JP5515734B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5515734B2
JP5515734B2 JP2009294235A JP2009294235A JP5515734B2 JP 5515734 B2 JP5515734 B2 JP 5515734B2 JP 2009294235 A JP2009294235 A JP 2009294235A JP 2009294235 A JP2009294235 A JP 2009294235A JP 5515734 B2 JP5515734 B2 JP 5515734B2
Authority
JP
Japan
Prior art keywords
line segment
film
powder
tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009294235A
Other languages
Japanese (ja)
Other versions
JP2011131348A (en
Inventor
英彰 高島
秀充 高岡
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009294235A priority Critical patent/JP5515734B2/en
Publication of JP2011131348A publication Critical patent/JP2011131348A/en
Application granted granted Critical
Publication of JP5515734B2 publication Critical patent/JP5515734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば、チタン合金等の難削材の切削加工において、炭化ホウ素(以下、BCで示す)と、アルミナ(以下、Alで示す),窒化チタン(以下、TiNで示す)および炭窒化チタン(以下、TiCNで示す)のうちの少なくともいずれか1種とからなる付着強度、靭性、耐摩耗性にすぐれた複合硬質膜を被覆形成した表面被覆切削工具に関する。 In the present invention, for example, in cutting of difficult-to-cut materials such as titanium alloys, boron carbide (hereinafter referred to as B 4 C), alumina (hereinafter referred to as Al 2 O 3 ), titanium nitride (hereinafter referred to as TiN). The present invention relates to a surface-coated cutting tool formed by coating a composite hard film having excellent adhesion strength, toughness, and wear resistance, and at least one of titanium carbonitride (hereinafter referred to as TiCN).

従来から、硬質薄膜の成膜法としては、物理蒸着(PVD)法、化学蒸着(CVD)法等がよく知られており、工具基体の表面に、これらの成膜法で硬質膜を被覆形成することにより、耐摩耗性を向上させるとともに表面被覆切削工具の長寿命化が図られている。
例えば、特許文献1に示されるように、超硬合金からなる工具基体の表面にPVD法により高硬度のBC被覆層を形成した表面被覆切削工具において、工具基体とBC層との付着強度を高めるために、TiN層、TiCN層等からなる下地層を介在形成することが提案されている。
Conventionally, physical vapor deposition (PVD) method, chemical vapor deposition (CVD) method, etc. are well known as film formation methods for hard thin films, and hard films are coated on the surface of the tool base by these film formation methods. As a result, the wear resistance is improved and the life of the surface-coated cutting tool is extended.
For example, as shown in Patent Document 1, in a surface-coated cutting tool in which a high-hardness B 4 C coating layer is formed on the surface of a tool base made of cemented carbide by the PVD method, the tool base and the B 4 C layer are In order to increase the adhesion strength, it has been proposed to interpose and form an underlayer composed of a TiN layer, a TiCN layer, or the like.

硬質薄膜の他の成膜法としては、近年、エアロゾルデポジション(Aerosol Deposition。以下、ADで示す)法が開発され、このAD法を利用して、工具基体表面に硬質膜を成膜する表面被覆切削工具について注目されている。
AD法については、非特許文献1に紹介されているが、図1に示されるAD装置において、サブミクロンオーダーの原料微粒子をエアロゾル発生器に装填し、高圧ガスと混合、エアロゾル化し、中〜低真空に排気された成膜チャンバー内の基板に高速で吹き付けることで金属、セラミックス膜を成膜するコーティング手法である。
AD法の成膜の原理は、「常温衝撃固化現象」と命名されており、特にセラミックスの成膜においては、特定範囲のサイズを持つ微細な粒子がノズルからガスと共に送られた際に得る一定範囲の運動エネルギーを持って基板に衝突する際に、微細結晶に破砕し、この粒子同士が緻密に結合しながら膜を形成するというものである。
このAD法による成膜の特徴としては、
(イ)金属やセラミックス(酸化物、非酸化物)の成膜が可能である。
(ロ)高温の熱処理が不要なため、通常の焼結プロセスでは得られない原料粉組成を維持した熱非平衡なセラミックス組織が得られる。
(ハ)高速(条件によってはPVD、CVDの30倍以上)かつ大面積で緻密な微結晶組織を持つコーティングが可能である。
(ニ)基板は、硬度や弾性率などの機械特性に配慮すれば、Si,SUS304,樹脂,ガラスなど広く選択可能である。
等が挙げられる。
As another method for forming a hard thin film, in recent years, an aerosol deposition (hereinafter referred to as AD) method has been developed, and a surface on which a hard film is formed on the surface of a tool substrate by using this AD method. Attention has been focused on coated cutting tools.
The AD method is introduced in Non-Patent Document 1, but in the AD apparatus shown in FIG. 1, submicron-order raw material fine particles are loaded into an aerosol generator, mixed with a high-pressure gas, and converted into an aerosol. This is a coating technique in which a metal or ceramic film is formed by spraying at high speed onto a substrate in a film formation chamber that is evacuated to a vacuum.
The principle of film formation by the AD method is named “normal temperature impact solidification phenomenon”, and in particular, in the film formation of ceramics, a certain amount obtained when fine particles having a specific size range are sent together with gas from a nozzle. When it collides with a substrate with a kinetic energy within a range, it breaks into fine crystals and forms a film while these particles are closely bonded.
As a feature of film formation by this AD method,
(A) Metals and ceramics (oxides, non-oxides) can be formed.
(B) Since a high-temperature heat treatment is not required, a thermal non-equilibrium ceramic structure maintaining a raw material powder composition that cannot be obtained by a normal sintering process is obtained.
(C) High-speed coating (30 or more times higher than PVD and CVD depending on conditions) and a large area and a dense microcrystalline structure are possible.
(D) The substrate can be widely selected from Si, SUS304, resin, glass, etc. in consideration of mechanical properties such as hardness and elastic modulus.
Etc.

上記AD法の具体的な適用例として、例えば、特許文献2には、Alと他のセラミックス(例えば、SiC,Si,TiN,TiCN,TiC,AlN,C,BN)材料との複合膜をAD法によって形成することにより、合金鋼の切削ですぐれた切削性能を示す表面被覆切削工具が得られることが述べられている。
また、特許文献3には、ダイヤモンド微粒子とセラミック(例えば、Al,TiO,SiO,AlSiNO,SiC,TaC,BC,BN,SiN,Y,ZrO,MgO)粒子との複合膜をAD法によって形成することにより、密着性にすぐれ、Al合金の切削ですぐれた耐摩耗性を示す表面被覆切削工具が得られることが述べられている。
また、特許文献4には、AD法によってダイヤモンド膜を形成したダイヤモンド被覆工具が示され、このダイヤモンド被覆工具は摩擦係数が小さく耐摩耗性に優れることが述べられている。
しかし、特許文献2に示される表面被覆切削工具はチタン合金など難削材の切削において、耐摩耗性が十分とはいえない。また、特許文献3、4に示されるものは、チタン合金などの硬質材料の切削時に、チッピングが起こりやすいことから、チタン合金の切削には適さない。上記の観点から、チタン合金などの硬質材料の切削には、硬質皮膜に硬さと靭性が求められる。
特許文献5では、窒素を含むDLC膜を最外層をとし、周期律表ΙVa,Va,VΙa族元素の炭化物、窒化物、炭窒化物、並びにAlN、SiC、Si34 、B4C、BN及びこれらの化合物、混合物からなる中間層から構成される表面被覆切削工具について述べられている。特許文献5に示される表面被覆切削工具はチタン合金など難削材の切削において、耐摩耗性が十分とはいえない。
As a specific application example of the AD method, for example, Patent Document 2 discloses Al 2 O 3 and other ceramics (for example, SiC, Si 3 N 4 , TiN, TiCN, TiC, AlN, C, and BN) materials. It is stated that a surface-coated cutting tool exhibiting excellent cutting performance in cutting of alloy steel can be obtained by forming a composite film with the above by the AD method.
Patent Document 3 discloses diamond fine particles and ceramics (for example, Al 2 O 3 , TiO 2 , SiO 2 , AlSiNO, SiC, TaC, B 4 C, BN, SiN, Y 2 O 3 , ZrO 2 , MgO). It is stated that by forming a composite film with particles by the AD method, a surface-coated cutting tool having excellent adhesion and excellent wear resistance by cutting an Al alloy can be obtained.
Patent Document 4 discloses a diamond-coated tool in which a diamond film is formed by an AD method, and it is stated that this diamond-coated tool has a small friction coefficient and excellent wear resistance.
However, the surface-coated cutting tool disclosed in Patent Document 2 cannot be said to have sufficient wear resistance when cutting difficult-to-cut materials such as titanium alloys. Further, those disclosed in Patent Documents 3 and 4 are not suitable for cutting a titanium alloy because chipping is likely to occur when cutting a hard material such as a titanium alloy. From the above point of view, cutting hard materials such as titanium alloys requires hardness and toughness in the hard coating.
In Patent Document 5, a nitrogen-containing DLC film is used as an outermost layer, and periodic table ΙVa, Va, VΙa group element carbide, nitride, carbonitride, and AlN, SiC, Si 3 N 4 , B 4 C, A surface-coated cutting tool composed of an intermediate layer composed of BN and their compounds and mixtures is described. The surface-coated cutting tool disclosed in Patent Document 5 cannot be said to have sufficient wear resistance when cutting difficult-to-cut materials such as titanium alloys.

特許2841749号明細書Japanese Patent No. 2841749 特開2006−131992号公報JP 2006-131992 A 特開2009−62607号公報JP 2009-62607 A 特開2008−19464号公報JP 2008-19464 A 特開平11−291103号公報JP 11-291103 A

「Synthesiology」Vol.1,No.2(2008)p.130〜138“Synthesiology” Vol. 1, No. 1 2 (2008) p. 130-138

本発明は、高電圧・高温・真空装置を必要とせず、作製コストの低減を図るとともに、チタン合金等の難削材の切削加工にあたり、AD法により膜の組成を変調させて成膜することにより、付着強度、靭性、耐摩耗性にすぐれ、かつ、長期の使用に亘りすぐれた切削性能を発揮する複合硬質膜を被覆形成した表面被覆切削工具を提供することを目的とする。   The present invention does not require a high voltage / high temperature / vacuum device, reduces the production cost, and modulates the composition of the film by the AD method when forming a difficult-to-cut material such as a titanium alloy. Accordingly, it is an object of the present invention to provide a surface-coated cutting tool having a composite hard film formed thereon, which has excellent adhesion strength, toughness, and wear resistance, and exhibits excellent cutting performance over a long period of use.

本発明者等は、炭化ホウ素(BC)と、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)のうちの少なくともいずれか1種とからなる複合硬質膜に着目し、AD法によってこれを成膜することにより、工具基体との密着性に優れた複合硬質膜が形成される。アルミナ(Al)が靭性および耐酸化性に優れ,炭窒化チタン(TiCN)が硬さに優れ、窒化チタン(TiN)がアルミナ(Al)と炭窒化チタン(TiCN)の中間に位置することから、切削目的により3種類の混合粉末の組成を任意に調整することで、靭性、耐酸化性、硬さを併せ持ちかつ切削目的に応じた複合皮膜を形成することができる。さらに、超硬合金焼結体、cBN焼結体、サーメットあるいは高速度鋼等を工具基体とし、その表面にAD法で複合硬質膜を成膜するにあたり、工具基体の表面と平行な複合硬質膜の平面における炭化ホウ素(BC)の占有線分と、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の占有合計線分をその膜厚方向に沿って調整し、線分比率傾斜構造の複合硬質膜とすることによって、付着強度、靭性および耐摩耗性にすぐれたチタン合金等の難削材の切削加工に好適な表面被覆切削工具が得られることを見出したのである。ここで、本発明でいう「占有線分」、「占有合計線分」及び「線分比率」は、次のように定義する。即ち、「占有線分」とは、工具基体の表面と平行な複合硬質膜の平面における基準長さの線分に占める粉末の占める線分の長さであり、「占有合計線分」とは、工具基体の表面と平行な複合硬質膜の平面における基準長さの線分に占めるアルミナ炭化チタン及び炭窒化チタンの占有線分の合計であり、「線分比率」とは、工具基体の表面と平行な複合硬質膜の平面における基準長さの線分に占める各粉末の「占有線分」の割合である。例えばBCの線分比率は「炭化ホウ素の占有線分/(炭化ホウ素の占有線分+占有合計線分(アルミナ+炭化チタン+炭窒化チタンの占有線分))」で示される。
The inventors have made a composite hard film composed of boron carbide (B 4 C) and at least one of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN). Paying attention and depositing the film by the AD method, a composite hard film having excellent adhesion to the tool base is formed. Alumina (Al 2 O 3 ) is excellent in toughness and oxidation resistance, titanium carbonitride (TiCN) is excellent in hardness, and titanium nitride (TiN) is intermediate between alumina (Al 2 O 3 ) and titanium carbonitride (TiCN) Therefore, by arbitrarily adjusting the composition of the three types of mixed powders according to the cutting purpose, it is possible to form a composite film having both toughness, oxidation resistance and hardness and according to the cutting purpose. Furthermore, when using a cemented carbide sintered body, a cBN sintered body, cermet or high-speed steel as a tool base and forming a composite hard film on the surface by the AD method, a composite hard film parallel to the surface of the tool base is used. and occupied segment of boron carbide (B 4 C) in the plane of alumina (Al 2 O 3), along the occupancy total segment of titanium nitride (TiN) and titanium carbonitride (TiCN) in its thickness direction By adjusting and making a composite hard film with a line segment ratio gradient structure, it is possible to obtain a surface-coated cutting tool suitable for cutting difficult-to-cut materials such as titanium alloys having excellent adhesion strength, toughness and wear resistance. I found it. Here, “occupied line segment”, “occupied total line segment”, and “line segment ratio” in the present invention are defined as follows. That is, the “occupied line segment” is the length of the line segment occupied by the powder in the line segment of the reference length in the plane of the composite hard film parallel to the surface of the tool base. alumina occupying the reference length of the line segment in a plane parallel to the surface of the composite hard film of the tool base body, the sum of the occupied segments of titanium carbide and titanium carbonitride, the "line segment ratio", the tool substrate This is the ratio of the “occupied line segment” of each powder to the line segment of the reference length in the plane of the composite hard film parallel to the surface . For example, the line segment ratio of B 4 C is represented by “occupied segment of boron carbide / (occupied segment of boron carbide + occupied total segment ( = occupied segment of alumina + titanium carbide + titanium carbonitride))”.

本発明は、上記知見に基づいてなされたものであって、
「(1)工具基体の表面に、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)のうちの少なくともいずれか1種と炭化ホウ素(BC)との複合硬質膜が1〜15μmの膜厚で被覆形成された表面被覆切削工具であって、工具基体の表面と平行な上記複合硬質膜の炭化ホウ素(BC)の線分比率と、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の合計線分比率とを比較したとき、工具基体側ではアルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の合計線分比率が高く、また、表層側では炭化ホウ素(BC)の線分比率が高くなる線分比率傾斜構造を備えていることを特徴とする表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A composite hard of boron carbide (B 4 C) and at least one of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) on the surface of the tool base A surface-coated cutting tool in which a film is formed to have a film thickness of 1 to 15 μm, the boron carbide (B 4 C) line segment ratio of the composite hard film parallel to the surface of the tool base, and alumina (Al 2 When the total line segment ratio of O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) is compared, alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) are obtained on the tool base side. ) And a line segment ratio gradient structure in which the boron carbide (B 4 C) line segment ratio is high on the surface layer side. ”
It is characterized by.

本発明について、以下に説明する。   The present invention will be described below.

本発明では、複合硬質膜を形成する工具基体としては、炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化ほう素基超高圧焼結材料、高速度工具鋼等の、既によく知られている各種切削工具基体材料を用いることができる。
本発明では、上記工具基体表面に、前記AD(Aerosol Deposition)法により複合硬質膜を成膜する。
まず、本発明の複合硬質膜のAD法による成膜の概要を図1により説明する。
図1において、例えば、粒径が0.1〜1.0μmの炭化ホウ素(BC)粉末と、粒径が0.1〜1.0μmのアルミナ(Al)粉末,窒化チタン(TiN)粉末および炭窒化チタン(TiCN)粉末の何れか1種以上を、それぞれエアロゾル発生器内に充填し、これを高圧ガス(He,Ar,Nあるいは空気)と混合し、エアロゾル化し、中、低真空圧の成膜チャンバー内の基板に高速で吹き付けることで、基板上に炭化ホウ素(BC)とアルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)のうちの少なくともいずれか1種との所望の線分比率を有する複合膜を成膜することができる。
In the present invention, as the tool base for forming the composite hard film, tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, cubic boron nitride-based ultrahigh pressure sintered material, high-speed tool steel, etc. are already well known. Various cutting tool base materials that have been used can be used.
In the present invention, a composite hard film is formed on the surface of the tool base by the AD (Aerosol Deposition) method.
First, an outline of film formation by the AD method of the composite hard film of the present invention will be described with reference to FIG.
In FIG. 1, for example, boron carbide (B 4 C) powder having a particle size of 0.1 to 1.0 μm, alumina (Al 2 O 3 ) powder having a particle size of 0.1 to 1.0 μm, titanium nitride ( At least one of TiN) powder and titanium carbonitride (TiCN) powder is filled in an aerosol generator, mixed with high-pressure gas (He, Ar, N 2 or air), aerosolized, By spraying the substrate in a low vacuum pressure deposition chamber at high speed, boron carbide (B 4 C), alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) are formed on the substrate. A composite film having a desired line segment ratio with at least one of them can be formed.

本発明においては、上記AD法を利用して成膜するにあたり、複合硬質膜の下部層を形成する成膜初期段階では、原料微粒子粉末中のアルミナ(Al)粉末,窒化チタン(TiN)粉末および炭窒化チタン(TiCN)粉末の何れか1種以上からなる粉末の比率が高くなるように、また、複合硬質膜の上部層を形成する成膜後期段階では、原料微粒子粉末中の炭化ホウ素(BC)粉末の含有比率が高くなるように、それぞれのエアロゾル発生器内のガス圧を調節することにより、工具基体の表面と平行な上記複合硬質膜の平面で観察した場合、工具基体側ではアルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の合計線分比率が高く、また、表層側では炭化ホウ素(BC)の線分比率が高く、かつ、線分比率傾斜構造を備える複合硬質膜を成膜する。
なお、本発明の複合硬質膜は、その焼結性を高めるために、成膜後、真空中での熱処理などを行ってもよい。
本発明の複合硬質膜は、工具基体側ではアルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の合計線分比率が高く、炭化ホウ素(BC)線分比率が低くなっているため、工具基体との密着性に優れ、かつ、靭性に優れる。
一方、複合硬質膜の表層側では炭化ホウ素(BC)の線分比率が高く、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の合計線分比率が低くなっているため、硬質であって耐摩耗性に優れる。
本発明の複合硬質膜は、その膜厚が1μm未満であると、すぐれた耐摩耗性を長期の使用に亘って発揮することはできず、一方、その膜厚が15μmを超えると、膜内に発生した残留応力により、剥離やチッピングが生じやすくなるため、複合硬質膜の膜厚は、1〜15μmと定めた。
In the present invention, when forming a film using the AD method, in the initial stage of film formation for forming the lower layer of the composite hard film, alumina (Al 2 O 3 ) powder, titanium nitride (TiN) in the raw material fine particle powder is used. ) Carbonization in the raw material fine particle powder so that the ratio of the powder composed of at least one of powder and titanium carbonitride (TiCN) powder is increased, and in the later stage of film formation for forming the upper layer of the composite hard film When the gas pressure in each aerosol generator is adjusted so that the content ratio of boron (B 4 C) powder is high, the tool is observed on the plane of the composite hard film parallel to the surface of the tool base. alumina is a base side (Al 2 O 3), high total line ratio of titanium nitride (TiN) and titanium carbonitride (TiCN), also in the surface layer higher segment ratio of boron carbide (B 4 C) is And forming the composite hard film having a line segment ratio gradient structure.
In addition, in order to improve the sinterability, the composite hard film of the present invention may be subjected to heat treatment in a vacuum after the film formation.
The composite hard film of the present invention has a high total line segment ratio of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) on the tool base side, and a boron carbide (B 4 C) line segment ratio. Is low, the adhesiveness with the tool substrate is excellent, and the toughness is excellent.
On the other hand, on the surface layer side of the composite hard film, the line segment ratio of boron carbide (B 4 C) is high, and the total line segment ratio of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) is low. Therefore, it is hard and has excellent wear resistance.
If the composite hard film of the present invention has a film thickness of less than 1 μm, it cannot exhibit excellent wear resistance over a long period of use, while if the film thickness exceeds 15 μm, Therefore, the composite hard film was determined to have a thickness of 1 to 15 μm.

図2に示すように、上記の線分比率傾斜構造を有する本発明の複合硬質膜の具体例としては、例えば、
工具基体表面から順に、0.5〜2μmの層厚を有する第1層、0〜5μmの層厚を有する第2層および0.5〜10μmの層厚を有する第3層を形成し、
第1層では、[炭化ホウ素(BC)の占有線分]:[アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の占有合計線分]=1:9〜3:7の比率とし、
第2層では、[炭化ホウ素(BC)の占有線分]:[アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の占有合計線分]=3:7〜5:5の比率とし、
第3層では、[炭化ホウ素(BC)の占有線分]:[アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の占有合計線分]=5:5〜7:3の比率とし、かつ、
第1層、第2層および第3層の各層のなす界面においても、炭化ホウ素(BC)の占有線分と、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)の占有合計線分が線分比率傾斜構造を有し、かつ各層内においても同様の傾斜構造を有することから、膜全体として傾斜構造を有する複合硬質膜構造が挙げられる。
As shown in FIG. 2, as a specific example of the composite hard film of the present invention having the above-described line segment ratio gradient structure, for example,
In order from the tool substrate surface, a first layer having a layer thickness of 0.5 to 2 μm, a second layer having a layer thickness of 0 to 5 μm, and a third layer having a layer thickness of 0.5 to 10 μm are formed,
In the first layer, [occupied line segment of boron carbide (B 4 C)]: [occupied total line segment of alumina (Al 2 O 3 ), titanium nitride (TiN) and titanium carbonitride (TiCN)] = 1: 9 ~ 3: 7 ratio,
In the second layer, [occupied line segment of boron carbide (B 4 C)]: [occupied total line segment of alumina (Al 2 O 3 ), titanium nitride (TiN) and titanium carbonitride (TiCN)] = 3: 7 ~ 5: 5 ratio,
In the third layer, [occupied line segment of boron carbide (B 4 C)]: [occupied total line segment of alumina (Al 2 O 3 ), titanium nitride (TiN) and titanium carbonitride (TiCN)] = 5: 5 ~ 7: 3 ratio, and
Also at the interfaces formed by the first, second, and third layers, boron carbide (B 4 C) occupying line segments, alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride ( Since the occupied total line segment of TiCN) has a line segment ratio gradient structure and has a similar gradient structure in each layer, a composite hard film structure having a gradient structure as a whole film can be mentioned.

上記のとおり、本発明の表面被覆切削工具は、工具基体の表面に、アルミナ(Al),窒化チタン(TiN)および炭窒化チタン(TiCN)のうちの少なくともいずれか1種と炭化ホウ素(BC)との複合硬質膜が形成され、かつ、複合硬質膜中のアルミナ(Al),窒化チタン(TiN),炭窒化チタン(TiCN)の占有合計線分と、炭化ホウ素(BC)の占有線分は、工具基体側ではアルミナ(Al),窒化チタン(TiN),炭窒化チタン(TiCN)の合計線分比率が高く、一方、表層側では炭化ホウ素(BC)の線分比率が高くなる線分比率傾斜構造を備えているので、複合硬質膜全体として、硬さ、靭性、付着強度に優れ、特に、チタン合金等の難削材の切削加工において、すぐれた付着強度、靭性、耐摩耗性を発揮し、長期の使用に亘ってすぐれた切削性能を発揮するとともに、工具寿命の延命化が図られるのである。 As described above, the surface-coated cutting tool of the present invention has boron carbide on the surface of the tool base and at least one of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN). A composite hard film with (B 4 C) is formed, and the occupied total line segments of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) in the composite hard film, and boron carbide The occupied line segment of (B 4 C) has a high total line segment ratio of alumina (Al 2 O 3 ), titanium nitride (TiN), and titanium carbonitride (TiCN) on the tool base side, while boron carbide on the surface layer side Since it has a line segment ratio gradient structure that increases the line segment ratio of (B 4 C), the composite hard film as a whole is excellent in hardness, toughness, and adhesion strength, especially cutting difficult-to-cut materials such as titanium alloys. Excellent in processing Chakukyodo, toughness, exhibit wear resistance, long-term as well as exhibiting superior cutting performance over the use of, it is the life extension of tool life is achieved.

本発明の表面被覆切削工具の複合硬質膜を成膜するためのAD(エアロゾルデポジッション)装置を示し、(a)は概略正面図、(b)は成膜チャンバー内上部の概略平面図である。The AD (aerosol deposition) apparatus for forming the composite hard film of the surface-coated cutting tool of the present invention is shown, (a) is a schematic front view, and (b) is a schematic plan view of the upper part in the film forming chamber. . 本発明の表面被覆切削工具の複合硬質膜の層構造の一例を示す。An example of the layer structure of the composite hard film of the surface coating cutting tool of this invention is shown.

以下に、本発明の表面被覆切削工具を実施例に基づいて説明する。
なお、ここでは工具基体材料として超硬合金基体を使用したが、工具基体としては、cBN焼結体、サーメットあるいは高速度鋼等の通常用いられる工具基体を使用することがもちろん可能である。
Below, the surface covering cutting tool of this invention is demonstrated based on an Example.
Although a cemented carbide substrate is used here as the tool substrate material, it is of course possible to use a commonly used tool substrate such as a cBN sintered body, cermet or high speed steel as the tool substrate.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度25°のホーニング加工を施し、仕上げ研磨を施すことにより、いずれもWC基超硬合金からなり、かつISO規格SNGA120412のインサート形状をもった超硬合金基体1〜10を製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. The mixture is blended for 96 hours by a ball mill, dried by a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering under holding conditions and processing the outer periphery to a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, and finish polishing is performed. And cemented carbide bases 1 to 10 having an ISO standard SNGA120212 insert shape were manufactured.

ついで、上記の超硬合金基体を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるAD装置の成膜チャンバー内の公転軸に装着し、
まず、粒径が0.1〜1.0μmのBC粉末と、表2に示される配合率で混合された粒径が0.1〜1.0μmのAl粉末,TiN粉末,TiCN粉末との原料微粒子を、それぞれ、エアロゾル発生器に装入し、粉末の凝集を防ぐため、エアロゾル発生器の下の振動機を振動させながらエアロゾル発生器にガスを流し、Arガスを用いて、合計ガス圧力を300Pa、ガス搬入速度5L/minで原料微粒子をエアロゾル化した。BC粉末とAl粉末,TiN粉末,TiCN粉末の膜内の構成比率を調整するため、成膜初期の第1層ではBCの粉末が入ったエアロゾル発生器に入るガスの流量を5―40Paに設定し、膜内のBCの構成比率を低く設定した。また第2層では40―130Paに設定し、膜内のBCの構成比率を設定した。第3層では第2層では130―170Paに設定し、膜内のBCの構成比率が高くなるように設定した。エアロゾル化したBC粉末とAl粉末,TiN粉末,TiCN粉末の混合粉末を成膜炉の直前で混合し、成膜チャンバー内の超硬合金基体に所定時間ノズルから吹きつけ、かつ、ノズルを5mm/secで移動させることにより、工具基体表面に、表3および図2に示される所定膜厚、所定のBC/(Al+TiN+TiCN)比率の複合膜(図2では、第1層,第2層,第3層として示す)を、BCおよびAl粉末,TiN粉末,TiCN粉末が入ったエアロゾル容器内のガス圧を調整することで形成し、
ISO規格SNGA120412に規定するスローアウエイチップ形状の表2に示される本発明複合硬質膜被覆工具1〜10(以下、本発明工具1〜10という)を作製した。
Next, the above-mentioned cemented carbide substrate is ultrasonically cleaned in acetone and dried, and attached to the revolution shaft in the film forming chamber of the AD apparatus shown in FIG.
First, B 4 C powder having a particle size of 0.1 to 1.0 μm, Al 2 O 3 powder having a particle size of 0.1 to 1.0 μm mixed at a blending ratio shown in Table 2, TiN powder, Raw material fine particles with TiCN powder are charged into an aerosol generator, and in order to prevent agglomeration of the powder, gas is flowed to the aerosol generator while vibrating a vibrator under the aerosol generator, and Ar gas is used. The raw material fine particles were aerosolized at a total gas pressure of 300 Pa and a gas carry-in speed of 5 L / min. In order to adjust the composition ratio in the film of B 4 C powder and Al 2 O 3 powder, TiN powder, TiCN powder, the gas entering the aerosol generator containing B 4 C powder in the first layer at the initial stage of film formation The flow rate was set to 5-40 Pa, and the composition ratio of B 4 C in the film was set low. In the second layer, the composition ratio was set to 40 to 130 Pa, and the composition ratio of B 4 C in the film was set. In the third layer, the second layer was set to 130-170 Pa, and the B 4 C component ratio in the film was set high. A mixed powder of aerosolized B 4 C powder, Al 2 O 3 powder, TiN powder, and TiCN powder is mixed immediately before the film forming furnace, sprayed from a nozzle to the cemented carbide substrate in the film forming chamber for a predetermined time, and By moving the nozzle at 5 mm / sec, a composite film having a predetermined film thickness and a predetermined B 4 C / (Al 2 O 3 + TiN + TiCN) ratio shown in Table 3 and FIG. , Shown as first layer, second layer, third layer) by adjusting the gas pressure in the aerosol container containing B 4 C and Al 2 O 3 powder, TiN powder, TiCN powder,
The present composite hard film coated tools 1 to 10 (hereinafter referred to as the present invention tools 1 to 10) shown in Table 2 having a throwaway tip shape defined in ISO standard SNGA12041 were produced.

比較のため、実施例で使用した超硬合金基体1〜10の上に、膜厚が1.0―4.5μmであるTiN,TiCN,TiAlN,Al膜を成膜し、ISO規格SNGA120412に規定するスローアウエイチップ形状の表4に示される比較例複合硬質膜被覆工具1〜10(以下、比較例工具1〜10という)を作製した。 For comparison, a TiN, TiCN, TiAlN, Al 2 O 3 film having a film thickness of 1.0 to 4.5 μm is formed on the cemented carbide substrates 1 to 10 used in the examples. Comparative example composite hard film-coated tools 1 to 10 (hereinafter referred to as comparative example tools 1 to 10) shown in Table 4 having a throwaway tip shape defined in SNGA12041 were produced.

上記本発明工具1〜10の層厚方向の線分比率を、オージェ電子分光により工具基体表面と平行な複合硬質膜の平面について線分析し、基準長さの線分に占める元素構成より、工具基体表面と平行な複合硬質膜の平面における各粉末の占有線分を算出し、それぞれの粉末の線分比率を算出したところ、それぞれ図2に示される目標とするBC/(BC+Al+TiN+TiCN)線分比率と実質的に同じ値を示した。
表3に層厚方向のBC/(BC+Al+TiN+TiCN)線分比率を示す。
また、本発明工具1〜10の膜厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
これらの測定値を、表3に示す。
The layer thickness direction of the line segment ratio of the present invention the tool 10, and line analysis for the plane of the tool substrate surface parallel to the composite hard film by Auger electron spectroscopy, elemental structure occupying the line of the reference length, the tool When the occupied line segment of each powder in the plane of the composite hard film parallel to the substrate surface was calculated and the line segment ratio of each powder was calculated, the target B 4 C / (B 4 C + Al shown in FIG. 2 was obtained. 2 O 3 + TiN + TiCN) line segment ratio showed substantially the same value.
Table 3 shows the B 4 C / (B 4 C + Al 2 O 3 + TiN + TiCN) line segment ratio in the layer thickness direction.
Moreover, when the film thickness of the tool 1-10 of this invention was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.
These measured values are shown in Table 3.

上記の本発明工具1〜10および比較例工具1〜10を用い、以下の切削条件で切削加工試験を実施した。
《切削条件1》
被削材: Ti−6Al−4V(HB310)の丸棒、
切削速度: 90 m/min、
送り: 0.15 mm/rev、
切込み:0.10 mm、
切削時間:5分
の条件での、Ti合金の乾式高速連続切削加工試験、
《切削条件2》
被削材: Ti−6Al−4V(HB310)の丸棒、
切削速度: 110 m/min、
送り: 0.10 mm/rev、
切込み:0.15 mm、
切削時間:5分
の条件での、Ti合金の湿式高速連続切削加工試験、
を行い、切刃の逃げ面摩耗幅を測定した。
上記切削条件1,2による切削加工試験の測定結果を表5に示した。
Using the above-described inventive tools 1 to 10 and comparative tools 1 to 10, a cutting test was performed under the following cutting conditions.
<< Cutting conditions 1 >>
Work material: Ti-6Al-4V (HB310) round bar,
Cutting speed: 90 m / min,
Feed: 0.15 mm / rev,
Cutting depth: 0.10 mm,
Cutting time: Dry high-speed continuous cutting test of Ti alloy under the condition of 5 minutes,
<< Cutting conditions 2 >>
Work material: Ti-6Al-4V (HB310) round bar,
Cutting speed: 110 m / min,
Feed: 0.10 mm / rev,
Cutting depth: 0.15 mm,
Cutting time: wet high-speed continuous cutting test of Ti alloy under the condition of 5 minutes,
The flank wear width of the cutting blade was measured.
Table 5 shows the measurement results of the cutting test under the above cutting conditions 1 and 2.

表5に示される結果から、本発明工具1〜10は、複合硬質膜がAl,TiN,TiCNのうちの少なくともいずれか1種と、BCとの複合膜として構成され、かつ、工具基体側ではAl,TiN,TiCNの合計線分比率が高く、また、表層側ではBCの線分比率が高くなる線分比率傾斜構造を備えていることから、チタン合金等の難削材の切削加工では、硬質被覆層がすぐれた付着強度、高温硬さ、靭性を備え、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較例工具1〜10においては、付着強度不足、耐摩耗性不足等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 5, according to the present invention tools 1-10, the composite hard film is configured as a composite film of at least one of Al 2 O 3 , TiN, TiCN and B 4 C, and The titanium alloy has a line segment ratio gradient structure in which the total line segment ratio of Al 2 O 3 , TiN, TiCN is high on the tool base side and the B 4 C line segment ratio is high on the surface layer side. When cutting difficult-to-cut materials such as hard coatings, the hard coating layer has excellent adhesion strength, high-temperature hardness, and toughness, and exhibits excellent wear resistance over a long period of use.
On the other hand, it is clear that the comparative tools 1 to 10 reach the service life in a relatively short time due to insufficient adhesion strength and insufficient wear resistance.

上述のように、この発明の複合硬質膜を被覆形成した表面被覆切削工具は、チタン合金等の難削材の切削加工に用いた場合に好適であるが、他の被削材の切削加工に用いることも勿論可能であり、さらに、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるものである。   As described above, the surface-coated cutting tool formed by coating the composite hard film of the present invention is suitable for use in cutting difficult-to-cut materials such as titanium alloys, but for cutting other work materials. Needless to say, it can be used, and it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of cutting, and the cost reduction.

Claims (1)

工具基体の表面に、アルミナ,窒化チタンおよび炭窒化チタンのうちの少なくともいずれか1種と炭化ホウ素との複合硬質膜が1〜15μmの膜厚で被覆形成された表面被覆切削工具であって、工具基体の表面と平行な上記複合硬質膜の平面における炭化ホウ素の占有線分と、アルミナ、窒化チタン及び炭窒化チタンの占有合計線分を比較したとき、工具基体側ではアルミナ、窒化チタン及び炭窒化チタンの占有合計線分比率が高く、また、表層側では炭化ホウ素の占有線分比率が高くなる線分比率傾斜構造を備えていることを特徴とする表面被覆切削工具。   A surface-coated cutting tool in which a composite hard film of at least one of alumina, titanium nitride, and titanium carbonitride and boron carbide is coated on the surface of the tool base with a film thickness of 1 to 15 μm, When the occupied line segment of boron carbide in the plane of the composite hard film parallel to the surface of the tool substrate is compared with the occupied total line segments of alumina, titanium nitride and titanium carbonitride, alumina, titanium nitride and carbon on the tool substrate side are compared. A surface-coated cutting tool comprising a line segment ratio gradient structure in which the occupied total line segment ratio of titanium nitride is high and the occupied line segment ratio of boron carbide is increased on the surface layer side.
JP2009294235A 2009-12-25 2009-12-25 Surface coated cutting tool Active JP5515734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294235A JP5515734B2 (en) 2009-12-25 2009-12-25 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294235A JP5515734B2 (en) 2009-12-25 2009-12-25 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2011131348A JP2011131348A (en) 2011-07-07
JP5515734B2 true JP5515734B2 (en) 2014-06-11

Family

ID=44344630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294235A Active JP5515734B2 (en) 2009-12-25 2009-12-25 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5515734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326360B (en) * 2017-07-13 2020-11-10 西安交通大学 Nano multilayer gradient composite anti-erosion coating structure and preparation method thereof
CN107326361B (en) * 2017-07-13 2020-08-28 西安交通大学 Gradient multilayer composite coating structure with high erosion resistance and preparation method thereof
JP6992879B2 (en) * 2018-04-03 2022-01-13 日本製鉄株式会社 Composite ceramic laminate and manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253184B2 (en) * 2002-12-27 2009-04-08 株式会社神戸製鋼所 Hard coating with excellent adhesion and method for producing the same
JP2009062607A (en) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd Coated body

Also Published As

Publication number Publication date
JP2011131348A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
KR102033188B1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
EP2554303B1 (en) Cutting tool
EP3085478B1 (en) Coated tool
WO2007111301A1 (en) Surface-coated tool
JP5710008B2 (en) Cutting tools
JP2004100004A (en) Coated cemented carbide and production method therefor
JP5402515B2 (en) Surface coated cutting tool
WO2011052767A1 (en) Surface coated cutting tool with excellent chip resistance
JP2010253594A (en) Surface coated tool
JP5515734B2 (en) Surface coated cutting tool
CN109562461B (en) Surface-coated cutting tool having excellent welding chipping resistance and peeling resistance
JP6245432B2 (en) Surface coated cutting tool
JP4351521B2 (en) Surface coated cutting tool
JP5471842B2 (en) Surface coated cutting tool
JP2011093003A (en) Surface-coated member
JP5459498B2 (en) Surface coated cutting tool
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5392029B2 (en) Surface coated cutting tool
JP5392033B2 (en) Surface coated cutting tool
JP5392046B2 (en) Surface coated cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP5446048B2 (en) Surface coated cutting tool
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4484500B2 (en) Surface coated cutting tool
CN102061466B (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5515734

Country of ref document: JP