JP2008173701A - Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting - Google Patents

Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting Download PDF

Info

Publication number
JP2008173701A
JP2008173701A JP2007008014A JP2007008014A JP2008173701A JP 2008173701 A JP2008173701 A JP 2008173701A JP 2007008014 A JP2007008014 A JP 2007008014A JP 2007008014 A JP2007008014 A JP 2007008014A JP 2008173701 A JP2008173701 A JP 2008173701A
Authority
JP
Japan
Prior art keywords
component
content point
highest content
cutting
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007008014A
Other languages
Japanese (ja)
Inventor
Satoyuki Masuno
智行 益野
Kazunori Sato
和則 佐藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007008014A priority Critical patent/JP2008173701A/en
Publication of JP2008173701A publication Critical patent/JP2008173701A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool provided with a hard coated layer achieving excellent wear resistance in high speed cutting. <P>SOLUTION: This surface-coated cutting tool is constituted by covering a surface of a tool basic body made of tungsten carbide group cemented carbide or titanium carbon nitride group cermet with N layers having average thickness of layers of 1-8 μm and having varying composition (Al, Cr, Ti, Si, W, C) in which the maximum amount of Al-Cr-Ti-Si containing points and the maximum amount of W-C containing points are alternately and repeatedly existent at a predetermined interval along the direction of thickness of layers. The percentages of content of Al, Cr, Ti, Si, W, and C at the maximum amount of Al-Cr-Ti-Si containing point are 0.2-0.4, 0.1-0.25, 0.1-0.25, 0.05-0.1, 0.05-0.3, and 0.05-0.3, respectively, and the percentages of contents of Al, Cr, Ti, Si, W, and C at the maximum amount of W-C containing point are 0.05-0.15, 0.03-0.08, 0.03-0.09, 0.01-0.04, 0.35-0.5, and 0.35-0.5, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、各種の鋼や鋳鉄などの切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance with a hard coating layer even when various types of steel and cast iron are cut under high-speed cutting conditions with high heat generation. )).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

被覆工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、AlとCrとTiとSiの複合窒化物層を主成分とする金属成分と、N、C等から選択される少なくとも1種以上の元素からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、そして、前記被覆工具の硬質被覆層は、すぐれた高温硬さ、耐熱性および高温強度を有し、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合には、すぐれた切削性能を発揮することが知られている。   As one of the coated tools, Al, Cr, Ti and Si are formed on the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. There is known a coated tool formed by physical vapor deposition of a hard coating layer comprising at least one element selected from N, C, etc., with a metal component mainly composed of a composite nitride layer of The hard coating layer of the coated tool has excellent high temperature hardness, heat resistance and high temperature strength, and excellent cutting performance when used for cutting various general steels and ordinary cast iron under normal conditions. It is known to exert.

さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば550℃の温度に加熱した状態で、窒素ガスおよび/またはメタンガスをを導入して1.0Paの反応雰囲気とし、工具基体に−120Vのバイアス電圧を印加した条件で、アノード電極と所定組成を有するAlとCrとTiとSiの合金(以下、Al−Cr−Ti−Siで示す)がセットされたカソード電極(蒸発源)との間にアーク放電を発生させ、前記工具基体の表面に、上記Al,Cr,Ti,Siの窒化物、炭化物、炭窒化物層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開2004−106183号公報
Further, the above-mentioned coated tool is loaded with the above-mentioned tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown schematically in FIG. 2, for example, and the inside of the apparatus is heated at, for example, 550 ° C. In a state where nitrogen gas and / or methane gas was introduced to make a reaction atmosphere of 1.0 Pa and a bias voltage of −120 V was applied to the tool base, Al having a predetermined composition and Al Arc discharge is generated between a cathode electrode (evaporation source) in which an alloy of Cr, Ti, and Si (hereinafter referred to as Al—Cr—Ti—Si) is set, and the Al, It is also known that it is manufactured by vapor-depositing a hard coating layer made of a Cr, Ti, Si nitride, carbide or carbonitride layer.
JP 2004-106183 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを高い発熱を伴う高速切削条件に用いた場合には、硬質被覆層は切削時に発生する高熱によって過熱され、その温度上昇によって摩耗が促進され、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In a coated tool, there is no problem when it is used for cutting under normal conditions, but when it is used for high-speed cutting conditions with high heat generation, the hard coating layer is caused by the high heat generated during cutting. It is overheated, the wear is accelerated by the temperature rise, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング(AIP)装置とW−C蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Cr−Ti−Si合金からなるカソード電極(蒸発源)を備えた(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置、他方側に、WC焼結体からなるターゲット(蒸発源)を備えたW−C蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング装置のAl−Cr−Ti−Si合金からなるカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、それと同時に、対向配設したW−C蒸着用マグネトロンスパッタリング装置のWC焼結体からなるターゲット(蒸発源)にパルス電圧を印加しW、Cをスパッタすると、アークイオンプレーティンとスパッタリングによってAlとCrとTiとSiとWとCの窒化物層(以下、(Al,Cr,Ti,Si,W,C)N層で示す)が蒸着形成され、そして、上記窒化物層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Cr−Ti−Si合金のカソード電極(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAl、Cr、Ti、Siの含有割合が最大となって、WとCの含有割合が最小となる領域(以下、Al−Cr−Ti−Si最高含有点という)が形成され、また、前記工具基体が、上記他方側のWC焼結体ターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のWとCの含有割合が最大となって、Al、Cr、Ti、Siの含有割合が最小となる領域(以下、W−C最高含有点という)が形成され、上記回転テーブルの回転によって層中には層厚方向に沿って、前記Al−Cr−Ti−Si最高含有点とW−C最高含有点が回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al−Cr−Ti−Si最高含有点から前記W−C最高含有点、前記W−C最高含有点から前記Al−Cr−Ti−Si最高含有点へ、Al、Cr、Ti、Si、W、Cの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Cr,Ti,Si,W,C)N層という)が形成されること。
In view of the above, the inventors of the present invention focused on the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent wear resistance with a hard coating layer, particularly in high-speed cutting, and researched. As a result of
(B) For example, an (Al, Cr, Ti, Si) N deposition arc ion plating (AIP) apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. Using a vapor deposition apparatus equipped with a magnetron sputtering (SP) apparatus for vapor deposition, a rotary table for mounting a tool substrate (for example, a carbide substrate) is provided in the center of the device, and a predetermined value is provided on one side of the rotary table. Arc ion plating apparatus for vapor deposition of (Al, Cr, Ti, Si) N having a cathode electrode (evaporation source) made of an Al—Cr—Ti—Si alloy having a composition, and a target made of a WC sintered body on the other side A magnetron sputtering apparatus for WC vapor deposition equipped with (evaporation source) is arranged opposite to each other, and a plurality of tools are mounted on the rotary table for mounting the tool base at a predetermined distance in the radial direction from the central axis. In this state, the tool base is mounted in a ring shape, and the atmosphere inside the apparatus is changed to a nitrogen atmosphere. The rotary table is rotated, and the tool base itself is rotated for the purpose of uniforming the thickness of the hard coating layer to be formed. , Generating an arc discharge between the cathode electrode (evaporation source) and the anode electrode made of an Al—Cr—Ti—Si alloy of the above-described (Al, Cr, Ti, Si) N vapor deposition arc ion plating apparatus, At the same time, when W and C are sputtered by applying a pulse voltage to a target (evaporation source) made of a WC sintered body of a magnetron sputtering apparatus for WC deposition disposed oppositely, Al and Cr are formed by arc ion plating and sputtering. And a nitride layer of Ti, Si, W and C (hereinafter referred to as (Al, Cr, Ti, Si, W, C) N layers) are formed by vapor deposition. Thus, the nitride layer is relatively deposited at a position where the tool base disposed on the rotary table is closest to the cathode electrode (evaporation source) of the Al-Cr-Ti-Si alloy on the one side. A region where the content ratio of Al, Cr, Ti, Si in the layer is maximized and the content ratio of W and C is minimized (hereinafter referred to as the Al-Cr-Ti-Si maximum content point) is formed, and In the position where the tool base is closest to the WC sintered compact target (evaporation source) on the other side, the content ratio of W and C in the vapor deposition layer is relatively maximized, and Al, Cr, A region where the content ratio of Ti and Si is minimized (hereinafter referred to as the WC maximum content point) is formed, and the Al—Cr—Ti— is formed in the layer along the layer thickness direction by rotation of the rotary table. Si maximum content point and WC maximum content point is the rotation speed of the rotary table Repeatedly appearing at predetermined intervals according to the above, and the highest content point of WC from the highest content point of Al-Cr-Ti-Si, and the highest content of Al-Cr-Ti-Si from the highest content point of WC To the point, a vapor deposition layer having a component concentration distribution structure in which the contents of Al, Cr, Ti, Si, W, and C change continuously (hereinafter, composition change (Al, Cr, Ti, Si, W, C) N A layer) is formed.

(ロ)上記組成変化(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層において、そのAl成分は高温硬さ、耐熱性および耐酸化性を向上させ、同Cr成分およびTi成分は高温強度を向上させ、同Si成分は一段と耐熱性を向上させ、同W成分は耐熱塑性変形性を向上させ、さらに、同C成分は炭化物を形成することにより皮膜硬さを向上させると共に潤滑性を向上させる作用があり、したがって相対的にAl,Cr、Ti,Siの含有割合が高いAl−Cr−Ti−Si最高含有点では、上記組成変化(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層はすぐれた高温硬さ、耐熱性、耐酸化性および高温強度を有するが、その反面、耐熱塑性変形性、潤滑性が十分でないために、高速切削条件下では偏摩耗を生じやすいことから、上記組成変化(Al,Cr,Ti,Si,W,C)N層のAl−Cr−Ti−Si最高含有点における耐熱塑性変形性、潤滑性の不足を補う目的で、すぐれた耐熱塑性変形性と潤滑性を有するW−C最高含有点を厚さ方向に交互に介在させることによって、上記組成変化(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層全体として、すぐれた高温硬さ、耐熱性、耐酸化性および高温強度とともに、耐熱塑性変形性および潤滑性を具備するようになり、その結果として、高速切削条件下でも偏摩耗を生じることなくすぐれた耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) In the hard coating layer composed of the above composition change (Al, Cr, Ti, Si, W, C) N layer, the Al component improves high-temperature hardness, heat resistance and oxidation resistance, and the Cr component and Ti component improves high-temperature strength, Si component further improves heat resistance, W component improves heat-resistant plastic deformation, and C component improves film hardness by forming carbide. In addition, the composition change (Al, Cr, Ti, Si, Al, Cr, Ti, Si, W, C) Hard coating layer consisting of N layer has excellent high-temperature hardness, heat resistance, oxidation resistance and high-temperature strength, but on the other hand, because of insufficient heat-resistant plastic deformation and lubricity, high-speed cutting conditions Underneath is uneven wear and Therefore, the composition change (Al, Cr, Ti, Si, W, C) was excellent in order to compensate for the lack of heat plastic deformation and lubricity at the Al-Cr-Ti-Si highest content point of the N layer. Hard coating layer composed of the above composition change (Al, Cr, Ti, Si, W, C) N layer by alternately interposing the WC highest content points having heat plastic deformation and lubricity in the thickness direction Overall, it has excellent high-temperature hardness, heat resistance, oxidation resistance, and high-temperature strength, as well as heat-resistant plastic deformation and lubricity. As a result, it has excellent uneven wear even under high-speed cutting conditions. To exhibit high wear resistance.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Ti−Si合金を、また、他方にターゲットのWC焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Ti−Si合金カソード電極側でのアークイオンプレーティングと、WC焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとTiとSiとWとCの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Ti−Si合金カソード電極近傍で形成されるAl―Cr―Ti−Si最高含有点と前記WC焼結材料ターゲット近傍で形成されるW−C最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr−Ti−Si最高含有点から前記W−C最高含有点、前記W−C最高含有点から前記Al−Cr−Ti−Si最高含有点へと、Al、Cr、Ti、Si、W、Cの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Ti−Si合金カソード電極近傍で形成される前記Al−Cr−Ti−Si最高含有点におけるAl成分、Cr成分、Ti成分、Si成分、W成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、α、β、γで表したときに、Xは0.2〜0.4、Yは0.1〜0.25、Zは0.1〜0.25、αは0.05〜0.1、βは0.05〜0.3、γは0.05〜0.3で、かつ、X+Y+Z+α+β+γ=1を満足し、
(d)前記WC焼結材料ターゲット近傍で形成される前記W−C最高含有点におけるAl成分、Cr成分、Ti成分、Si成分、W成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、α、β、γで表したときに、Xは0.05〜0.15、Yは0.03〜0.08、Zは0.03〜0.09、αは0.01〜0.04、βは0.35〜0.5、γは0.35〜0.5で、かつ、X+Y+Z+α+β+γ=1を満足する組成変化(Al,Cr,Ti,Si,W,C)N層を蒸着形成してなる、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(被覆工具)に特徴を有するものである。
This invention was made based on the above research results,
Vapor deposition apparatus provided with a tungsten carbide based cemented carbide or titanium carbonitride based cermet, a cathode base electrode with an Al-Cr-Ti-Si alloy on one side, and a target WC sintered material on the other side While rotating the tool base on the rotary table, arc ion plating on the Al-Cr-Ti-Si alloy cathode electrode side and sputtering on the WC sintered material target side while rotating the tool base on the rotary table, In the surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Ti, Si, W, and C is formed on the surface of the tool base by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and is formed in the vicinity of the Al—Cr—Ti—Si alloy cathode electrode along the layer thickness direction of the hard coating layer. Ti-Si highest content point and WC highest content point formed in the vicinity of the WC sintered material target are alternately present at intervals of 0.005 to 0.1 μm,
(B) From the Al-Cr-Ti-Si highest content point to the WC highest content point, from the WC highest content point to the Al-Cr-Ti-Si highest content point, Al, Cr, Ti , Si, W, and C have a component concentration distribution structure in which the content ratios continuously change,
(C) Al component, Cr component, Ti component, Si component, W component and C component at the Al-Cr-Ti-Si highest content point formed in the vicinity of the Al-Cr-Ti-Si alloy cathode electrode, When the content ratio (however, the atomic ratio) is expressed by X, Y, Z, α, β, γ, X is 0.2 to 0.4, Y is 0.1 to 0.25, Z Is 0.1 to 0.25, α is 0.05 to 0.1, β is 0.05 to 0.3, γ is 0.05 to 0.3, and X + Y + Z + α + β + γ = 1 is satisfied,
(D) Al component, Cr component, Ti component, Si component, W component and C component at the WC highest content point formed in the vicinity of the WC sintered material target, the content ratio (however, atomic ratio) Is represented by X, Y, Z, α, β, γ, respectively, X is 0.05 to 0.15, Y is 0.03 to 0.08, Z is 0.03 to 0.09, α is 0.01 to 0.04, β is 0.35 to 0.5, γ is 0.35 to 0.5, and composition change satisfying X + Y + Z + α + β + γ = 1 (Al, Cr, Ti, Si, W, C) formed by vapor deposition of N layer,
It is characterized by a surface-coated cutting tool (coated tool) that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.

つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,W,C)N層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the composition change (Al, Cr, Ti, Si, W, C) N layers constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)Al−Cr−Ti−Si最高含有点のAl、Cr、Ti、Si含有割合
組成変化(Al,Cr,Ti,Si,W,C)N層におけるAlは、高温硬さ、耐熱性および耐酸化性を向上させ、同Cr成分およびTi成分は高温強度を向上させ、同Si成分は一段と耐熱性を向上させ、また、W成分は層の放熱性(熱伝導性)を高め耐熱塑性変形性を向上させ、さらに、C成分は炭化物を形成することにより皮膜硬さを向上させると共に潤滑性を向上させる作用がある。したがって相対的にAl,Cr、Ti、Si成分の含有割合が高いAl−Cr−Ti−Si最高含有点ではすぐれた高温硬さ、高温強度、耐熱性、耐酸化性を備えるが、Alの含有割合(X値)が0.2未満の場合には、硬質被覆層として最小限要求される高温硬さ、耐熱性、耐酸化性を維持することはできず、Crの含有割合(Y値)が0.1未満の場合には、高温強度の不足によるチッピング発生の恐れがあり、Tiの含有割合(Z値)が0.1未満では硬質被覆層の高温強度を確保することができず、Siの含有割合(α値)が0.05未満の場合には、硬質被覆層の耐熱性のより一段の向上を期待できない。一方、Alの含有割合(X値)が0.4を超えたり、Crの含有割合(Y値)が0.25を超えたり、Tiの含有割合(Z値)が0.25を超えたり、Siの含有割合(α値)が0.1を越えたりしたような場合には、Wの含有割合(β値)およびCの含有割合(γ値)が少なくなりすぎて、硬質被覆層の耐熱塑性変形性および皮膜硬さ、潤滑性を確保することができなくなることから、Alの含有割合(X値)を0.2〜0.4、Crの含有割合(Y値)を0.1〜0.25、Tiの含有割合(Z値)を0.1〜0.25、Siの含有割合(α値)を0.05〜0.1(いずれも、原子比)とそれぞれ定めた。
また、Al−Cr−Ti−Si最高含有点におけるW成分の含有割合(β値)およびC成分の含有割合(γ値)は、高速切削で要求される耐熱塑性変形性および潤滑性を確保するために、0.05≦β≦0.3、0.05≦γ≦0.3の範囲とする必要があり、しかも、X、Y、Z、α、β、γは、X+Y+Z+α+β+γ=1を満足する数値でなければならない。
(A) Al, Cr, Ti, Si content ratio of Al-Cr-Ti-Si highest content point Composition change (Al, Cr, Ti, Si, W, C) Al in N layer is high temperature hardness, heat resistance In addition, the Cr component and Ti component improve the high temperature strength, the Si component further improves heat resistance, and the W component increases heat dissipation (thermal conductivity) of the layer and heat resistance plasticity. In addition to improving the deformability, the C component has the effect of improving the film hardness and the lubricity by forming carbides. Therefore, Al-Cr-Ti-Si has a relatively high content ratio of Al, Cr, Ti, and Si components, and has excellent high-temperature hardness, high-temperature strength, heat resistance, and oxidation resistance, but contains Al. When the ratio (X value) is less than 0.2, the high-temperature hardness, heat resistance, and oxidation resistance required as a minimum for the hard coating layer cannot be maintained, and the Cr content ratio (Y value) Is less than 0.1, there is a risk of chipping due to insufficient high-temperature strength, and if the Ti content (Z value) is less than 0.1, the high-temperature strength of the hard coating layer cannot be ensured, When the Si content (α value) is less than 0.05, further improvement in the heat resistance of the hard coating layer cannot be expected. On the other hand, the Al content ratio (X value) exceeds 0.4, the Cr content ratio (Y value) exceeds 0.25, the Ti content ratio (Z value) exceeds 0.25, When the Si content ratio (α value) exceeds 0.1, the W content ratio (β value) and the C content ratio (γ value) become too small, and the heat resistance of the hard coating layer is reduced. Since plastic deformability, film hardness, and lubricity cannot be secured, the Al content ratio (X value) is 0.2 to 0.4, and the Cr content ratio (Y value) is 0.1. The content ratio (Z value) of Ti was set to 0.1 to 0.25, and the content ratio (α value) of Si was set to 0.05 to 0.1 (all in atomic ratio).
Moreover, the content ratio (β value) of the W component and the content ratio (γ value) of the C component at the highest Al—Cr—Ti—Si content point ensure the heat-resistant plastic deformation and lubricity required in high-speed cutting. Therefore, it is necessary to set the ranges of 0.05 ≦ β ≦ 0.3 and 0.05 ≦ γ ≦ 0.3, and X, Y, Z, α, β, and γ are X + Y + Z + α + β + γ = 1. Must be a numerical value satisfying

(b)W−C最高含有点のW、C含有割合
硬質被覆層のW−C最高含有点において、組成変化(Al,Cr,Ti,Si,W,C)N層はすぐれた耐熱塑性変形性および硬さ、潤滑性を備えるが、硬質被覆層は、これらの特性ばかりでなく、硬質被覆層として最小限要求される高温硬さ、耐熱性、高温強度を当然備える必要があることから、W−C最高含有点におけるW含有割合(β値)、C含有割合(γ値)を、Al,Cr,Ti,Si,W,Cの合量に占める割合(原子比)で、それぞれ、0.35〜0.5、0.35〜0.5と定めた。
つまり、W含有割合(β値)が0.5を超えると、あるいは、C含有割合(γ値)が0.5を超えると、(Al,Cr,Ti,Si,W,C)N層中のAl、Cr、Ti、Si成分の含有量が減少し、その結果、高温硬さ、高温強度、耐熱性が不十分となり、切刃にチッピング(微小欠け)などが発生し易くなり、一方、W含有割合(β値)が0.35未満になると、あるいは、C含有割合(γ値)が0.35未満になると、(Al,Cr,Ti,Si,W,C)N層中のW、Cの含有割合が少なくなり過ぎて、耐熱塑性変形性および硬さ、潤滑性の向上を期待できなくなることから、Wの含有割合(β値)を0.35〜0.5と、また、Cの含有割合(γ値)を、0.35〜0.5(いずれも、原子比)に定めた。
また、W−C最高含有点におけるAl成分の含有割合(X値)、Cr成分の含有割合(Y値)、Ti成分の含有割合(Z値)およびSi成分の含有割合(α値)は、高速切削で最低限必要とされる高温硬さ、高温強度、耐熱性を確保するために、0.05≦X≦0.15、0.03≦Y≦0.08、0.03≦Z≦0.09、0.01≦α≦0.04の範囲とする必要があり、しかも、X、Y、Z、α、β、γは、X+Y+Z+α+β+γ=1を満足する数値でなければならない。
(B) W and C content ratio of W-C highest content point Composition change (Al, Cr, Ti, Si, W, C) N layer has excellent heat-resistant plastic deformation at the W-C highest content point of the hard coating layer. However, not only these properties but also the high temperature hardness, heat resistance, and high temperature strength required as a minimum for the hard coating layer, the hard coating layer must naturally have the properties, hardness, and lubricity. The W content ratio (β value) and the C content ratio (γ value) at the WC maximum content point are the ratio (atomic ratio) in the total amount of Al, Cr, Ti, Si, W, and C, respectively. .35 to 0.5 and 0.35 to 0.5.
That is, when the W content ratio (β value) exceeds 0.5 or the C content ratio (γ value) exceeds 0.5, the (Al, Cr, Ti, Si, W, C) in the N layer As a result, the high temperature hardness, high temperature strength, and heat resistance are insufficient, and chipping (minute chipping) is likely to occur on the cutting edge, When the W content ratio (β value) is less than 0.35, or when the C content ratio (γ value) is less than 0.35, W in the (Al, Cr, Ti, Si, W, C) N layer , Since the content ratio of C becomes too small and improvement in heat-resistant plastic deformability, hardness, and lubricity cannot be expected, the W content ratio (β value) is 0.35 to 0.5, The content ratio (γ value) of C was set to 0.35 to 0.5 (all are atomic ratios).
In addition, the content ratio (X value) of the Al component at the WC highest content point, the content ratio (Y value) of the Cr component, the content ratio (Z value) of the Ti component, and the content ratio (α value) of the Si component are: 0.05 ≦ X ≦ 0.15, 0.03 ≦ Y ≦ 0.08, 0.03 ≦ Z ≦ to ensure the high temperature hardness, high temperature strength and heat resistance required at the minimum for high speed cutting 0.09, 0.01 ≦ α ≦ 0.04, and X, Y, Z, α, β, and γ must be values satisfying X + Y + Z + α + β + γ = 1.

(c)Al−Cr−Ti−Si最高含有点とW−C最高含有点間の間隔
この発明の硬質被覆層は、その層厚方向に亘って、窒化物を構成する成分の濃度が、Al−Cr−Ti−Si最高含有点からW−C最高含有点へと、また、W−C最高含有点からAl−Cr−Ti−Si最高含有点へと連続的に変化するものであるため、例えば、成分濃度が急激に不連続な変化をする複数層の積層構造からなる硬質被覆層に比べると、複数層間での剥離等の恐れは無く硬質被覆層自体の密着強度・接合強度は非常にすぐれたものである。しかし、Al−Cr−Ti−Si最高含有点とW−C最高含有点間の間隔が0.005μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、高温強度、耐熱性、耐酸化性、耐熱塑性変形性および潤滑性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちW−C最高含有点であれば高温硬さ、高温強度、耐酸化性および耐熱性の不足、また、Al−Cr−Ti−Si最高含有点であれば耐熱塑性変形性および潤滑性の不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、また、摩耗進行が促進されるようになることから、その間隔を0.005〜0.1μmと定めた。
なお、Al−Cr−Ti−Si最高含有点とW−C最高含有点間の間隔は、(Al,Cr,Ti,Si)N蒸着用アークイオンプレーティング(AIP)装置とW−C蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、アークイオンプレーティングとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができるので、回転テーブルの回転速度を適宜に設定することにより、Al−Cr−Ti−Si最高含有点とW−C最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Cr,Ti,Si,W,C)N層を容易に形成することができる。
(C) Spacing between Al-Cr-Ti-Si highest content point and WC highest content point In the hard coating layer of this invention, the concentration of the component constituting the nitride is Al in the layer thickness direction. -It changes continuously from the highest content point of Cr-Ti-Si to the highest content point of WC and from the highest content point of WC to the highest content point of Al-Cr-Ti-Si, For example, compared to a hard coating layer consisting of a multi-layered structure in which the component concentration changes rapidly and discontinuously, there is no risk of delamination between multiple layers, and the adhesion strength and bonding strength of the hard coating layer itself are very high. It is excellent. However, if the distance between the Al—Cr—Ti—Si highest content point and the WC highest content point is less than 0.005 μm, it is difficult to clearly form each point with the above composition. The desired high-temperature hardness, high-temperature strength, heat resistance, oxidation resistance, heat-resistant plastic deformation and lubricity cannot be ensured in the layer, and the disadvantages of each point when the interval exceeds 0.1 μm, That is, if the W-C highest content point, insufficient high-temperature hardness, high-temperature strength, oxidation resistance and heat resistance, and if Al-Cr-Ti-Si highest content point, insufficient heat-resistant plastic deformation and lubricity Appears locally in the layer, and this makes it easier for chipping to occur on the cutting edge and promotes the progress of wear, so the interval was set to 0.005 to 0.1 μm. .
In addition, the space | interval between the Al-Cr-Ti-Si highest content point and the WC highest content point is the arc ion plating (AIP) apparatus for (Al, Cr, Ti, Si) N vapor deposition, and WC vapor deposition. When using a vapor deposition device with a magnetron sputtering (SP) device to form a vapor deposition film by simultaneously performing arc ion plating and sputtering, for example, by adjusting the rotation speed of the rotary table equipped with the tool base Therefore, by appropriately setting the rotation speed of the turntable, the interval between the Al—Cr—Ti—Si highest content point and the WC highest content point becomes a desired value within the above numerical range. Compositional change (Al, Cr, Ti, Si, W, C) N layers can be easily formed.

(d)平均層厚
その平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、高温強度、耐熱性、耐酸化性、耐熱塑性変形性および潤滑性を長期に亘って確保することができず、その結果、高速切削における耐摩耗性の向上を期待することができず、一方、その平均層厚が8μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜8μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the hard coating layer should ensure the desired high temperature hardness, high temperature strength, heat resistance, oxidation resistance, heat plastic deformation and lubricity over a long period of time. As a result, improvement in wear resistance in high-speed cutting cannot be expected. On the other hand, if the average layer thickness exceeds 8 μm, chipping tends to occur on the cutting edge. The thickness was set to 1-8 μm.

この発明の被覆工具は、硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,W,C)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性を有するとともに、さらに、すぐれた耐熱塑性変形性および潤滑性をも具備することから、各種の鋼や鋳鉄などを、特に大きな発熱を伴う高速切削条件で加工した場合であっても、長期に亘ってすぐれた耐摩耗性を発揮するものである。   In the coated tool of the present invention, the composition change (Al, Cr, Ti, Si, W, C) N layer constituting the hard coating layer as a whole has excellent high-temperature hardness, high-temperature strength, heat resistance, and oxidation resistance. In addition, it has excellent heat-resistant plastic deformation and lubricity, so that various steels and cast irons can be used for a long time even when processed under high-speed cutting conditions with particularly large heat generation. Exhibits excellent wear resistance.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Ti−Si合金、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてWC焼結体を装着し、またボンバード洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(b)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、
(c)また、それと同時に、WC焼結体のターゲットにパルス電源を用いて10A、430Vのパルス電圧を印加してWCをスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に、表3,4に示される目標組成のAl−Cr−Ti−Si最高含有点とW−C最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al−Cr−Ti−Si最高含有点から前記W−C最高含有点、前記W−C最高含有点から前記Al−Cr−Ti−Si最高含有点へと、Al、Cr、Ti、Si、W、Cの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層を蒸着することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16をそれぞれ製造した。
なお、上記実施例では、Al−Cr−Ti−Si最高含有点とW−C最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
Next, each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the inside of the vapor deposition apparatus provided with the arc ion plating apparatus and the magnetron sputtering apparatus shown in FIG. The Al—Cr—Ti—Si alloy having various component compositions as the cathode electrode (evaporation source) of the arc ion plating apparatus on one side, A WC sintered body is mounted as a target (evaporation source) of a magnetron sputtering apparatus, and a metal Ti for bombard cleaning is also mounted. First, the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less while the apparatus is heated with a heater. Is heated to 500 ° C., and then a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. Applied to, by passing a 100A current between said metallic Ti and the anode electrode of the cathode electrode to generate arc discharge, a tool substrate surface was washed Ti bombardment with,
(B) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode An arc discharge is generated by passing a current of 90 A between the electrode and the anode electrode,
(C) At the same time, a pulse voltage of 10A and 430V is applied to the target of the WC sintered body using a pulse power source to sputter WC,
(D) Al—Cr—Ti—Si highest content points and WC highest content points of the target compositions shown in Tables 3 and 4 are alternately placed on the surface of the tool base that rotates while rotating on the rotary table. And repeatedly present at the target intervals shown in Tables 3 and 4, and from the Al-Cr-Ti-Si highest content point to the WC highest content point, from the WC highest content point to the Al- It has a component concentration distribution structure in which the content ratio of Al, Cr, Ti, Si, W, and C continuously changes to the highest content point of Cr—Ti—Si, and is also shown in Tables 3 and 4 Composition change of target layer thickness (Al, Cr, Ti, Si, W, C) By depositing a hard coating layer composed of an N layer, the present invention coated tools 1 to 16 having a throwaway tip shape defined in ISO / CNMG120408 Were manufactured respectively.
In addition, in the said Example, the target space | interval of the Al-Cr-Ti-Si highest content point and the WC highest content point changes the rotational speed of a rotary table within the range of 0.5-10 rpm, Adjustments were made to achieve a predetermined target interval value.

また、比較の目的で、これら工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Ti−Si−W合金を装着し、さらにボンバード洗浄用金属Tiも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスとメタンガスの混合ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層を蒸着することにより、同じくスローアウエイチップ形状の比較被覆工具1〜16をそれぞれ製造した。   Further, for the purpose of comparison, these tool bases A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and each was charged into a normal arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), an Al—Cr—Ti—Si—W alloy having various component compositions is mounted, and a bombard cleaning metal Ti is also mounted, and the inside of the apparatus is evacuated to 0.5 Pa or less. While maintaining the vacuum, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was applied between the metal Ti of the cathode electrode and the anode electrode. To generate arc discharge, and the surface of the tool substrate is cleaned by Ti bombardment. Then, a mixed gas of nitrogen gas and methane gas is introduced into the apparatus as a reaction gas, and 2 Pa of In addition, the bias voltage applied to the tool base is lowered to −100 V, and a current of 90 A is caused to flow between the cathode electrode and the anode electrode to generate arc discharge, whereby the tool bases A1 to A10 are generated. And a hard coating comprising a compositionally uniform (Al, Cr, Ti, Si, W, C) N layer having a target composition and a target layer thickness shown in Tables 5 and 6 on each of B1 and B6 By depositing the layers, comparative coated tools 1 to 16 having the same throwaway tip shape were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・SCM445の丸棒、
切削速度: 230 m/min.、
切り込み: 2 mm、
送り: 0.3 mm/rev.、
切削時間: 18 分、
の条件(切削条件A)での合金鋼の乾式高速連続切削加工試験(通常の切削速度は、170m/min.)、
被削材:JIS・S55Cの丸棒、
切削速度: 180 m/min.、
切り込み: 2.3 mm、
送り: 0.5 mm/rev.、
切削時間: 15 分、
の条件(切削条件B)での炭素鋼の乾式高速連続切削加工試験(通常の切削速度は、130m/min.)、
被削材:JIS・SUS347の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 130 m/min.、
切り込み: 2.5 mm、
送り: 0.3 mm/rev.、
切削時間: 8 分、
の条件(切削条件C)でのステンレス鋼の乾式高速断続切削加工試験(通常の切削速度は、100m/min.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / SCM445 round bar,
Cutting speed: 230 m / min. ,
Incision: 2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 18 minutes,
Dry high-speed continuous cutting test of alloy steel under the following conditions (cutting condition A) (normal cutting speed is 170 m / min.),
Work material: JIS / S55C round bar,
Cutting speed: 180 m / min. ,
Incision: 2.3 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 15 minutes,
Dry high-speed continuous cutting test of carbon steel under the conditions (cutting condition B) (normal cutting speed is 130 m / min.),
Work material: JIS / SUS347 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 130 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 8 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 100 m / min.) Of stainless steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 7.

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl−Cr−Ti−Si最高含有点とW−C最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al−Cr−Ti−Si最高含有点から前記W−C最高含有点、前記W−C最高含有点から前記Al−Cr−Ti−Si最高含有点へと、Al、Cr、Ti、Si、W、Cの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. 1 were also provided. The Al-Cr-Ti-Si highest content point and the WC highest content point of the target composition shown in Table 9 along the layer thickness direction were charged in the same conditions as in Example 1 above. Alternatingly, it repeatedly exists at the target intervals shown in Table 9, and from the Al—Cr—Ti—Si highest content point to the WC highest content point, from the WC highest content point to the Al—Cr— It has a component concentration distribution structure in which the content ratio of Al, Cr, Ti, Si, W, and C continuously changes to the Ti-Si highest content point, and the compositional change of the target layer thickness also shown in Table 9 (Al, Cr, Ti, S , W, C) by deposition form a hard coating layer consisting of N layers, the present invention coated end mills 1-8 as the present invention coated tool was produced, respectively.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆エンドミル1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the tool base (end mill) C-1 to C-8 is ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, the surfaces of the tool bases (end mills) C-1 to C-8 were uniformly compositionally provided with the target composition and target layer thickness shown in Table 10. Comparative coating end mills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer composed of (Al, Cr, Ti, Si, W, C) N layers.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SNC836の板材、
切削速度: 100 m/min.、
溝深さ(切り込み): 10 mm、
テーブル送り: 420 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、80m/min.)、
本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD450の板材、
切削速度: 150 m/min.、
溝深さ(切り込み): 13 mm、
テーブル送り: 350 mm/分、
の条件での鋳鉄の乾式高速溝切削加工試験(通常の切削速度は、100m/min.)、
本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCW480の板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 15 mm、
テーブル送り: 600 mm/分、
の条件での鋳鋼の乾式高速溝切削加工試験(通常の切削速度は、85m/min.)
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.15mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8,
About this invention coated end mills 1-3 and comparative coated end mills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SNC836 plate material,
Cutting speed: 100 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 420 mm / min,
Dry high-speed grooving test of alloy steel under the conditions (normal cutting speed is 80 m / min.),
About this invention coated end mills 4-6 and comparative coated end mills 4-6,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FCD450 plate material,
Cutting speed: 150 m / min. ,
Groove depth (cut): 13 mm,
Table feed: 350 mm / min,
Cast iron dry high-speed grooving test (normal cutting speed is 100 m / min.),
For the coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SCW480 plate material,
Cutting speed: 120 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 600 mm / min,
Test of dry high-speed grooving of cast steel under normal conditions (normal cutting speed is 85 m / min.)
In each of the groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.15 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.


ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl−Cr−Ti−Si最高含有点とW−C最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al−Cr−Ti−Si最高含有点から前記W−C最高含有点、前記W−C最高含有点から前記Al−Cr−Ti−Si最高含有点へと、Al、Cr、Ti、Si、W、Cの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。

Then, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plating apparatus shown in FIG. A vapor deposition apparatus equipped with a magnetron sputtering apparatus was inserted, and under the same conditions as in Example 1 above, the Al-Cr-Ti-Si highest content point and W- of the target composition shown in Table 11 along the layer thickness direction. The C highest content point is alternately present repeatedly at the target intervals shown in Table 11, and the WC highest content point, the WC highest content point, from the Al-Cr-Ti-Si highest content point. From the Al-Cr-Ti-Si highest content point, the content ratio of Al, Cr, Ti, Si, W, C has a component concentration distribution structure that continuously changes, and is also shown in Table 11 Change in composition of target layer thickness Al, Cr, Ti, Si, W, by depositing form a hard coating layer made of C) N layer, the present invention coated drill 1-8 as the present invention coated tool was produced, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Ti,Si,W,C)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆ドリル1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into an arc ion plating apparatus, and had the target composition and target layer thickness shown in Table 12 on the surfaces of the tool bases (drills) D-1 to D-8 under the same conditions as in Example 1. Comparative coating drills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer composed of a compositionally uniform (Al, Cr, Ti, Si, W, C) N layer.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、
本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS434の板材、
切削速度: 80 m/min.、
送り: 0.2 mm/rev、
穴深さ: 8 mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、45m/min.)、
本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SF490Aの板材、
切削速度: 120 m/min.、
送り: 0.3 mm/rev、
穴深さ: 15 mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、70m/min.)、
本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM420Hの板材、
切削速度: 160 m/min.、
送り: 0.35 mm/rev、
穴深さ: 30 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、85m/min.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.35mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8,
About this invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS434 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 8 mm,
Wet high-speed drilling test of stainless steel under normal conditions (normal cutting speed is 45 m / min.),
About this invention coated drill 4-6 and comparative coated drill 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SF490A plate material,
Cutting speed: 120 m / min. ,
Feed: 0.3 mm / rev,
Hole depth: 15 mm,
Wet high-speed drilling test of carbon steel under the conditions (normal cutting speed is 70 m / min.),
About this invention covering drills 7 and 8 and comparative covering drills 7 and 8,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SNCM420H plate material,
Cutting speed: 160 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 30 mm,
Wet high-speed drilling test of alloy steel under the conditions of (normal cutting speed is 85 m / min.),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.35 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2008173701
Figure 2008173701

Figure 2008173701
Figure 2008173701


この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,W、C)N層のAl−Cr−Ti−Si最高含有点およびW−C最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl−Cr−Ti−Si最高含有点およびW−C最高含有点と実質的に同じ組成を示した。また、比較被覆工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の硬質被覆層を構成する組成的に均一な(Al,Cr,Ti,Si,W,C)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。

As a result, the composition changes (Al, Cr, Ti) constituting the hard coating layers of the present coated tips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tools obtained as a result of the present invention. , Si, W, C) The composition of the Al—Cr—Ti—Si highest content point and the W—C highest content point of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition showed substantially the same composition as the Al-Cr-Ti-Si highest content point and WC highest content point of the target composition, respectively. Further, compositionally uniform (Al, Cr, Ti, Si, W) constituting the hard coating layers of the comparative coating tips 1 to 16, the comparative coating end mills 1 to 8, and the comparative coating drills 1 to 8 as comparative coating tools. , C) The composition of the N layer was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, and showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7、9〜12に示される結果から、本発明被覆工具は、鋼や鋳鉄などの高熱発生を伴う高速条件下での切削加工に用いた場合であっても、硬質被覆層を構成する組成変化(Al,Cr,Ti,Si,W,C)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性、さらに、すぐれた耐熱塑性変形性と潤滑性を備えていることによって、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Cr,Ti,Si,W,C)N層で構成された比較被覆工具においては、高速切削加工で高熱発生を伴うことにより、偏摩耗等が発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 and 9 to 12, the coated tool of the present invention is a composition that forms a hard coating layer even when it is used for cutting under high-speed conditions with high heat generation such as steel and cast iron. Change (Al, Cr, Ti, Si, W, C) N layer as a whole has excellent high temperature hardness, high temperature strength, heat resistance, oxidation resistance, and excellent heat plastic deformation and lubricity Therefore, the hard coating layer is composed of a compositionally uniform (Al, Cr, Ti, Si, W, C) N layer while exhibiting excellent wear resistance over a long period of time. In the comparative coated tool, it is clear that uneven wear or the like occurs due to high heat generation in high-speed cutting, which leads to a service life in a relatively short time.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴う高速切削加工に用いた場合でも、長期に亘ってすぐれた耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention exhibits excellent wear resistance over a long period of time even when used for high-speed cutting with high heat generation, as well as cutting of general steel and ordinary cast iron. However, since it shows excellent cutting performance, it can satisfactorily cope with the FA of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus which used together the arc ion plating apparatus and magnetron sputtering apparatus which were used for forming the hard coating layer which comprises the coating tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. It is. 比較被覆工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used in forming the hard coating layer which comprises a comparative coating tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Ti−Si合金を、また、他方にターゲットとしてWC焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Ti−Si合金カソード電極側でのアークイオンプレーティングと、WC焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとTiとSiとWとCの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Ti−Si合金カソード電極近傍で形成されるAl−Cr−Ti−Si最高含有点と前記WC焼結材料ターゲット近傍で形成されるW−C最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr−Ti−Si最高含有点から前記W−C最高含有点、前記W−C最高含有点から前記Al−Cr−Ti−Si最高含有点へと、Al、Cr、Ti、Si、W、Cの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Ti−Si合金カソード電極近傍で形成される前記Al−Cr−Ti−Si最高含有点におけるAl成分、Cr成分、Ti成分、Si成分、W成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、α、β、γで表したときに、Xは0.2〜0.4、Yは0.1〜0.25、Zは0.1〜0.25、αは0.05〜0.1、βは0.05〜0.3、γは0.05〜0.3で、かつ、X+Y+Z+α+β+γ=1を満足し、
d)前記WC焼結材料ターゲット近傍で形成される前記W−C最高含有点におけるAl成分、Cr成分、Ti成分、Si成分、W成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、α、β、γで表したときに、Xは0.05〜0.15、Yは0.03〜0.08、Zは0.03〜0.09、αは0.01〜0.04、βは0.35〜0.5、γは0.35〜0.5で、かつ、X+Y+Z+α+β+γ=1を満足する組成変化(Al,Cr,Ti,Si,W,C)N層を蒸着形成してなる、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
Vapor deposition apparatus comprising a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet, an Al—Cr—Ti—Si alloy as a cathode electrode on one side, and a WC sintered material as a target on the other side While rotating the tool base on the rotary table, arc ion plating on the Al-Cr-Ti-Si alloy cathode electrode side and sputtering on the WC sintered material target side while rotating the tool base on the rotary table, In the surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Ti, Si, W, and C is formed on the surface of the tool base by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and is formed in the vicinity of the Al—Cr—Ti—Si alloy cathode electrode along the thickness direction of the hard coating layer. Ti-Si highest content point and WC highest content point formed in the vicinity of the WC sintered material target are alternately present at intervals of 0.005 to 0.1 μm,
(B) From the Al-Cr-Ti-Si highest content point to the WC highest content point, from the WC highest content point to the Al-Cr-Ti-Si highest content point, Al, Cr, Ti , Si, W, and C have a component concentration distribution structure in which the content ratios continuously change,
(C) Al component, Cr component, Ti component, Si component, W component and C component at the Al-Cr-Ti-Si highest content point formed in the vicinity of the Al-Cr-Ti-Si alloy cathode electrode, When the content ratio (however, the atomic ratio) is expressed by X, Y, Z, α, β, γ, X is 0.2 to 0.4, Y is 0.1 to 0.25, Z Is 0.1 to 0.25, α is 0.05 to 0.1, β is 0.05 to 0.3, γ is 0.05 to 0.3, and X + Y + Z + α + β + γ = 1 is satisfied,
d) Al component, Cr component, Ti component, Si component, W component, and C component at the WC highest content point formed in the vicinity of the WC sintered material target, the content ratio (however, the atomic ratio) , X, Y, Z, α, β, and γ, respectively, X is 0.05 to 0.15, Y is 0.03 to 0.08, Z is 0.03 to 0.09, α Is 0.01 to 0.04, β is 0.35 to 0.5, γ is 0.35 to 0.5, and composition change satisfying X + Y + Z + α + β + γ = 1 (Al, Cr, Ti, Si, W , C) N layer is formed by vapor deposition.
Surface coated cutting tool that exhibits high wear resistance with a hard coating layer in high speed cutting.
JP2007008014A 2007-01-17 2007-01-17 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting Withdrawn JP2008173701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008014A JP2008173701A (en) 2007-01-17 2007-01-17 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008014A JP2008173701A (en) 2007-01-17 2007-01-17 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting

Publications (1)

Publication Number Publication Date
JP2008173701A true JP2008173701A (en) 2008-07-31

Family

ID=39701111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008014A Withdrawn JP2008173701A (en) 2007-01-17 2007-01-17 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting

Country Status (1)

Country Link
JP (1) JP2008173701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200042A1 (en) * 2020-03-30 2021-10-07 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200042A1 (en) * 2020-03-30 2021-10-07 三菱マテリアル株式会社 Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP5041222B2 (en) Surface coated cutting tool
JP2009125832A (en) Surface-coated cutting tool
JP5088480B2 (en) Surface coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5035527B2 (en) Surface coated cutting tool
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008173751A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP5099495B2 (en) Surface coated cutting tool
JP2008173701A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2009095916A (en) Surface-coated cutting tool
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP2008260097A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406