JP2012139795A - Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material - Google Patents

Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material Download PDF

Info

Publication number
JP2012139795A
JP2012139795A JP2011000431A JP2011000431A JP2012139795A JP 2012139795 A JP2012139795 A JP 2012139795A JP 2011000431 A JP2011000431 A JP 2011000431A JP 2011000431 A JP2011000431 A JP 2011000431A JP 2012139795 A JP2012139795 A JP 2012139795A
Authority
JP
Japan
Prior art keywords
layer
tool
tib
cutting
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011000431A
Other languages
Japanese (ja)
Inventor
Hiroaki Kakinuma
宏彰 柿沼
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011000431A priority Critical patent/JP2012139795A/en
Publication of JP2012139795A publication Critical patent/JP2012139795A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coating layer exhibiting a superior resistance against peeling and chipping in high speed cutting of a soft hard-to-cut material.SOLUTION: The cutting tool constituted by coating the outermost surface of a tool base body comprising tungsten carbide base cemented carbide or titanium carbide nitride base cermet with a titanium boride layer with an average layer thickness of 0.5 to 5 ηm, the titanium boride layer is constituted as a complex tissue of a crystalline particles tissue having a plurality of average particle sizes, the complex tissue is constituted of secondary crystalline particles having an average particle size of 40 to 70 nm comprising the aggregate of primary crystalline particles having an average particle size of 10 to 15 nm and tertiary crystalline particles having an average particle side of 300 to 600 nm comprising the aggregate of the secondary crystalline particles.

Description

本発明は、硬質被覆層がすぐれた耐溶着性とすぐれた密着力を有する表面層によって構成され、したがって、特に各種のAl系合金などの軟質難削材の切削加工をより剥離やチッピングが起きやすい高速切削条件で行った場合にも、溶着が発生することによる硬質被覆層の剥離を抑制し、長期に亘ってすぐれた耐剥離性と耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, the hard coating layer is constituted by a surface layer having excellent adhesion resistance and excellent adhesion, and therefore, particularly when cutting difficult hard-to-cut materials such as various Al-based alloys, peeling and chipping occur more. Surface-coated cutting tool (hereinafter referred to as coating) that suppresses the peeling of the hard coating layer due to the occurrence of welding and exhibits excellent peeling resistance and chipping resistance over a long period of time even when performed under easy high-speed cutting conditions. Tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、工具基体と、繊維状微細組織を有する少なくとも1層のTiB(硼化チタン)層を含む被膜とを含む切削工具インサートであって、円柱状の粒は、5〜50nmの直径と、長さと直径との比率l/dが>2であって250nm以上の長さとを有し、且つ繊維状の粒が、基体の表面に対して垂直に配向することを特徴とする切削工具インサート(以下、従来被覆工具)が知られており、そして、この従来被覆工具は、Ti系合金やダイス鋼などの硬質難削材の切削加工を高熱発生を伴う高速切削条件で行った場合にも、長期に亘ってすぐれた耐摩耗性を発揮することが知られている。 A cutting tool insert comprising a tool base and a coating comprising at least one TiB 2 (titanium boride) layer having a fibrous microstructure, wherein the cylindrical grains have a diameter of 5 to 50 nm, Cutting tool insert characterized in that the ratio l / d of length to diameter is> 2 and has a length of 250 nm or more, and the fibrous grains are oriented perpendicular to the surface of the substrate ( Hereinafter, conventional coated tools) are known, and this conventional coated tool is also used when cutting hard hard-to-cut materials such as Ti-based alloys and die steel under high-speed cutting conditions with high heat generation. It is known to exhibit excellent wear resistance over a long period of time.

さらに、前記従来被覆工具は、TiBターゲットを有する直流マグネトロンスパッタ源を装備する薄膜蒸着用の商業的に入手可能な蒸着装置に前記工具基体を装入し、まず、エレクトロンビームで前記工具基体を抵抗加熱し、加熱後、直ちに、前記工具基体は、−200Vの基体バイアスで30分間Arエッチングし、次いで、装置内の雰囲気をAr雰囲気に維持して所定時間、TiBターゲットのスパッタリングを行うことにより、TiB層からなる硬質被覆層を成膜することにより製造されることも知られている。 Furthermore, the conventional coated tool is charged with a tool substrate in a commercially available deposition apparatus for thin film deposition equipped with a direct current magnetron sputtering source having a TiB 2 target. Resistance heating is performed, and immediately after heating, the tool base is subjected to Ar etching with a base bias of −200 V for 30 minutes, and then the TiB 2 target is sputtered for a predetermined time while maintaining the atmosphere in the apparatus in an Ar atmosphere. It is also known that it is manufactured by forming a hard coating layer comprising a TiB 2 layer.

また、硬質被覆層を成膜する手段としては、アークイオンプレーティング、直流スパッタリングばかりでなく、高出力パルススパッタリングを利用した成膜も提案されており、例えば、特許文献2、3に示されるように、パルスの瞬間印加電力を200W/cm以上、パルスの一波長長さを100μsec以下という条件で高出力パルススパッタリングを行うことにより(Al,M)(但し、Mは、Mg、Zn、Mn、Fe等)あるいはα−Alを、高成膜速度で成膜できることも知られている。 As means for forming a hard coating layer, not only arc ion plating and direct current sputtering but also film formation using high-power pulse sputtering has been proposed. For example, as shown in Patent Documents 2 and 3 (Al, M) 2 O 3 (where M is Mg, by applying high power pulse sputtering under the condition that the instantaneous applied power of the pulse is 200 W / cm 2 or more and the one wavelength length of the pulse is 100 μsec or less. It is also known that Zn, Mn, Fe, etc.) or α-Al 2 O 3 can be deposited at a high deposition rate.

特開2002−355704号公報JP 2002-355704 A 国際公開第2008/148673号International Publication No. 2008/148673 国際公開第2009/010330号International Publication No. 2009/010330

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆工具が強く望まれる傾向にあるが、前記従来被覆工具においては、これをTi系合金やダイス鋼などの硬質難削材の切削加工を高熱発生を伴う高速切削条件で行った場合にはすぐれた耐摩耗性を発揮するものの、これを各種のAl系合金などの軟質難削材の切削加工を高速切削条件で行った場合には、切削時に発生するきわめて高い発熱によって溶着が生じやすく、これを原因として硬質被覆層の剥離が起こり、比較的短時間で使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. There is a tendency that a versatile coated tool that is not limited to the above is strongly desired. However, in the conventional coated tool, the cutting of a hard difficult-to-cut material such as a Ti-based alloy or die steel is performed at high speed with high heat generation Although it exhibits excellent wear resistance when performed with, extremely high heat generation that occurs during cutting is performed when cutting soft difficult-to-cut materials such as various Al alloys under high-speed cutting conditions. Due to this, welding is likely to occur, and due to this, the hard coating layer is peeled off and the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、前記の軟質難削材の高速切削加工で硬質層がすぐれた耐溶着性、耐剥離性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。   In view of the above, the present inventors have conducted intensive research in order to develop a coated tool that exhibits excellent welding resistance and peeling resistance in which the hard layer is excellent in high-speed cutting of the soft difficult-to-cut material. As a result, the following knowledge was obtained.

まず、従来被覆工具(特許文献1)においては、TiB層を直流マグネトロンスパッタリングで成膜しており、これをTi系合金やダイス鋼などの硬質難削材などの高速切削加工に用いた場合には特段の問題も生じないが、これを特に各種のAl系合金などの軟質難削材の切削加工を高速切削条件で行うのに用いた場合には、表面組織が密であることから被削材との接触面積が大きく、きわめて高い発熱によって溶着が生じ、また、TiB層の結晶粒子間の結合も弱かったために、その溶着による硬質被覆層の剥離が起こることを突き止めた。 First, in the conventional coated tool (Patent Document 1), the TiB 2 layer is formed by direct current magnetron sputtering, and this is used for high-speed cutting of hard difficult-to-cut materials such as Ti-based alloys and die steel. However, when this is used to cut soft difficult-to-cut materials such as various Al-based alloys under high-speed cutting conditions, the surface structure is dense. It was found that the hard coating layer peeled off due to the welding because the contact area with the cutting material was large, welding was caused by extremely high heat generation, and the bond between the crystal grains of the TiB 2 layer was weak.

そこで、本発明者らは、溶着発生が起こりにくく、かつ、結晶粒相互の結合強度の高いTiB層組織に着目して研究を行ったところ、TiB層を成膜するに当たり、特許文献1に示される直流マグネトロンスパッタリングではなく、特定条件の高出力パルススパッタリングを採用することによって、各種のAl系合金などの軟質難削材の高速切削条件における切削加工においても、表面組織がポーラスであることから、被削材との接触面積が小さいために発熱しにくく、溶着も生じにくい上に、TiB層の結晶粒相互の結合強度が強いために硬質被覆層の剥離が生じにくいTiB層を成膜し得ることを見出したのである。 Accordingly, the present inventors have welding occurs hardly occurs, and, as a result of research by focusing on high TiB 2 layer tissue binding strength of the crystal grains mutually, when forming the TiB 2 layer, Patent Document 1 By adopting high-power pulse sputtering with specific conditions instead of the DC magnetron sputtering shown in Fig. 4, the surface structure is porous even in cutting of soft difficult-to-cut materials such as various Al alloys under high-speed cutting conditions. Therefore, since the contact area with the work material is small, it is difficult to generate heat and welding, and the TiB 2 layer has a strong bond strength between the crystal grains of the TiB 2 layer. It was found that a film can be formed.

具体的に言うならば、図1に、高出力パルススパッタリング装置の概略平面図を示すが、高出力パルススパッタリング装置にTi硼化物(以下、TiBで示す)粉末の焼結体(以下、TiB焼結体という)ターゲットを配置し、装置内雰囲気を、Ar雰囲気にし、6kW以上の高い平均投入電力で高出力パルススパッタリングを行い、工具基体の表面にTiB層を蒸着成膜すると、溶着が生じにくいためすぐれた耐溶着性を有するとともに、結晶粒相互の結合強度が強く、膜硬度が高い(例えば、荷重200mgで測定した場合のナノインデンテーション硬さが3700kgf/mm2以上)、TiB層が成膜されることを見出したのである。 Specifically, FIG. 1 shows a schematic plan view of a high-power pulse sputtering apparatus. A sintered body of Ti boride (hereinafter referred to as TiB 2 ) powder (hereinafter referred to as TiB 2 ) is used in the high-power pulse sputtering apparatus. ( Sintered 2 ) Target is placed, the atmosphere in the apparatus is Ar atmosphere, high power pulse sputtering is performed with a high average input power of 6 kW or more, and a TiB 2 layer is deposited on the surface of the tool base. TiB has excellent welding resistance, strong bond strength between crystal grains, and high film hardness (for example, nanoindentation hardness measured at a load of 200 mg is 3700 kgf / mm 2 or more), TiB It was found that two layers were formed.

それにより、この結果の被覆工具は、特に著しい高熱発生を伴う各種のAl系合金などの軟質難削材の高速切削において、すぐれた耐溶着性、結晶粒相互の結合強度、硬さを有するTiB層からなる表面層によって、特に、溶着に起因する硬質被覆層の剥離が抑制されることで、すぐれた耐剥離性と耐摩耗性を長期に亘って発揮するようになる、ということを見出したのである。 As a result, the resulting coated tool is a TiB having excellent welding resistance, bond strength between grains, and hardness in high-speed cutting of soft difficult-to-cut materials such as various Al-based alloys with particularly high heat generation. It has been found that the surface layer composed of two layers suppresses the peeling of the hard coating layer caused by welding, and thereby exhibits excellent peeling resistance and wear resistance over a long period of time. It was.

本発明は、前記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に、少なくとも、0.5〜5μmの平均層厚を有するTi硼化物層を被覆してなる表面被覆切削工具であって、
前記Ti硼化物層は、複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、10〜15nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径40〜70nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径300〜600nmの三次結晶粒とから構成されていることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
A surface-coated cutting tool in which a Ti boride layer having an average layer thickness of at least 0.5 to 5 μm is coated on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. And
The Ti boride layer is configured as a composite structure of a crystal grain structure having a plurality of average grain sizes, and the composite structure has an average grain size of 40 consisting of an aggregate of primary crystal grains having an average grain size of 10 to 15 nm. A surface-coated cutting tool comprising secondary crystal grains of ˜70 nm and tertiary crystal grains having an average grain size of 300 to 600 nm composed of aggregates of the secondary crystal grains. "
It has the characteristics.

つぎに、本発明の被覆工具について、詳細に説明する。
硬質被覆層の平均層厚
炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に形成するTi硼化物層は、その平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、Al系合金などの軟質難削材の高速切削では溶着に起因する剥離は抑制できるが、高出力パルススパッタリングが有する皮膜への高い打ち込み効果に起因する大きな圧縮残留応力により、切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
複合組織の効果および結晶粒の平均粒径
該複合組織の効果は結晶粒の集合体をなすことにより、該一次結晶粒同士はもとより該二次結晶粒同士の結合力を利用することが出来る点である。該複合組織を構成する一次結晶粒の平均粒径は、10nm未満の結晶粒を有する被膜を成膜することは難しく、一方、その平均粒径が15nmを超えると転位運動を阻害する粒界が減ってしまうために、高い硬さを維持することが出来ない。また、該一次結晶粒の集合体からなる二次結晶粒の平均粒径が40nm未満であると複合組織の長所である結晶粒同士の強い結合力を得るための二次結晶粒を構成する一次結晶粒の数が十分ではなく、70nmを超えると三次結晶粒を構成する二次結晶粒の数が十分ではない。さらに、該二次結晶粒の集合体からなる三次結晶粒の平均粒径は300nm未満では切削時に被削材と接触する面積が大きくなるために、溶着が起きやすく、該複合組織ごと剥離してしまい、一方、600nmを超えると切削時の負荷に耐えることが出来なくなってしまう。
Next, the coated tool of the present invention will be described in detail.
Average thickness of hard coating layer Ti boride layer formed on the outermost surface of a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, if the average layer thickness is less than 0.5 μm, it is tangled. On the other hand, if the average layer thickness exceeds 5 μm, the high-speed cutting of soft difficult-to-cut materials such as Al-based alloys suppresses peeling due to welding. However, chipping is likely to occur at the cutting edge due to the large compressive residual stress resulting from the high driving effect on the coating of high-power pulse sputtering, so the average layer thickness was determined to be 0.5 to 5 μm. .
The effect of the composite structure and the average grain size of the crystal grains The effect of the composite structure is that the bonding force between the secondary crystal grains as well as the primary crystal grains can be utilized by forming an aggregate of crystal grains. It is. The average grain size of the primary crystal grains constituting the composite structure is difficult to form a film having crystal grains of less than 10 nm. On the other hand, when the average grain size exceeds 15 nm, there is a grain boundary that inhibits dislocation motion. Since it decreases, it cannot maintain high hardness. Further, when the average grain size of the secondary crystal grains composed of the aggregate of the primary crystal grains is less than 40 nm, the primary crystal grains constituting the secondary crystal grains for obtaining a strong bonding force between the crystal grains, which is an advantage of the composite structure The number of crystal grains is not sufficient, and if it exceeds 70 nm, the number of secondary crystal grains constituting the tertiary crystal grains is not sufficient. Furthermore, if the average grain size of the tertiary crystal grains composed of the aggregate of secondary crystal grains is less than 300 nm, the area in contact with the work material at the time of cutting becomes large, so that welding easily occurs, and the entire composite structure peels off. On the other hand, if it exceeds 600 nm, it becomes impossible to withstand the load during cutting.

本発明の被覆工具の製造方法を次に説明する。   Next, a method for manufacturing the coated tool of the present invention will be described.

図1に、本発明の被覆工具を製造するための装置の一例として、高出力パルススパッタリング装置を示す。   FIG. 1 shows a high-power pulse sputtering apparatus as an example of an apparatus for producing the coated tool of the present invention.

即ち、図1に示す高出力パルススパッタリング装置において、該高出力パルススパッタリング装置の中央部に工具基体装着用回転テーブルを設け、回転テーブルを挟んで対向する2か所に、TiB粉末の焼結体(TiB焼結体)ターゲットを配置し、前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気をAr雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で工具基体自体も自転させながら、TiB焼結体ターゲットに対し、6kW以上の高い平均投入電力で高出力パルススパッタリングを行い、0.5〜5μmの平均層厚でTiB層を蒸着成膜することによって製造することができる。 That is, in the high-power pulse sputtering apparatus shown in FIG. 1, a tool base mounting rotary table is provided at the center of the high-power pulse sputtering apparatus, and TiB 2 powder is sintered at two locations facing each other across the rotary table. A body (TiB 2 sintered body) target is disposed, and a plurality of tool bases are mounted in a ring shape along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table. While rotating the rotary table with an Ar atmosphere as the inner atmosphere and rotating the tool base itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, 6 kW or more with respect to the TiB 2 sintered body target. perform high output pulse sputtering at a high average input power, it is produced by a TiB 2 layer with an average layer thickness of 0.5~5μm deposited film Kill.

また、該TiB層の下地層として耐摩耗層である(Ti,Al)N層を被覆することも有効である。 It is also effective to coat a (Ti, Al) N layer, which is a wear-resistant layer, as the underlying layer of the TiB 2 layer.

例えば、この場合の製造方法は、前記回転テーブルを挟んで対向する2か所に、所定の組成を有するTi−Al合金ターゲットを配置し、また、Ti−Al合金ターゲットとは90度ずれた位置で、回転テーブルを挟んで対向する2か所にTiB粉末の焼結体(TiB焼結体)ターゲットを配置する。そして、装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で工具基体自体も自転させながら、Ti−Al合金ターゲットに対する6kW以上の高い平均投入電力の高出力パルススパッタリングを行い、前記工具基体の表面に(Ti,Al)N層を0.8〜5μmの平均層厚で耐摩耗硬質層として蒸着成膜し、ついで、装置内の雰囲気を実質的にAr雰囲気に変え、該TiB層を蒸着成膜することによって製造することができる。 For example, in the manufacturing method in this case, a Ti—Al alloy target having a predetermined composition is arranged at two locations facing each other across the rotary table, and the position is shifted by 90 degrees from the Ti—Al alloy target. Then, a sintered body (TiB 2 sintered body) target of TiB 2 powder is arranged at two locations facing each other across the rotary table. Then, while rotating the rotary table with the atmosphere inside the apparatus as a nitrogen atmosphere, and rotating the tool base itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, 6 kW or more with respect to the Ti—Al alloy target High-power pulse sputtering with a high average input power is performed, and a (Ti, Al) N layer is vapor-deposited as an abrasion-resistant hard layer with an average layer thickness of 0.8 to 5 μm on the surface of the tool base. The inner atmosphere can be substantially changed to an Ar atmosphere, and the TiB 2 layer can be formed by vapor deposition.

特に、前記特定の条件下の高出力パルススパッタリングによって成膜されたTiB層は、(Ti,Al)N層に対してすぐれた密着強度を有し、さらに、膜硬度が高まる。 In particular, the TiB 2 layer formed by high-power pulse sputtering under the specific conditions has excellent adhesion strength to the (Ti, Al) N layer, and the film hardness is further increased.

さらに、前記高出力パルススパッタリングにおいては、そのスパッタリング条件として、好ましくは、パルス印加時の発生プラズマ密度が1018−3以上となるようにし、また、パルスの一波長の長さは200μsec以上でかつ一周期毎のパルスの非印加時間は10μsec以上となるスパッタリング条件でスパッタリングすることが好ましい。 Furthermore, in the high-power pulse sputtering, the sputtering conditions are preferably such that the generated plasma density at the time of applying the pulse is 10 18 m −3 or more, and the length of one wavelength of the pulse is 200 μsec or more. In addition, it is preferable to perform sputtering under sputtering conditions in which the pulse non-application time for each cycle is 10 μsec or more.

前記エネルギーレベルを高めた矩形パルスによる高出力パルススパッタリングでは、ターゲットに対する熱負荷を減ずることができるためターゲットの無用な温度上昇を抑制することができる。   In high-power pulse sputtering using a rectangular pulse with an increased energy level, it is possible to reduce the thermal load on the target, and thus it is possible to suppress an unnecessary temperature increase of the target.

また、前記高出力パルススパッタリングによって成膜された(Ti,Al)N層、TiB層は、何れも密着強度が大であり、高硬度を有している。 The (Ti, Al) N layer and TiB 2 layer formed by the high-power pulse sputtering both have high adhesion strength and high hardness.

本発明の被覆工具は、硬質被覆層として、被削材との接触面積が小さくなるポーラスな表面組織を有するとともに結晶粒相互の結合強度が強い結晶粒組織の複合組織であり、高い硬さを有するTiB層からなることから、軟質難削材の高熱発生を伴う高速切削条件加工を行った場合に、溶着に起因する軟質被覆層の剥離を抑制でき、長期の使用に亘って、すぐれた耐摩耗性を発揮するものである。 The coated tool of the present invention is a composite structure of a crystal grain structure having a porous surface structure with a small contact area with a work material and a strong bond strength between crystal grains as a hard coating layer, and has a high hardness. Since it consists of two layers of TiB, it is possible to suppress the peeling of the soft coating layer due to welding when performing high-speed cutting condition processing accompanied by high heat generation of a soft difficult-to-cut material, which is excellent over a long period of use. Demonstrate wear resistance.

本発明被覆工具の表面被覆層を成膜するのに用いた高出力パルススパッタリング装置の概略平面図である。It is a schematic plan view of the high-power pulse sputtering apparatus used for forming the surface coating layer of the coated tool of the present invention. 本発明被覆インサート9のTi硼化物層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を示す。The scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the Ti boride layer of this invention covering insert 9 is shown. 従来被覆インサート9のTi硼化物層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を示す。The scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the Ti boride layer of the conventional covering insert 9 is shown. 本発明被覆インサートの複合組織からなるTi硼化物層の水平断面模式図を示す。The horizontal cross-section schematic diagram of the Ti boride layer which consists of a composite structure of this invention covering insert is shown.

つぎに、本発明による被覆工具およびその製造方法を、実施例により具体的に説明する。   Next, the coated tool and the manufacturing method thereof according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and ISO standard / CNMG120408 insert shape Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。
(a)ついで、前記工具基体A−1〜A−8のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所にTiB焼結体ターゲットを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、
(c)装置内に反応ガスとしてArガスを導入して、装置内雰囲気を0.5Paとし、表3に示される所定のパルススパッタ条件で層厚に対応した時間でスパッタリングを行い、同じく表4に示される目標層厚のTiB層を硬質被覆層の表面層として成膜することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートという)1〜8をそれぞれ製造した。
(d)また、下地層として(Ti,Al)N層を導入した本発明被覆インサート9〜16を、前記工具基体A−9〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所に所定組成のTi−Al合金ターゲットとTiB焼結体ターゲットを配置し、
(e)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、装置内に反応ガスとして窒素ガスを導入して0.6Paの反応雰囲気とすると共に、前記Ti−Al合金ターゲットに表3の条件記号aに示される所定のパルススパッタ条件で高出力パルススパッタを行い、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の耐摩耗硬質層として成膜し、
(f)TiB焼結体ターゲットに表3に示される所定のパルススパッタ条件で高出力パルススパッタを行い、装置内に導入するガスを窒素ガスからArガスに切り替えると共に、装置内雰囲気を0.5Paとし、この条件で層厚に対応した時間でスパッタリングを行い、同じく表4に示される目標層厚のTiB層を硬質被覆層の表面層として成膜することにより製造した。
In addition, as raw material powders, all of TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The tool bases B-1 to B-6 made of TiCN base cermet having the insert shape were formed.
(A) Next, each of the tool bases A-1 to A-8 is ultrasonically cleaned in acetone and dried, and the center axis on the rotary table in the high-power pulse sputtering apparatus shown in FIG. Is mounted along the outer periphery at a position that is a predetermined distance away from the radial direction, while in the high-power pulse sputtering apparatus, TiB 2 sintered body targets are arranged at four locations facing each other across the rotary table,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −200V. The tool substrate is treated with Ar bombardment for 1 hour by applying a DC bias voltage,
(C) Ar gas is introduced as a reaction gas into the apparatus, the atmosphere in the apparatus is set to 0.5 Pa, sputtering is performed for a time corresponding to the layer thickness under the predetermined pulse sputtering conditions shown in Table 3, and Table 4 The present surface coated inserts (hereinafter referred to as the present invention coated inserts) 1 to 8 as the present invention coated tools are produced by forming the TiB 2 layer having the target layer thickness shown in FIG. did.
(D) Further, the coated inserts 9 to 16 of the present invention in which a (Ti, Al) N layer is introduced as an underlayer are used for each of the tool bases A-9 to A-10 and B-1 to B-6. In the ultrasonically cleaned and dried state, mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the high-power pulse sputtering apparatus shown in FIG. In the high-power pulse sputtering apparatus, a Ti—Al alloy target and a TiB 2 sintered body target having a predetermined composition are arranged at four locations facing each other across the rotary table,
(E) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −200V. By applying a DC bias voltage, the tool base was subjected to Ar bombardment treatment for 1 hour, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 0.6 Pa, and the Ti-Al alloy target was exposed to the Ti-Al alloy target. The high power pulse sputtering is performed under the predetermined pulse sputtering conditions indicated by the condition symbol a in FIG. 3, and the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 4 is hardened on the surface of the tool base. Deposited as a wear-resistant hard layer of the coating layer,
(F) The TiB 2 sintered body target is subjected to high-power pulse sputtering under the predetermined pulse sputtering conditions shown in Table 3, the gas introduced into the apparatus is switched from nitrogen gas to Ar gas, and the atmosphere in the apparatus is set to 0. Sputtering was performed for 5 Pa under the conditions corresponding to the layer thickness, and the TiB 2 layer having the target layer thickness shown in Table 4 was formed as a surface layer of the hard coating layer.

また、比較の目的で、前記工具基体A−1〜A−8のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ高出力パルススパッタ装置と直流スパッタリング装置を併設した物理蒸着装置に装入し、装置内には、種々の成分組成をもったTi−Al合金ターゲット、TiB焼結体ターゲットを装着し、
まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、ヒーターで装置内を500℃に加熱した後、該装置内の雰囲気をAr雰囲気として、前記直流スパッタリング装置のカソード電極(蒸発源)として配置したTiB焼結体の直流スパッタリングを開始すると同時に工具基体に+60Vのバイアス電圧を印加し、表6に示す平均層厚のTiB層を蒸着することにより従来被覆工具としての従来表面被覆インサート(以下、従来被覆インサートという)従来被覆インサート1〜8を製造した。さらに、前記工具基体A−9〜A−10およびB−1〜B−6のそれぞれをまず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、装置内に反応ガスとして窒素ガスを導入して0.6Paの反応雰囲気とすると共に、ヒーターで装置内を500℃に加熱した後、前記Ti−Al合金ターゲットに表3の条件記号aに示される所定のパルススパッタ条件で高出力パルススパッタを行い、もって前記工具基体の表面に、表6に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の耐摩耗硬質層として成膜し、ついで、前記直流スパッタリング装置内の雰囲気をAr雰囲気として、前記直流スパッタリング装置のカソード電極(蒸発源)として配置したTiB焼結体の直流スパッタリングを開始すると同時に工具基体に+60Vのバイアス電圧を印加し、もって前記(Ti,Al)N層に重ねて上部層として表5に示される所定の直流スパッタ条件で、表6に示す平均層厚のTiB層を蒸着することにより従来被覆インサート9〜16をそれぞれ製造した。
For comparison purposes, each of the tool bases A-1 to A-8 is ultrasonically cleaned in acetone and dried, and a physical vapor deposition apparatus provided with a high-power pulse sputtering apparatus and a DC sputtering apparatus, respectively. In the apparatus, a Ti-Al alloy target having various component compositions and a TiB 2 sintered body target are mounted,
First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 400 ° C. with a heater, and then a DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the rotary table. By applying, the tool base is subjected to Ar bombardment treatment for 1 hour, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the atmosphere in the apparatus is set to an Ar atmosphere to serve as a cathode electrode (evaporation source) of the DC sputtering apparatus. Conventional surface-coated insert as a conventional coated tool by starting DC sputtering of the arranged TiB 2 sintered body and simultaneously applying a bias voltage of +60 V to the tool base and depositing a TiB 2 layer having an average layer thickness shown in Table 6 Conventional coated inserts 1 to 8 (hereinafter referred to as conventional coated inserts) were produced. Further, each of the tool bases A-9 to A-10 and B-1 to B-6 is first evacuated from the apparatus and kept at a vacuum of 0.1 Pa or less, and the interior of the apparatus is heated to 400 ° C. with a heater. After heating, a DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the rotary table, whereby the tool base is subjected to Ar bombardment for 1 hour, and nitrogen gas is introduced into the apparatus as a reactive gas. The reaction atmosphere is 0.6 Pa and the inside of the apparatus is heated to 500 ° C. with a heater, and then the high-power pulse sputtering is performed on the Ti—Al alloy target under predetermined pulse sputtering conditions indicated by the condition symbol a in Table 3. Then, a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 6 is formed on the surface of the tool base as a hard-wearing hard layer of the hard coating layer. The atmosphere in the DC sputtering apparatus as an Ar atmosphere, applying a cathode electrode bias voltage of + 60V to TiB 2 sintered at the same time tool substrate when starting the DC sputtering arranged as (evaporation source) of the DC sputtering device, with by the Conventional coated inserts 9 to 16 are manufactured by depositing TiB 2 layers having an average layer thickness shown in Table 6 under the predetermined DC sputtering conditions shown in Table 5 as upper layers on top of the (Ti, Al) N layer. did.

なお、参考のため、図1に示される本発明被覆インサート1〜16を製造した装置と同じ装置で、本発明被覆インサート1〜16と異なる組成、膜厚、スパッタ条件で成膜することにより、表6に示される参考被覆工具としての参考表面被覆インサート(以下、参考被覆インサートという)1〜4をそれぞれ製造した。   For reference, in the same apparatus as the apparatus for manufacturing the present invention coated inserts 1-16 shown in FIG. 1, by forming a film with a composition, film thickness, and sputtering conditions different from those of the present invention coated inserts 1-16, Reference surface-coated inserts (hereinafter referred to as reference coated inserts) 1 to 4 as reference coated tools shown in Table 6 were produced.

前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4のTiB層について、その結晶粒組織を走査型電子顕微鏡(Carl zeiss社製、ultra55)により10万倍の視野で観察し、その結果を平面と仮定し、該結晶粒の面積を粒子断面の面積として算出する。さらに、一次結晶粒、二次結晶粒および三次結晶粒の平均粒径を該結晶粒の粒子断面面積を円の面積として算出した場合の直径を10点測定し、その平均値とした。
表4、表6に、その測定値を示す。
About the TiB 2 layers of the present invention coated inserts 1 to 16, the conventional coated inserts 1 to 16, and the reference coated inserts 1 to 4, the crystal grain structure of the TiB two layers is 100,000 times by a scanning electron microscope (Carl Zeiss, ultra 55). Observation with a visual field, the result is assumed to be a plane, and the area of the crystal grain is calculated as the area of the grain cross section. Furthermore, the average diameter of primary crystal grains, secondary crystal grains, and tertiary crystal grains was measured at 10 points when the cross-sectional area of the crystal grains was calculated as the area of a circle, and the average value was obtained.
Tables 4 and 6 show the measured values.

また、図2に、本発明被覆インサート9のTiB層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を、図3に、従来被覆インサート9のTiB層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を、図4に、本発明被覆インサートの複合組織からなるTi硼化物層の水平断面模式図を示す。 FIG. 2 shows a scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the TiB 2 layer of the coated insert 9 of the present invention, and FIG. 3 shows the scanning of the horizontal section of the TiB 2 layer of the conventional coated insert 9. A scanning electron micrograph (magnification: 100,000 times) is shown in FIG. 4, and a horizontal cross-sectional schematic view of a Ti boride layer made of a composite structure of the coated insert of the present invention is shown.

前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4のTiB層について、その表面硬さを超微小押し込み硬さ試験機(エリオニクス社製、ENT-1100a)により測定した。
表4、表6に、その測定値を示す。
For the TiB 2 layers of the inventive coated inserts 1-16, the conventional coated inserts 1-16 and the reference coated inserts 1-4, the surface hardness was measured by an ultra-fine indentation hardness tester (manufactured by Elionix, ENT-1100a). It was measured by.
Tables 4 and 6 show the measured values.

また、前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   In addition, the composition of the wear-resistant hard layers constituting the hard coating layers of the present invention coated inserts 1 to 16, the conventional coated inserts 1 to 16 and the reference coated inserts 1 to 4 is expressed by energy dispersion X using a transmission electron microscope. When measured by the line analysis method, each showed substantially the same composition as the target composition.

さらに、前記硬質被覆層のTiB層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the average thickness of the TiB 2 layer and the wear-resistant hard layer of the hard coating layer was measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of 5 locations). )showed that.

つぎに、前記の各種被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4について、
被削材:Al系合金JIS・A7075(質量%で、Si:0.25%、Fe:0.4%、Cu:2.0%、Mn:0.3%、Mg:2.9%、Cr:0.28%、Zn:5.1%、Ti:0.2%、Alおよび不純物:残り)の丸棒、
切削速度:600m/min.、
切り込み:1.5mm、
送り: 0.6mm/rev.、
切削時間:90分、
の条件(切削条件Aという)でのAl系合金の乾式高速切削加工試験(通常の送りは0.4m/min.)、
を行い、切刃の逃げ面摩耗幅を測定した。
Next, in the state where all the above-mentioned various coated inserts are screwed to the tip of the tool steel tool with a fixing jig, the present coated inserts 1-16, the conventional coated inserts 1-16, and the reference coated insert 1 About ~ 4
Work material: Al-based alloy JIS A7075 (mass%, Si: 0.25%, Fe: 0.4%, Cu: 2.0%, Mn: 0.3%, Mg: 2.9%, Round bars of Cr: 0.28%, Zn: 5.1%, Ti: 0.2%, Al and impurities: the rest)
Cutting speed: 600 m / min. ,
Incision: 1.5mm,
Feed: 0.6 mm / rev. ,
Cutting time: 90 minutes
Dry-type high-speed cutting test (normal feed is 0.4 m / min.) Of an Al-based alloy under the following conditions (referred to as cutting condition A),
The flank wear width of the cutting blade was measured.

この測定結果を表7に示した。   The measurement results are shown in Table 7.

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

原料粉末として、平均粒径:5.5μmを有するWC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が6mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さがそれぞれ6mm×10mmの寸法並びにねじれ角30度の2枚刃スクエア形状をもった工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powder, WC powder having an average particle size of 5.5 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1.8 μm Co powder was prepared, and these raw material powders were blended in the blending composition shown in Table 8 respectively. Further, wax was added, ball milled in acetone for 24 hours, dried under reduced pressure, and then dried into various shapes at a pressure of 100 MPa. The green compact was press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding time, sintering under furnace cooling conditions, A tool bar forming round bar sintered body having a diameter of 6 mm is formed, and further, the diameter x length of the cutting edge portion is 6 mm x 10 mm and the helix angle 30 by grinding from the round bar sintered body. Tool bases (end mills) C-1 to C-8 having a two-blade square shape were manufactured.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、前記実施例1と同一の条件で、C−1〜C−4に表9に示される目標層厚のTiB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆エンドミル(以下、本発明被覆エンドミルという)1〜4を、C−5〜C−8に表9に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層と、同じく表9に示される目標層厚のTiB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆エンドミル5〜8をそれぞれ製造した。 Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. Under the same conditions, a hard coating layer composed of a surface layer composed of TiB 2 layers having target layer thicknesses shown in Table 9 in C-1 to C-4 is formed by vapor deposition. Inventive surface-coated end mills (hereinafter referred to as the present invention-coated end mills) 1 to 4 are composed of (Ti, Al) N layers having the target composition and target layer thickness shown in Table 9 in C-5 to C-8. The coated end mills 5 to 8 of the present invention were produced by vapor-depositing a layer and a hard coating layer composed of a surface layer composed of a TiB 2 layer having a target layer thickness similarly shown in Table 9.

また、比較の目的で、前記工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、前記実施例1と同一の条件で、同じく表10に示される目標組成および目標層厚の(Ti,Al)N層およびTiB層からなる耐摩耗硬質層を硬質被覆層として蒸着することにより、従来被覆工具としての従来表面被覆エンドミル(以下、従来被覆エンドミルという)1〜8をそれぞれ製造した。 Further, for comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried under the same conditions as in Example 1 and also in Table 10. A conventional surface-coated end mill (hereinafter referred to as a conventional coating tool) as a conventional coating tool is formed by depositing a wear-resistant hard layer comprising a (Ti, Al) N layer and a TiB 2 layer having a target composition and target layer thickness as a hard coating layer. 1-8) (referred to as end mills) were produced.

さらに、参考のため、前記工具基体(エンドミル)C−1,C−3,C−5,C−7の表面をアセトン中で超音波洗浄し、乾燥した状態で、前記実施例1と同一の条件で、本発明被覆エンドミル1〜8と異なる組成、膜厚、スパッタ条件で成膜することにより、表10に示される参考被覆工具としての参考表面被覆エンドミル(以下、参考被覆エンドミルという)1〜4をそれぞれ製造した。   Further, for reference, the surfaces of the tool bases (end mills) C-1, C-3, C-5, and C-7 are ultrasonically cleaned in acetone and dried. The reference surface coating end mill (hereinafter referred to as a reference coating end mill) 1 to 1 as a reference coating tool shown in Table 10 by forming a film with a composition, film thickness, and sputtering conditions different from those of the present invention coated end mills 1 to 8 4 were produced respectively.

前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4のTiB層について、その結晶粒組織を走査型電子顕微鏡(Curl zeiss社製、ultra55)により10万倍の視野で観察し、その結果を平面と仮定し、該結晶粒の面積を粒子断面の面積として算出する。さらに、一次結晶粒、二次結晶粒および三次結晶粒の平均粒径を該結晶粒の粒子断面面積を円の面積として算出した場合の直径を10点測定し、その平均値とした。
表9、表10に、その測定値を示す。
About the TiB 2 layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8, and the reference coated end mills 1 to 4, the crystal grain structure of the TiB 2 layers was 100,000 times by a scanning electron microscope (made by Curl Zeiss, ultra 55). Observation with a visual field, the result is assumed to be a plane, and the area of the crystal grain is calculated as the area of the grain cross section. Furthermore, the average diameter of primary crystal grains, secondary crystal grains, and tertiary crystal grains was measured at 10 points when the cross-sectional area of the crystal grains was calculated as the area of a circle, and the average value was obtained.
Tables 9 and 10 show the measured values.

前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4のTiB層について、その表面硬さを超微小押し込み硬さ試験機(エリオニクス社製、ENT-1100a)により測定した。
表9、表10に、その測定値を示す。
For the TiB 2 layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8, and the reference coated end mills 1 to 4, the surface hardness was measured by an ultra-fine indentation hardness tester (manufactured by Elionix, ENT-1100a). It was measured by.
Tables 9 and 10 show the measured values.

また、前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   Further, the composition of the hard coating layer constituting the hard coating layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8 and the reference coated end mills 1 to 4 is expressed by energy dispersion X using a transmission electron microscope. When measured by the line analysis method, each showed substantially the same composition as the target composition.

さらに、前記硬質被覆層のTiB層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the average thickness of the TiB 2 layer and the wear-resistant hard layer of the hard coating layer was measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of 5 locations). )showed that.

つぎに、前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4について、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったAl系合金JIS・A7075(質量%で、Si:0.25%、Fe:0.4%、Cu:2.0%、Mn:0.3%、Mg:2.9%、Cr:0.28%、Zn:5.1%、Ti:0.2%、Alおよび不純物:残り)の板材、
切削速度:188.4m/min.(回転数:10000回/min)、
溝深さ(切り込み):10mm、
テーブル送り:2000〜6000mm/分、
切削時間:5分
の条件(切削条件Bという)でのAl系合金の湿式高速溝切削加工試験(通常のテーブル送りは1000mm/分)、
をテーブル送り1000mm/分から500mm/分ごとに徐々に上げていき、溶着や切り屑詰まりなどが起きないような正常な切削が行えるかどうかを確認した。この測定結果を表11にそれぞれ示した。
Next, for the present invention coated end mills 1-8, conventional coated end mills 1-8 and reference coated end mills 1-4,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Al-based alloy JIS A7075 (mass%, Si: 0.25%, Fe: 0.4%, Cu: 2.0% Mn: 0.3%, Mg: 2.9%, Cr: 0.28%, Zn: 5.1%, Ti: 0.2%, Al and impurities: remaining)
Cutting speed: 188.4 m / min. (Rotation speed: 10,000 times / min),
Groove depth (cut): 10 mm,
Table feed: 2000 to 6000 mm / min,
Cutting time: Al type alloy wet high-speed grooving test under the condition of 5 minutes (referred to as cutting condition B) (normal table feed is 1000 mm / min),
Was gradually increased from a table feed of 1000 mm / min to 500 mm / min to confirm whether normal cutting could be performed without causing welding or chip clogging. The measurement results are shown in Table 11, respectively.

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
Figure 2012139795

Figure 2012139795
表3〜11に示される結果から、TiB層がすぐれた耐溶着性と硬さを有する本発明被覆工具は、各種のAl系合金などの軟質難削材の高熱発生を伴う高速切削で、すぐれた耐剥離性と耐摩耗性を発揮する。
Figure 2012139795
From the results shown in Tables 3 to 11, the present coated tool having excellent welding resistance and hardness with the TiB 2 layer is high-speed cutting accompanied by high heat generation of soft difficult-to-cut materials such as various Al alloys, Excellent peel resistance and wear resistance.

これに対して、従来被覆工具では、表6、表10に示されるように、該複合組織を形成していないため耐溶着性に劣り、軟質難削材の高熱発生を伴う高速切削条件で硬質被覆層の剥離を抑制することができず、硬さも十分でないために耐摩耗性に劣る。また、本発明で規定する範囲から外れるTiB層を有する参考被覆工具においては、軟質難削材の高熱発生を伴う高速切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。 On the other hand, as shown in Tables 6 and 10, in the conventional coated tool, since the composite structure is not formed, the welding resistance is inferior, and it is hard under high-speed cutting conditions with high heat generation of a soft difficult-to-cut material. Since peeling of the coating layer cannot be suppressed and the hardness is not sufficient, the wear resistance is poor. In the case of a reference coated tool having a TiB 2 layer that is out of the range specified in the present invention, the wear of the cutting edge portion is fast in high-speed cutting with high heat generation of a soft difficult-to-cut material, and the service life is relatively short. It is clear that

前述のように、本発明の被覆工具およびその製造方法によれば、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴う前記軟質難削材の高速切削加工でもすぐれた耐剥離性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, according to the coated tool of the present invention and the manufacturing method thereof, not only cutting under normal cutting conditions such as various types of steel and cast iron, but also high speed of the soft difficult-to-cut material with particularly high heat generation. Since it exhibits excellent peeling resistance and wear resistance even in cutting processing, and exhibits excellent cutting performance over a long period of time, higher performance and automation of cutting equipment, and labor saving and energy saving of cutting processing In addition, it is possible to sufficiently satisfy the cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に、少なくとも、0.5〜5μmの平均層厚を有するTi硼化物層を被覆してなる表面被覆切削工具であって、
前記Ti硼化物層は、複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、10〜15nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径40〜70nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径300〜600nmの三次結晶粒とから構成されていることを特徴とする表面被覆切削工具。
A surface-coated cutting tool formed by coating a Ti boride layer having an average layer thickness of at least 0.5 to 5 μm on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. ,
The Ti boride layer is configured as a composite structure of a crystal grain structure having a plurality of average grain sizes, and the composite structure has an average grain size of 40 consisting of an aggregate of primary crystal grains having an average grain size of 10 to 15 nm. A surface-coated cutting tool comprising secondary crystal grains of ˜70 nm and tertiary crystal grains having an average grain size of 300 to 600 nm composed of aggregates of the secondary crystal grains.
JP2011000431A 2011-01-05 2011-01-05 Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material Withdrawn JP2012139795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000431A JP2012139795A (en) 2011-01-05 2011-01-05 Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000431A JP2012139795A (en) 2011-01-05 2011-01-05 Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material

Publications (1)

Publication Number Publication Date
JP2012139795A true JP2012139795A (en) 2012-07-26

Family

ID=46676610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000431A Withdrawn JP2012139795A (en) 2011-01-05 2011-01-05 Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material

Country Status (1)

Country Link
JP (1) JP2012139795A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527392A (en) * 2013-07-03 2016-09-08 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン TiB2 layer and its manufacture
US11104999B2 (en) * 2017-01-31 2021-08-31 Ceratizit Austria Gesellschaft M.B.H. Coated tool
JP7463948B2 (en) 2020-11-18 2024-04-09 株式会社タンガロイ Coated Cutting Tools

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527392A (en) * 2013-07-03 2016-09-08 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン TiB2 layer and its manufacture
US10378095B2 (en) 2013-07-03 2019-08-13 Oerlikon Surface Solutions Ag, Pfäffikon TiB2 layers and manufacture thereof
US11104999B2 (en) * 2017-01-31 2021-08-31 Ceratizit Austria Gesellschaft M.B.H. Coated tool
JP7463948B2 (en) 2020-11-18 2024-04-09 株式会社タンガロイ Coated Cutting Tools

Similar Documents

Publication Publication Date Title
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP5594577B2 (en) Surface coated cutting tool
JP5440345B2 (en) Surface coated cutting tool
JP5440353B2 (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP5594569B2 (en) Surface coated cutting tool
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2012115967A (en) Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material
JP2013094897A (en) Surface coated cutting tool
JP5440352B2 (en) Surface coated cutting tool
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4120489B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401