JP4844884B2 - A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys - Google Patents

A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys Download PDF

Info

Publication number
JP4844884B2
JP4844884B2 JP2006207027A JP2006207027A JP4844884B2 JP 4844884 B2 JP4844884 B2 JP 4844884B2 JP 2006207027 A JP2006207027 A JP 2006207027A JP 2006207027 A JP2006207027 A JP 2006207027A JP 4844884 B2 JP4844884 B2 JP 4844884B2
Authority
JP
Japan
Prior art keywords
content point
highest
hard coating
coating layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006207027A
Other languages
Japanese (ja)
Other versions
JP2008030158A (en
Inventor
和則 佐藤
強 大上
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006207027A priority Critical patent/JP4844884B2/en
Publication of JP2008030158A publication Critical patent/JP2008030158A/en
Application granted granted Critical
Publication of JP4844884B2 publication Critical patent/JP4844884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、Ti基合金、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides excellent chipping resistance and wear resistance even when cutting heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits the properties.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills, miniature drills, solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, and the solid type A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

被覆工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、AlとCrの窒化物、あるいは、AlとCrとBの窒化物からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、そして、前記被覆工具の硬質被覆層は、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合には、すぐれた切削性能を発揮することが知られている。   As one of the coated tools, a nitride of Al and Cr is formed on the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. Alternatively, a coated tool formed by physically vapor-depositing a hard coating layer composed of nitrides of Al, Cr, and B is known, and the hard coating layer of the coated tool is made of various general steels under normal conditions. It is known to exhibit excellent cutting performance when used for cutting steel and ordinary cast iron.

さらに、上記のごとき硬質被覆層を有する被覆工具が、例えば図2に概略説明図で示されるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を加熱し、窒素ガスを導入して所定雰囲気圧を形成し、アノード電極と所定組成のカソード電極(蒸発源)との間にアーク放電を発生させ、前記工具基体の表面に、所定の硬質被覆層を蒸着することにより製造されることも知られている。
特開平10−25566号公報 特開2005−256081号公報
Further, a coated tool having a hard coating layer as described above, for example, inserts the above-mentioned tool base into an arc ion plating apparatus shown schematically in FIG. 2, heats the inside of the apparatus with a heater, and supplies nitrogen gas. Introduced to form a predetermined atmospheric pressure, generate an arc discharge between the anode electrode and a cathode electrode (evaporation source) of a predetermined composition, and deposit a predetermined hard coating layer on the surface of the tool base It is also known that
Japanese Patent Laid-Open No. 10-25566 Japanese Patent Laid-Open No. 2005-256081

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを特に高い発熱を伴うTi合金、Ni合金、Fe合金等の耐熱合金の高速切削に用いた場合には、硬質被覆層は切削時に発生する高熱によって過熱され、潤滑性が不足したり、また溶着を生じたりするために、偏摩耗の発生、チッピングの発生が避けられず、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In the case of a coated tool, there is no problem when it is used for cutting under normal conditions. However, when this is used for high-speed cutting of heat-resistant alloys such as Ti alloys, Ni alloys, Fe alloys, etc. with particularly high heat generation. In this case, the hard coating layer is overheated by the high heat generated at the time of cutting, resulting in insufficient lubricity and welding, so that the occurrence of uneven wear and chipping cannot be avoided. The current situation is that the service life is reached in a short time.

そこで、本発明者等は、上述のような観点から、特に高速切削加工で、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の(Al,Cr)N蒸着用アークイオンプレーティング(AIP)装置とCr−B蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Cr合金からなるカソード電極(蒸発源)を備えた(Al,Cr)N蒸着用アークイオンプレーティング装置、他方側に、CrB焼結体からなるターゲット(蒸発源)を備えたCr−B蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の(Al,Cr)N蒸着用アークイオンプレーティング装置のAl−Cr合金からなるカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、それと同時に、対向配設したCr−B蒸着用マグネトロンスパッタリング装置のCrB焼結体からなるターゲット(蒸発源)にパルス電圧を印加しCrBをスパッタすると、アークイオンプレーティングとスパッタリングによってAlとCrとBの窒化物層(以下、(Al,Cr,B)N層で示す)が蒸着形成され、そして、上記窒化物層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Cr合金のカソード電極(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAlの含有割合が最大となりBの含有割合が最小となる領域(以下、Al最高含有点という)が形成され、また、前記工具基体が、上記他方側のCrB焼結体ターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のBの含有割合が最大となって、Alの含有割合が最小となる領域(以下、B最高含有点という)が形成され、上記回転テーブルの回転によって層中には層厚方向に沿って、前記Al最高含有点とB最高含有点が回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記B最高含有点、前記B最高含有点から前記Al最高含有点へ、Al、Bの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Cr,B)N層という)が形成されること。
In view of the above, in order to develop a coated tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer, particularly in high-speed cutting, the present inventors have developed the above-mentioned conventional coated tool. As a result of paying attention and conducting research,
(A) For example, an (Al, Cr) N deposition arc ion plating (AIP) apparatus and a Cr-B deposition structure having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. Using a vapor deposition apparatus provided with a magnetron sputtering (SP) apparatus, a rotary table for mounting a tool substrate (for example, a carbide substrate) is provided in the central portion of the apparatus, and an Al− having a predetermined composition is placed on one side of the rotary table. Arc ion plating apparatus for (Al, Cr) N vapor deposition equipped with a cathode electrode (evaporation source) made of a Cr alloy, and Cr—B vapor deposition equipped with a target (evaporation source) made of a CrB 2 sintered body on the other side. A plurality of tool substrates are mounted in a ring shape on a rotary table for mounting a tool substrate on a rotary table for mounting the tool substrate at a position spaced apart from the central axis in a radial direction. In this state, the atmosphere in the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the tool base itself is rotated for the purpose of uniforming the thickness of the hard coating layer to be formed, while the (Al, Cr) An arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode made of an Al—Cr alloy of an arc deposition apparatus for N deposition, and at the same time, a magnetron sputtering apparatus for Cr—B deposition disposed oppositely. When a pulse voltage is applied to a target (evaporation source) made of a CrB 2 sintered body and CrB 2 is sputtered, a nitride layer of Al, Cr, and B (hereinafter referred to as (Al, Cr, B)) by arc ion plating and sputtering. N nitride layer is formed by vapor deposition, and the nitride layer is formed on the one side of the tool base disposed on the rotary table. A region where the Al content in the vapor deposition layer is relatively the largest and the B content is the smallest at the position closest to the cathode electrode (evaporation source) of the 1-Cr alloy (hereinafter referred to as the Al highest content point). In addition, the content ratio of B in the vapor deposition layer is relatively maximum at a position where the tool base is closest to the CrB 2 sintered body target (evaporation source) on the other side. A region where the Al content is minimized (hereinafter referred to as the B highest content point) is formed, and the Al highest content point and the B highest content point are formed in the layer along the layer thickness direction by rotation of the rotary table. Appear alternately and at predetermined intervals according to the rotation speed of the rotary table, and the contents of Al and B from the Al highest content point to the B highest content point and from the B highest content point to the Al highest content point are as follows. Each continuously changing Deposition layer of component concentration distribution structure (hereinafter, compositional change (Al, Cr, B) that N layer) that is formed.

(ロ)上記組成変化(Al,Cr,B)N層からなる硬質被覆層において、そのAl成分は高温硬さ、耐熱性および耐酸化性を向上させ、同Cr成分は高温強度を向上させ、また、B成分は被削材との反応性を低下させると同時に潤滑性を高める作用があり、したがって相対的にAlの含有割合が高いAl最高含有点では、上記組成変化(Al,Cr,B)N層からなる硬質被覆層はすぐれた高温硬さ、耐熱性、耐酸化性と所定の高温強度を有するが、その反面、被削材との反応性が高くまた潤滑性も不十分であるために、耐熱合金の高速切削条件下では溶着、チッピング、偏摩耗を生じやすいことから、上記組成変化(Al,Cr,B)N層のAl最高含有点における潤滑性、非反応性の不足を補う目的で、所定の高温強度とすぐれた潤滑性、非反応性を備えたB最高含有点を厚さ方向に交互に介在させることによって、上記組成変化(Al,Cr,B)N層からなる硬質被覆層全体として、すぐれた高温硬さ、耐熱性、耐酸化性、高温強度とともにすぐれた潤滑性および非反応性を具備するようになり、その結果として、高速条件下で耐熱合金の切削加工を行ってもチッピング、溶着、偏摩耗等を生じることなくすぐれた耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) In the hard coating layer composed of the above composition change (Al, Cr, B) N layer, the Al component improves high temperature hardness, heat resistance and oxidation resistance, and the Cr component improves high temperature strength, Further, the B component has the effect of lowering the reactivity with the work material and at the same time improving the lubricity. Therefore, at the highest Al content point where the Al content is relatively high, the composition change (Al, Cr, B ) Hard coating layer consisting of N layer has excellent high temperature hardness, heat resistance, oxidation resistance and predetermined high temperature strength, but on the other hand, it has high reactivity with the work material and insufficient lubricity. For this reason, welding, chipping, and uneven wear are likely to occur under high-speed cutting conditions of heat-resistant alloys. Therefore, lack of lubricity and non-reactivity at the Al highest content point of the above composition change (Al, Cr, B) N layer. Precise high temperature strength and excellent lubrication to compensate By interposing the highest B content points with non-reactivity alternately in the thickness direction, the entire hard coating layer composed of the above-mentioned composition change (Al, Cr, B) N layer has excellent high temperature hardness and heat resistance. As a result, chipping, welding, uneven wear, etc. occur even when cutting heat-resistant alloys under high-speed conditions. It will show excellent wear resistance without any problems.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr合金を、また、他方にターゲットのCrB焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr合金カソード電極側でのアークイオンプレーティングと、CrB焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとBの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr合金カソード電極近傍で形成されるAl最高含有点と前記CrB焼結材料ターゲット近傍で形成されるB最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al最高含有点から前記B最高含有点、前記B最高含有点から前記Al最高含有点へと、Al、Bの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr合金カソード電極近傍で形成される前記Al最高含有点におけるAl成分、Cr成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Zで表したときに、Xは0.4〜0.65、Yは0.3〜0.50、Zは0.05〜0.20で、かつ、X+Y+Z=1を満足し、
(d)前記CrB焼結材料ターゲット近傍で形成される前記B最高含有点におけるAl成分、Cr成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Zで表したときに、Xは0.15〜0.35、Yは0.25〜0.40、Zは0.40〜0.55で、かつ、X+Y+Z=1を満足する組成変化(Al,Cr,B)N層を蒸着形成してなる、
耐熱合金の高速切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具(表面被覆切削工具)に特徴を有するものである。
This invention was made based on the above research results,
A rotary table of a vapor deposition apparatus in which a tungsten carbide based cemented carbide or titanium carbonitride based cermet is provided with an Al—Cr alloy as a cathode electrode on one side and a target CrB 2 sintered material on the other side. While the tool base is rotated on a rotary table, Al and Cr are sputtered on the cathode side of the Al—Cr alloy cathode and sputtering on the target side of the CrB 2 sintered material. In a surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Cr and B is formed by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and the highest Al content point formed in the vicinity of the Al—Cr alloy cathode electrode and the CrB 2 along the thickness direction of the hard coating layer. The B highest content point formed in the vicinity of the sintered material target is alternately present at intervals of 0.005 to 0.1 μm,
(B) From the Al highest content point to the B highest content point, from the B highest content point to the Al highest content point, having a component concentration distribution structure in which the content ratios of Al and B change continuously,
(C) The Al component, the Cr component, and the B component at the Al highest content point formed in the vicinity of the Al—Cr alloy cathode electrode are represented by X, Y, and Z, respectively. X is 0.4 to 0.65, Y is 0.3 to 0.50, Z is 0.05 to 0.20, and X + Y + Z = 1 is satisfied,
(D) The Al component, Cr component, and B component at the B highest content point formed in the vicinity of the CrB 2 sintered material target are represented by X, Y, and Z, respectively. X is 0.15 to 0.35, Y is 0.25 to 0.40, Z is 0.40 to 0.55, and composition change satisfying X + Y + Z = 1 (Al, Cr, B) N layer is formed by vapor deposition.
It is characterized by a coated tool (surface coated cutting tool) that exhibits excellent chipping resistance and wear resistance in a high-speed cutting of a heat-resistant alloy with a hard coating layer.

つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Cr,B)N層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the composition change (Al, Cr, B) N layer constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)Al最高含有点のAl含有割合
組成変化(Al,Cr,B)N層におけるAlは、高温硬さ、耐熱性および耐酸化性を向上させ、同Cr成分は高温強度を向上させるとともに、また、B成分は被削材との反応性を低下させると同時に潤滑性を高める作用がある。したがって相対的にAl成分の含有割合が高いAl最高含有点ではすぐれた高温硬さ、耐熱性、耐酸化性を備えるが、Alの含有割合(X値)が0.4未満の場合には、硬質被覆層として最小限要求される高温硬さ、耐熱性、耐酸化性を維持することはできず、一方、Alの含有割合(X値)が0.65を超えたりしたような場合には、Crの含有割合(Y値)およびBの含有割合(Z値)が少なくなりすぎて、硬質被覆層のすぐれた高温強度を維持することが困難になるばかりか、反応性の低減および潤滑性の向上を図ることができなくなることから、Alの含有割合(X値)を0.4〜0.65(ただし、原子比)とそれぞれ定めた。
なお、組成変化(Al,Cr,B)N層におけるCr成分は、アークイオンプレーティングとスパッタリングの双方で供給されるため、アークイオンプレーティングのカソード電極組成あるいはスパッタリング条件等によって影響を受けるものの、他の成分Al,Bに比較すれば、層の厚み方向で大きな含有割合の変化は少なく、しかも、Crは高温強度を向上させる成分であることから、組成変化(Al,Cr,B)N層はその厚み方向全体にわたり、すぐれた高温強度を備えたものとなり、その結果として、耐チッピング性が非常に優れたものとなるが、Al最高含有点におけるCr成分の含有割合(Y値)は、高温硬さ、耐熱性、耐酸化性を損なわずに所定の高温強度を保持するという点から、0.3≦Y≦0.50の範囲とする必要があり、さらに、Al最高含有点におけるB成分の含有割合(R値)は、耐熱合金の高速切削で要求される非反応性、潤滑性を発揮させるためには、0.05≦Z≦0.20の範囲とする必要があり、そして、X、Y、Zは、X+Y+Z=1を満たす数値である。
(A) Al content ratio of Al highest content point Al in composition change (Al, Cr, B) N layer improves high temperature hardness, heat resistance and oxidation resistance, and Cr component improves high temperature strength In addition, the B component has the effect of reducing the reactivity with the work material and at the same time improving the lubricity. Therefore, it has excellent high temperature hardness, heat resistance, and oxidation resistance at the Al highest content point where the content ratio of the Al component is relatively high, but when the Al content ratio (X value) is less than 0.4, If the minimum required high-temperature hardness, heat resistance, and oxidation resistance of the hard coating layer cannot be maintained, on the other hand, if the Al content (X value) exceeds 0.65 , Cr content ratio (Y value) and B content ratio (Z value) become too small, making it difficult to maintain the excellent high temperature strength of the hard coating layer, as well as reducing reactivity and lubricity. Therefore, the Al content (X value) was set to 0.4 to 0.65 (however, the atomic ratio).
In addition, since the Cr component in the composition change (Al, Cr, B) N layer is supplied by both arc ion plating and sputtering, it is influenced by the cathode electrode composition of the arc ion plating or sputtering conditions, Compared to the other components Al and B, the change in composition ratio (Al, Cr, B) N layer is small because there is little change in the content ratio in the thickness direction of the layer, and Cr is a component that improves high temperature strength. Is provided with excellent high-temperature strength throughout its thickness direction, and as a result, the chipping resistance is very excellent, but the content ratio (Y value) of the Cr component at the Al highest content point is: In order to maintain a predetermined high temperature strength without impairing the high temperature hardness, heat resistance and oxidation resistance, it is necessary to make the range 0.3 ≦ Y ≦ 0.50 Furthermore, the content ratio (R value) of the B component at the highest Al content point is 0.05 ≦ Z ≦ 0.O in order to exhibit the non-reactivity and lubricity required in high-speed cutting of heat-resistant alloys. It is necessary to make it into the range of 20, and X, Y, and Z are numerical values satisfying X + Y + Z = 1.

(b)B最高含有点のB含有割合
硬質被覆層のB最高含有点において、組成変化(Al,Cr,B)N層は所定の高温強度とすぐれた非反応性、潤滑性を備えるが、硬質被覆層は、耐熱合金の高速切削に耐えるに足る最低限の高温硬さ、耐熱性、耐酸化性、高温強度を備える必要があることから、B最高含有点におけるCr含有割合(Y値)およびB含有割合(Z値)を、Al,Cr,Bの合量に占める割合(原子比)で、それぞれ、0.25〜0.4、0.40〜0.55と定めた。
つまり、Cr含有割合(Y値)およびB含有割合(Z値)が、それぞれ0.4および0.55を超えると、(Al,Cr,B)N層中のCr含有割合、B含有割合が増大する反面、Al成分の含有量が減少し、その結果、高温硬さ、耐熱性、耐酸化性が不十分となり、耐摩耗性が低下し、一方、Cr含有割合(Y値)、B含有割合(Z値)が、それぞれ0.25未満および0.40未満になると、(Al,Cr,B)N層中のBの含有割合が少なくなり過ぎ、反応性の低減作用および潤滑性改善効果が期待できなくなり、また、Cr含有割合の減少により、一段と優れた高温強度の向上も望めなくなることから、B最高含有点におけるCrの含有割合(Y値)およびBの含有割合(Z値)を、それぞれ、0.25〜0.4、0.40〜0.55(いずれも、原子比)に定めた。
なお、B最高含有点におけるAl成分の含有割合(X値)は、耐熱合金の高速切削で最低限必要とされる高温硬さ、耐熱性、耐酸化性の点から、0.15≦X≦0.35の範囲であることが必要であり、そして、X、Y、Zは、X+Y+Z=1を満たす数値である。
(B) B content ratio of B highest content point At the B highest content point of the hard coating layer, the composition change (Al, Cr, B) N layer has a predetermined high temperature strength and excellent non-reactivity and lubricity, The hard coating layer must have the minimum high-temperature hardness, heat resistance, oxidation resistance, and high-temperature strength sufficient to withstand high-speed cutting of a heat-resistant alloy, so the Cr content ratio at the highest B content point (Y value) And B content ratio (Z value) was determined as a ratio (atomic ratio) occupying the total amount of Al, Cr, B as 0.25 to 0.4 and 0.40 to 0.55, respectively.
That is, when the Cr content ratio (Y value) and the B content ratio (Z value) exceed 0.4 and 0.55, respectively, the Cr content ratio and the B content ratio in the (Al, Cr, B) N layer are On the other hand, the content of the Al component decreases, and as a result, the high temperature hardness, heat resistance and oxidation resistance become insufficient, and the wear resistance decreases. On the other hand, the Cr content (Y value) and B content When the ratio (Z value) is less than 0.25 and less than 0.40, respectively, the content ratio of B in the (Al, Cr, B) N layer becomes too small, reducing the reactivity and improving the lubricity. In addition, since it is not possible to expect a further improvement in high-temperature strength due to a decrease in the Cr content ratio, the Cr content ratio (Y value) and the B content ratio (Z value) at the highest B content point 0.25 to 0.4 and 0.40 to 0.5, respectively. (Both atomic ratio) was defined.
In addition, the content ratio (X value) of the Al component at the highest B content point is 0.15 ≦ X ≦ from the viewpoint of the high temperature hardness, heat resistance, and oxidation resistance that are minimum required for high-speed cutting of the heat-resistant alloy. It is necessary to be in the range of 0.35, and X, Y, and Z are numerical values that satisfy X + Y + Z = 1.

(c)Al最高含有点とB最高含有点間の間隔
この発明の硬質被覆層は、その層厚方向に亘って、窒化物を構成する成分の濃度が、Al最高含有点からB最高含有点へと、また、B最高含有点からAl最高含有点へと連続的に変化するものであるため、例えば、成分濃度が急激に不連続な変化をする複数層の積層構造からなる硬質被覆層に比べると、複数層間での剥離等の恐れは無く硬質被覆層自体の密着強度・接合強度は非常にすぐれたものである。しかし、Al最高含有点とB最高含有点間の間隔が0.005μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、高温強度、耐熱性、耐酸化性、非反応性および潤滑性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちB最高含有点であれば高温硬さ、耐酸化性および耐熱性の不足、また、Al最高含有点であれば非反応性および潤滑性の不足が層内に局部的に現れ、これが原因で摩耗進行が促進されるようになることから、その間隔を0.005〜0.1μmと定めた。
なお、Al最高含有点とB最高含有点間の間隔は、(Al,Cr)N蒸着用アークイオンプレーティング(AIP)装置とB蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、アークイオンプレーティングとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができるので、回転テーブルの回転速度を適宜に設定することにより、Al最高含有点とB最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Cr,B)N層を容易に形成することができる。
(C) Spacing between Al highest content point and B highest content point In the hard coating layer of the present invention, the concentration of the components constituting the nitride is changed from the Al highest content point to the B highest content point in the layer thickness direction. In addition, since it changes continuously from the highest B content point to the highest Al content point, for example, in a hard coating layer composed of a multi-layer laminated structure in which the component concentration changes rapidly and discontinuously. In comparison, there is no fear of peeling between a plurality of layers, and the adhesion strength and bonding strength of the hard coating layer itself are very excellent. However, if the distance between the Al highest content point and the B highest content point is less than 0.005 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high-temperature hardness, High temperature strength, heat resistance, oxidation resistance, non-reactivity and lubricity cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if the B highest content point is high Insufficient hardness, oxidation resistance and heat resistance, and if Al is the highest content point, non-reactivity and lack of lubricity will appear locally in the layer, which will promote the progress of wear. Therefore, the interval was determined to be 0.005 to 0.1 μm.
In addition, the space | interval between the Al highest content point and the B highest content point uses the vapor deposition apparatus which provided the arc ion plating (AIP) apparatus for (Al, Cr) N vapor deposition, and the magnetron sputtering (SP) apparatus for B vapor deposition, When forming a vapor deposition film by performing arc ion plating and sputtering simultaneously, for example, it can be adjusted by controlling the rotational speed of the rotary table on which the tool base is mounted. By setting, a composition change (Al, Cr, B) N layer in which the interval between the highest Al content point and the highest B content point is a desired value within the above numerical range can be easily formed.

(d)平均層厚
その平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、高温強度、耐熱性、耐酸化性、非反応性および潤滑性を長期に亘って確保することができず、その結果、耐熱合金の高速切削における耐チッピング性、耐摩耗性の向上を期待することができず、一方、その平均層厚が8μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜8μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the hard coating layer can ensure the desired high temperature hardness, high temperature strength, heat resistance, oxidation resistance, non-reactivity and lubricity over a long period of time. As a result, improvement in chipping resistance and wear resistance in high-speed cutting of a heat-resistant alloy cannot be expected. On the other hand, if the average layer thickness exceeds 8 μm, chipping tends to occur on the cutting edge. Therefore, the average layer thickness was determined to be 1 to 8 μm.

この発明の被覆工具は、硬質被覆層を構成する組成変化(Al,Cr,B)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性を有するとともに、さらに、すぐれた非反応性と潤滑性をも具備することから、Ti基合金、Ni基合金、Co基合金等の耐熱合金を、特に大きな発熱を伴う高速切削条件で加工した場合であっても、すぐれた耐チッピング性を示すとともに、溶着・偏摩耗等を生じることなく長期に亘ってすぐれた耐摩耗性を発揮するものである。   In the coated tool of the present invention, the composition change (Al, Cr, B) N layer constituting the hard coating layer as a whole has excellent high temperature hardness, high temperature strength, heat resistance, and oxidation resistance. Because it has excellent non-reactivity and lubricity, it is excellent even when heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys are processed under high-speed cutting conditions with particularly large heat generation. In addition to exhibiting chipping resistance, it exhibits excellent wear resistance over a long period of time without causing welding or uneven wear.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Cr合金、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてCrB焼結体を装着し、またボンバード洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(b)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、
(c)また、それと同時に、CrB焼結体のターゲットにパルス電源を用いて10A、430Vのパルス電圧を印加してCrBをスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に、表3,4に示される目標組成のAl最高含有点とB最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al最高含有点から前記B最高含有点、前記B最高含有点から前記Al最高含有点へと、Al、Bの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Cr,B)N層からなる硬質被覆層を蒸着することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16をそれぞれ製造した。
なお、上記実施例では、Al最高含有点とB最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
Next, each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the inside of the vapor deposition apparatus provided with the arc ion plating apparatus and the magnetron sputtering apparatus shown in FIG. Of the arc ion plating apparatus on one side, and the cathode electrode (evaporation source) of the arc ion plating apparatus on one side, Al—Cr alloy having various composition, and the magnetron sputtering apparatus on the other side. A CrB 2 sintered body is attached as a target (evaporation source), and a bombard cleaning metal Ti is also attached. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater. Then, a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. Then, a current of 100 A is passed between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the tool base surface with Ti bombardment,
(B) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode An arc discharge is generated by passing a current of 90 A between the electrode and the anode electrode,
(C) At the same time, a pulse voltage of 10A and 430V is applied to the target of the CrB 2 sintered body using a pulse power source to sputter CrB 2 ,
(D) On the surface of the tool base rotating while rotating on the rotary table, the Al highest content point and the B highest content point of the target composition shown in Tables 3 and 4 are alternately shown in Tables 3 and 4. A component that repeatedly exists at the indicated target interval, and in which the content ratios of Al and B continuously change from the highest Al content point to the highest B content point, from the highest B content point to the highest Al content point. It is defined in ISO / CNMG120408 by depositing a hard coating layer having a concentration distribution structure and further comprising a composition change (Al, Cr, B) N layer of the target layer thickness similarly shown in Tables 3 and 4 The present invention coated tools 1 to 16 each having a throwaway tip shape were produced.
In the above embodiment, the target interval between the highest Al content point and the highest B content point is set to a predetermined target interval value by changing the rotation speed of the rotary table within a range of 0.5 to 10 rpm. Adjusted.

また、比較の目的で、これら工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−B合金を装着し、さらにボンバート洗浄用金属Tiも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,B)N層からなる硬質被覆層を蒸着することにより、同じくスローアウエイチップ形状の従来被覆工具1〜16をそれぞれ製造した。   Further, for the purpose of comparison, these tool bases A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and each was charged into a normal arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), an Al—Cr—B alloy having various composition is mounted, and a bombard cleaning metal Ti is also mounted. The inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less. However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was passed between the metal Ti of the cathode electrode and the anode electrode to cause arc discharge. Thus, the surface of the tool base is cleaned with Ti bombardment, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa. The bias voltage to be applied to is reduced to -100V and a current of 90A is caused to flow between the cathode electrode and the anode electrode to generate an arc discharge. By depositing a hard coating layer composed of a compositionally uniform (Al, Cr, B) N layer having the target composition and target layer thickness shown in Tables 5 and 6, a conventional coating of the same throwaway tip shape is also used. Tools 1-16 were produced respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:Ti−6wt%Al−4wt%Vの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 70 m/min.、
切り込み: 1.2 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのTi基合金の乾式高速断続切削加工試験(通常の切削速度は、30m/min.)、
被削材:Ni−19wt%Cr−18.5wt%Fe−5.2wt%Cd−5wt%Ta−3wt%Mo−0.9wt%Ti−0.5wt%Alの丸棒、
切削速度: 80 m/min.、
切り込み: 1.5 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのNi基合金の乾式高速連続切削加工試験(通常の切削速度は、40m/min.)、
被削材:Co−23wt%Cr−6wt%Mo−2wt%Ni−1wt%Fe−0.6wt%Si−0.4wt%Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 60 m/min.、
切り込み: 1.2 mm、
送り: 0.25 mm/rev.、
切削時間: 10 分、
の条件(切削条件C)でのCo基合金の乾式高速断続切削加工試験(通常の切削速度は、30m/min.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: Ti-6wt% Al-4wt% V lengthwise equally spaced round bars with 4 vertical grooves,
Cutting speed: 70 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Ti-based alloy under the above conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: Ni-19 wt% Cr-18.5 wt% Fe-5.2 wt% Cd-5 wt% Ta-3 wt% Mo-0.9 wt% Ti-0.5 wt% Al round bar,
Cutting speed: 80 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test of Ni-based alloy under the conditions (cutting condition B) (normal cutting speed is 40 m / min.),
Work material: Co-23wt% Cr-6wt% Mo-2wt% Ni-1wt% Fe-0.6wt% Si-0.4wt% C lengthwise equally spaced round bars with four longitudinal grooves,
Cutting speed: 60 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 30 m / min.) Of the Co-based alloy under the above conditions (cutting condition C), and measuring the flank wear width of the cutting edge in any cutting test did. The measurement results are shown in Table 7.

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl最高含有点とB最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記B最高含有点、前記B最高含有点から前記Al最高含有点へと、Al、Bの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Cr,B)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. 1 were also provided. In the vapor deposition apparatus, under the same conditions as in Example 1, the highest Al content point and the highest B content point of the target composition shown in Table 9 along the layer thickness direction are shown in Table 9 alternately. Concentration distribution in which the content ratio of Al and B continuously changes from the highest Al content point to the highest B content point and from the highest B content point to the highest Al content point. The coated end mill 1 of the present invention as the coated tool of the present invention is formed by vapor-depositing a hard coating layer having a structure and a composition change (Al, Cr, B) N layer of the target layer thickness also shown in Table 9 8 were prepared, respectively.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,B)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆エンドミル1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the tool base (end mill) C-1 to C-8 is ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, the surfaces of the tool bases (end mills) C-1 to C-8 were uniformly compositionally provided with the target composition and target layer thickness shown in Table 10. Conventional coated end mills 1 to 8 as conventional coated tools were produced by vapor-depositing a hard coating layer composed of (Al, Cr, B) N layers.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−19wt%Cr−18.5wt%Fe−5.2wt%Cd−5wt%Ta−3wt%Mo−0.9wt%Ti−0.5wt%Alの板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 3 mm、
テーブル送り: 300 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのCo−23wt%Cr−6wt%Mo−2wt%Ni−1wt%Fe−0.6wt%Si−0.4wt%Cの板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 3.5 mm、
テーブル送り: 280 mm/分、
の条件でのCo基合金の乾式高速溝切削加工試験(通常の切削速度は、30m/min.)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6wt%Al−4wt%Vの板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 6 mm、
テーブル送り: 270 mm/分、
の条件でのTi基合金の乾式高速溝切削加工試験(通常の切削速度は、25m/min.)
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ni-19 wt% Cr-18.5 wt% Fe-5.2 wt% Cd-5 wt% Ta-3 wt% Mo-0.9 wt% Ti-0. 5 wt% Al plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 300 mm / min,
Ni-base alloy dry high-speed grooving test under the conditions (normal cutting speed is 30 m / min.),
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm Co-23 wt% Cr-6 wt% Mo-2 wt% Ni-1 wt% Fe-0.6 wt% Si-0.4 wt% C plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 280 mm / min,
A dry high-speed grooving test of a Co-based alloy under the conditions (normal cutting speed is 30 m / min.),
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ti-6 wt% Al-4 wt% V plate,
Cutting speed: 50 m / min. ,
Groove depth (cut): 6 mm,
Table feed: 270 mm / min,
Ti-base alloy dry high-speed grooving test under normal conditions (normal cutting speed is 25 m / min.)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl最高含有点とB最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記B最高含有点、前記B最高含有点から前記Al最高含有点へと、Al、Bの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Cr,B)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Then, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plating apparatus shown in FIG. A vapor deposition apparatus equipped with a magnetron sputtering apparatus was inserted, and under the same conditions as in Example 1 above, the Al highest content point and the B highest content point of the target composition shown in Table 11 along the layer thickness direction were alternated. Also, the content ratio of Al and B is continuously present at the target intervals shown in Table 11 and continuously from the highest Al content point to the highest B content point and from the highest B content point to the highest Al content point. As a coated tool of the present invention, a hard coating layer having a compositional concentration distribution structure that changes into the above and having a composition change (Al, Cr, B) N layer of a target layer thickness similarly shown in Table 11 is formed by vapor deposition. of The invention coated drill 1-8 was produced, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,B)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆ドリル1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into an arc ion plating apparatus, and had the target composition and target layer thickness shown in Table 12 on the surfaces of the tool bases (drills) D-1 to D-8 under the same conditions as in Example 1. Conventionally coated drills 1 to 8 as conventional coated tools were produced by vapor-depositing a hard coating layer composed of a compositionally uniform (Al, Cr, B) N layer.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、
本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのCo−23wt%Cr−6wt%Mo−2wt%Ni−1wt%Fe−0.6wt%Si−0.4wt%Cの板材、
切削速度: 40 m/min.、
送り: 0.25 mm/rev、
穴深さ: 8 mm、
の条件でのCo基合金の湿式高速穴あけ切削加工試験(通常の切削速度は、20m/min.)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6wt%Al−4wt%Vの板材、
切削速度: 50 m/min.、
送り: 0.20 mm/rev、
穴深さ: 15 mm、
の条件でのTi基合金の湿式高速穴あけ切削加工試験(通常の切削速度は、25m/min.)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−19wt%Cr−18.5wt%Fe−5.2wt%Cd−5wt%Ta−3wt%Mo−0.9wt%Ti−0.5wt%Alの板材、
切削速度: 65 m/min.、
送り: 0.25 mm/rev、
穴深さ: 20 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度は、35m/min.)、
をそれぞれ行い、
いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, among the above-mentioned present invention coated drills 1-8 and conventional coated drills 1-8,
About this invention coated drill 1-3 and conventional coated drill 1-3,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm Co-23 wt% Cr-6 wt% Mo-2 wt% Ni-1 wt% Fe-0.6 wt% Si-0.4 wt% C plate material,
Cutting speed: 40 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 8 mm,
Wet high-speed drilling test of Co-based alloy under the conditions of (normal cutting speed is 20 m / min.),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ti-6 wt% Al-4 wt% V plate,
Cutting speed: 50 m / min. ,
Feed: 0.20 mm / rev,
Hole depth: 15 mm,
A wet high-speed drilling test of a Ti-based alloy under the conditions (normal cutting speed is 25 m / min.),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm Ni-19 wt% Cr-18.5 wt% Fe-5.2 wt% Cd-5 wt% Ta-3 wt% Mo-0.9 wt% Ti-0. 5 wt% Al plate material,
Cutting speed: 65 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 20 mm,
Wet high speed drilling cutting test of Ni base alloy under the conditions of (normal cutting speed is 35 m / min.),
Each
In any wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 0004844884
Figure 0004844884

Figure 0004844884
Figure 0004844884

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する組成変化(Al,Cr,B)N層のAl最高含有点およびB最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl最高含有点およびB最高含有点と実質的に同じ組成を示した。また、従来被覆工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層を構成する組成的に均一な(Al,Cr,B)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the composition change (Al, Cr, B) constituting the hard coating layer of the present coated tips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tool obtained as a result. ) The composition of the highest Al content point and the highest B content point of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. It showed substantially the same composition. Moreover, the compositionally uniform (Al, Cr, B) N layers constituting the hard coating layers of the conventional coated chips 1 to 16, the conventional coated end mills 1 to 8, and the conventional coated drills 1 to 8 as conventional coated tools. When the composition was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7、9〜12に示される結果から、本発明被覆工具は、Ti基合金、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速条件下での切削加工に用いた場合であっても、硬質被覆層を構成する組成変化(Al,Cr,B)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性、さらに、すぐれた非反応性と潤滑性を備えていることによって、溶着、チッピング、偏摩耗の発生がなく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Cr,B)N層で構成された従来被覆工具においては、高速切削加工で高熱発生を伴うことにより、溶着・偏摩耗やチッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 and 9-12, the coated tool of the present invention is used for cutting under high-speed conditions accompanied by high heat generation of heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys. Even so, the composition change (Al, Cr, B) N layer constituting the hard coating layer as a whole has excellent high temperature hardness, high temperature strength, heat resistance, oxidation resistance, and excellent non-reactivity. By providing lubrication, there is no occurrence of welding, chipping, and partial wear, and while exhibiting excellent wear resistance over a long period of time, the hard coating layer is compositionally uniform (Al, Cr , B) In the conventional coated tool composed of N layer, high heat generation is accompanied by high heat generation, which causes welding, uneven wear and chipping, and this can lead to a service life in a relatively short time. it is obvious.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うTi基合金、Ni基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合でも、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is suitable for high-speed cutting of heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys with high heat generation, as well as cutting of general steel and ordinary cast iron. Even when it is used, it exhibits excellent chipping resistance and wear resistance over a long period of time and exhibits excellent cutting performance. Therefore, FA of the cutting device, labor saving and energy saving of cutting processing, Furthermore, it can cope with cost reduction sufficiently satisfactorily.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus which used together the arc ion plating apparatus and magnetron sputtering apparatus which were used for forming the hard coating layer which comprises the coating tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. It is. 従来被覆工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used in forming the hard coating layer which comprises a conventional coating tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr合金を、また、他方にターゲットとしてCrB焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr合金カソード電極側でのアークイオンプレーティングと、CrB焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとBの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr合金カソード電極近傍で形成されるAl最高含有点と前記CrB焼結材料ターゲット近傍で形成されるB最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al最高含有点から前記B最高含有点、前記B最高含有点から前記Al最高含有点へと、Al、Bの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr合金カソード電極近傍で形成される前記Al最高含有点におけるAl成分、Cr成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Zで表したときに、Xは0.4〜0.65、Yは0.3〜0.50、Zは0.05〜0.20で、かつ、X+Y+Z=1を満足し、
(d)前記CrB焼結材料ターゲット近傍で形成される前記B最高含有点におけるAl成分、Cr成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Zで表したときに、Xは0.15〜0.35、Yは0.25〜0.4、Zは0.40〜0.55で、かつ、X+Y+Z=1を満足する組成変化(Al,Cr,B)N層を蒸着形成してなる、
耐熱合金の高速切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具。
A rotary table of a vapor deposition apparatus in which a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, an Al—Cr alloy as a cathode electrode on one side, and a CrB 2 sintered material as a target on the other side While the tool base is rotated on a rotary table, Al and Cr are sputtered on the cathode side of the Al—Cr alloy cathode and sputtering on the target side of the CrB 2 sintered material. In a surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Cr and B is formed by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and the highest Al content point formed in the vicinity of the Al—Cr alloy cathode electrode and the CrB 2 along the thickness direction of the hard coating layer. The B highest content point formed in the vicinity of the sintered material target is alternately present at intervals of 0.005 to 0.1 μm,
(B) From the Al highest content point to the B highest content point, from the B highest content point to the Al highest content point, having a component concentration distribution structure in which the content ratios of Al and B change continuously,
(C) The Al component, the Cr component, and the B component at the Al highest content point formed in the vicinity of the Al—Cr alloy cathode electrode are represented by X, Y, and Z, respectively. X is 0.4 to 0.65, Y is 0.3 to 0.50, Z is 0.05 to 0.20, and X + Y + Z = 1 is satisfied,
(D) The Al component, Cr component, and B component at the B highest content point formed in the vicinity of the CrB 2 sintered material target are represented by X, Y, and Z, respectively. X is 0.15 to 0.35, Y is 0.25 to 0.4, Z is 0.40 to 0.55, and composition change satisfying X + Y + Z = 1 (Al, Cr, B) N layer is formed by vapor deposition.
A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to high-speed cutting of heat-resistant alloys.
JP2006207027A 2006-07-28 2006-07-28 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys Expired - Fee Related JP4844884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207027A JP4844884B2 (en) 2006-07-28 2006-07-28 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207027A JP4844884B2 (en) 2006-07-28 2006-07-28 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys

Publications (2)

Publication Number Publication Date
JP2008030158A JP2008030158A (en) 2008-02-14
JP4844884B2 true JP4844884B2 (en) 2011-12-28

Family

ID=39120099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207027A Expired - Fee Related JP4844884B2 (en) 2006-07-28 2006-07-28 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys

Country Status (1)

Country Link
JP (1) JP4844884B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796778B2 (en) * 2012-01-23 2015-10-21 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
MY169727A (en) * 2012-04-16 2019-05-14 Oerlikon Surface Solutions Ag Trubbach High performance tools exhibiting reduced crater wear in particular by dry machining operations
WO2014148488A1 (en) * 2013-03-22 2014-09-25 三菱マテリアル株式会社 Surface-coated cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224868A (en) * 2004-02-10 2005-08-25 Mitsubishi Materials Kobe Tools Corp Surface coated cermet made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed heavy cutting condition
JP2005330539A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Abrasion-resistant coated member
JP4756445B2 (en) * 2005-02-16 2011-08-24 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys

Also Published As

Publication number Publication date
JP2008030158A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4844880B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120489B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP2008087113A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2008173755A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP2008173701A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees