進行が早かった。 Furthermore, sample No. 4 in which the upper layer t 4 / t 3 is smaller than 2.5. In No. 14, wear progressed quickly due to chipping of the coating layer. On the contrary, the sample No. in which t 4 / t 3 in the upper layer exceeds 18 is obtained. In No. 12, the wear progressed quickly because of the rapid oxidation of the coating layer.
これに対して、本発明の範囲内である試料No.1〜9では、いずれも被覆層が耐欠損性および耐酸化性に優れて良好な切削性能を発揮した。 On the other hand, the sample No. within the scope of the present invention. In each of Nos. 1 to 9, the coating layer was excellent in fracture resistance and oxidation resistance and exhibited good cutting performance.
1 表面被覆工具
2 基体
3 すくい面
4 逃げ面
5 切刃
6 被覆層
7 第1薄層
8 第2薄層
9 下層
11 第3薄層
12 第4薄層
13 上層
20 AIP装置
21 真空チャンバ
22 ガス導入口
23 カソード電極
24 アノード電極
25 ターゲット
25a 下層形成用ターゲット
25b 上層形成用ターゲット
26 試料支持台
27 タワー
28 テーブル
29 ヒータ
30 ガス排出口
31 バイアス電源
DESCRIPTION OF SYMBOLS 1 Surface coating tool 2 Base | substrate 3 Drake surface 4 Flank 5 Cutting edge 6 Coating layer 7 1st thin layer 8 2nd thin layer 9 Lower layer 11 3rd thin layer 12 4th thin layer 13 Upper layer 20 AIP apparatus 21 Vacuum chamber 22 Gas Inlet 23 Cathode electrode 24 Anode electrode 25 Target 25a Lower layer forming target 25b Upper layer forming target 26 Sample support base 27 Tower 28 Table 29 Heater 30 Gas exhaust port 31 Bias power supply
Claims (3)
Ti1−bMb(C1−yNy)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.40≦b≦0.60、ただしb>a、0≦y≦1)からなる第2薄層とが交互に一定の周期で積層された下層と、
Ti1−cMc(C1−xNx)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.40≦c≦0.60、0≦x≦1)からなる第3薄層と、
Ti1−dMd(C1−yNy)(ただし、MはNb、Mo、Ta、Hf、Al、SiおよびYの群から選ばれる少なくとも1種、0.45≦d≦0.65、ただしd>c、0≦y≦1)からなる第4薄層とが交互に一定の周期で積層された上層(ただし、a≠c、b≠dの少なくとも一方を満たす。)と、
を具備するとともに、前記第1薄層の平均層厚t1と前記第2薄層の平均層厚t2との比が1.2≦t2/t1≦2.5であるとともに、前記第3薄層の平均層厚t3と前記第4薄層の平均層厚t4との比が2.5≦t4/t3≦18(ただし、(t2/t1)<(t4/t3))であることを特徴とする表面被覆工具。 A cutting tool comprising a substrate and a coating layer covering the surface of the substrate, wherein the coating layer is Ti 1-a M a (C 1-x N x ) (where M is Nb, Mo, Ta A first thin layer comprising at least one selected from the group consisting of Hf, Al, Si and Y, 0.35 ≦ a ≦ 0.55, 0 ≦ x ≦ 1),
Ti 1-b M b (C 1-y N y ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.40 ≦ b ≦ 0.60) Where b> a, 0 ≦ y ≦ 1) and second thin layers alternately stacked at a constant period;
Ti 1-c M c (C 1-x N x ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.40 ≦ c ≦ 0.60) , 0 ≦ x ≦ 1), a third thin layer,
Ti 1-d M d (C 1-y N y ) (where M is at least one selected from the group consisting of Nb, Mo, Ta, Hf, Al, Si and Y, 0.45 ≦ d ≦ 0.65) However, an upper layer (provided that at least one of a ≠ c and b ≠ d is satisfied) in which the fourth thin layers of d> c and 0 ≦ y ≦ 1) are alternately laminated at a constant period;
And the ratio of the average layer thickness t 1 of the first thin layer to the average layer thickness t 2 of the second thin layer is 1.2 ≦ t 2 / t 1 ≦ 2.5, and the third ratio is 2.5 ≦ t 4 / t 3 ≦ the average layer thickness t 3 of the thin layer and the average layer thickness t 4 of the fourth thin layer 18 (provided that, (t 2 / t 1) <(t 4 / t 3 )).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008272618A JP5235607B2 (en) | 2008-10-23 | 2008-10-23 | Surface coating tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008272618A JP5235607B2 (en) | 2008-10-23 | 2008-10-23 | Surface coating tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010099769A JP2010099769A (en) | 2010-05-06 |
JP5235607B2 true JP5235607B2 (en) | 2013-07-10 |
Family
ID=42290873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008272618A Active JP5235607B2 (en) | 2008-10-23 | 2008-10-23 | Surface coating tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5235607B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5153969B2 (en) | 2011-04-22 | 2013-02-27 | 京セラ株式会社 | Cutting tools |
WO2014025057A1 (en) * | 2012-08-10 | 2014-02-13 | 株式会社タンガロイ | Coated tool |
US10265775B2 (en) | 2014-03-27 | 2019-04-23 | Tungaloy Corporation | Coated tool |
US10640864B2 (en) | 2014-04-10 | 2020-05-05 | Tungaloy Corporation | Coated tool |
JP7083448B2 (en) * | 2017-01-07 | 2022-06-13 | 株式会社タンガロイ | Cover cutting tool |
ES2767356T3 (en) * | 2017-05-19 | 2020-06-17 | Walter Ag | Multi-Layer Coated Metal Cutting Tool |
CN107740052B (en) * | 2017-10-16 | 2019-07-12 | 东南大学 | A kind of TiSiTaN coated cutting tool and preparation method thereof |
CN112368094B (en) * | 2018-06-15 | 2023-07-21 | 住友电工硬质合金株式会社 | Surface-coated cutting tool and method for manufacturing same |
JP7274121B2 (en) * | 2019-03-05 | 2023-05-16 | 三菱マテリアル株式会社 | A surface-coated cutting tool with a hard coating layer that exhibits excellent wear resistance and peeling resistance. |
WO2023191049A1 (en) * | 2022-03-31 | 2023-10-05 | 京セラ株式会社 | Coated tool and cutting tool |
DE102022115550A1 (en) * | 2022-06-22 | 2023-12-28 | Rainer Cremer | Coated tool, process for its production and use of the tool |
WO2024190269A1 (en) * | 2023-03-14 | 2024-09-19 | 京セラ株式会社 | Coated tool and cutting tool |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3978722B2 (en) * | 2002-08-22 | 2007-09-19 | 三菱マテリアル株式会社 | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting |
SE529838C2 (en) * | 2005-12-08 | 2007-12-04 | Sandvik Intellectual Property | Coated cemented carbide inserts, ways of making this and its use for milling in steel |
SE0602814L (en) * | 2006-12-27 | 2008-06-28 | Sandvik Intellectual Property | Cutting tool with multilayer coating |
-
2008
- 2008-10-23 JP JP2008272618A patent/JP5235607B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010099769A (en) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5235607B2 (en) | Surface coating tool | |
JP5052666B2 (en) | Surface coating tool | |
US8784977B2 (en) | Coated cubic boron nitride sintered body tool | |
JP6634647B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance | |
JP4960149B2 (en) | Surface coated cutting tool | |
JP5321975B2 (en) | Surface coated cutting tool | |
JP4388582B2 (en) | Hard coating layer and method for forming the same | |
JP5883161B2 (en) | Cutting tools | |
JP2008240079A (en) | Coated member | |
JP5395454B2 (en) | Surface coated cutting tool | |
JPWO2019239654A1 (en) | Surface-coated cutting tool and manufacturing method thereof | |
JP2004100004A (en) | Coated cemented carbide and production method therefor | |
CN112368094A (en) | Surface-coated cutting tool and method for manufacturing same | |
JP6978942B2 (en) | Covering tool | |
JP5094348B2 (en) | Surface coating tool | |
JP4921984B2 (en) | Surface coated cutting tool | |
JP5267365B2 (en) | Surface coated cutting tool | |
JP4808972B2 (en) | Surface coated cutting tool | |
CN116867590A (en) | Surface-coated cutting tool | |
JPWO2020166466A1 (en) | Hard film cutting tool | |
JP2008132564A (en) | Surface-coated cutting tool | |
JP2013052478A (en) | Tool coated with hard film | |
JP5121486B2 (en) | Cutting tools | |
JP6062623B2 (en) | Cutting tools | |
JP5713663B2 (en) | Cutting tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130326 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5235607 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |