JP2008173751A - Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting - Google Patents

Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting Download PDF

Info

Publication number
JP2008173751A
JP2008173751A JP2007012042A JP2007012042A JP2008173751A JP 2008173751 A JP2008173751 A JP 2008173751A JP 2007012042 A JP2007012042 A JP 2007012042A JP 2007012042 A JP2007012042 A JP 2007012042A JP 2008173751 A JP2008173751 A JP 2008173751A
Authority
JP
Japan
Prior art keywords
highest
component
content point
target
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007012042A
Other languages
Japanese (ja)
Inventor
Satoyuki Masuno
智行 益野
Tsutomu Ogami
強 大上
Daisuke Kazami
大介 風見
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007012042A priority Critical patent/JP2008173751A/en
Publication of JP2008173751A publication Critical patent/JP2008173751A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool provided with a hard coated layer capable of achieving excellent wear resistance in high speed cutting. <P>SOLUTION: This surface-coated cutting tool is constituted by covering a surface of a tool basic body made of tungsten carbide group cemented carbide or titanium carbide nitride group cermet with N layers having average thickness of layers of 1-5 μm and having varying composition (Al, Ti, Si, C) in which the maximum amount of Al-Ti containing points and the maximum amount of Si-C containing points are alternately and repeatedly existent at a predetermined interval along the direction of thickness of layers. Each percentage of content of Al, Ti, Si, and C at the maximum amount of Al-Ti containing point is 0.3-0.5, 0.2-0.3, 0.05-0.2, and 0.05-0.2, respectively, and each percentage of content of Al, Ti, Si, and C at the maximum amount of Si-C containing point is 0.1-0.25, 0.05-0.15, 0.3-0.45, and 0.3-0.45, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、各種の鋼や鋳鉄などの切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance with a hard coating layer even when various types of steel and cast iron are cut under high-speed cutting conditions with high heat generation. )).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
0.1〜10μmの層厚を有し、組成式:(Al1−X−YTi(SiC))N(ただし、原子比で、Xは0.3〜0.7、Yは0.1〜0.2を示す)を満足するAlとTiとSiCの複合窒化物層からなる硬質被覆層を物理蒸着してなる被覆工具が知られており、そして、前記硬質被覆層である(Al,Ti,Si,C)N層は、すぐれた高温硬さと耐酸化性、耐摩耗性を有し、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合に、すぐれた切削性能を発揮することが知られている。
In addition, as a coated tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet,
It has a layer thickness of 0.1 to 10 μm, and a composition formula: (Al 1-XY Ti X (SiC) Y ) N (wherein X is 0.3 to 0.7, Y is 0 in terms of atomic ratio) A coating tool formed by physically vapor-depositing a hard coating layer composed of a composite nitride layer of Al, Ti, and SiC satisfying .1 to 0.2) is known, and is the hard coating layer ( The Al, Ti, Si, C) N layer has excellent high-temperature hardness, oxidation resistance, and wear resistance. When used for cutting various general steels and ordinary cast irons under normal conditions, It is known to exhibit excellent cutting performance.

さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAlとTiとSiCのターゲット(以下、「Al−Ti−SiCターゲット」で示す)がセットされたカソード電極(蒸発源)との間にアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、約6.7×10−3Paの反応雰囲気とし、一方上記工具基体には、例えば−200Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開2000−308906号公報
Further, the above-mentioned coated tool, for example, the above-mentioned tool base is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. Between the anode electrode and a cathode electrode (evaporation source) in which a target of Al, Ti and SiC (hereinafter referred to as “Al—Ti—SiC target”) having a predetermined composition is set. At the same time, an arc discharge was generated and nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of about 6.7 × 10 −3 Pa, while a bias voltage of −200 V, for example, was applied to the tool base. It is also known that a hard coating layer made of the (Al, Ti, Si, C) N layer is deposited on the surface of the tool base under conditions.
JP 2000-308906 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを高い発熱を伴う高速切削条件に用いた場合には、硬質被覆層は切削時に発生する高熱によって過熱され切粉の溶着が生じやすくなり、これらを原因としてチッピング、偏摩耗が発生し、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In a coated tool, there is no problem when it is used for cutting under normal conditions, but when it is used for high-speed cutting conditions with high heat generation, the hard coating layer is caused by the high heat generated during cutting. Overheating is likely to cause chip welding, and chipping and uneven wear occur due to these, resulting in a service life in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のAlとTiの窒化物(以下、(Al,Ti)Nで示す)蒸着用アークイオンプレーティング装置と炭窒化けい素(以下、SiCNで示す)蒸着用マグネトロンスパッタリング装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Tiターゲット(蒸発源)を備えた(Al,Ti)N蒸着用アークイオンプレーティング装置、他方側に、SiC焼結体からなるターゲット(蒸発源)を備えたSiCN蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の(Al,Ti)N蒸着用アークイオンプレーティング装置のAl−Tiターゲット(蒸発源)とアノード電極との間にアーク放電を発生させ、それと同時に、対向配設したSiCN蒸着用マグネトロンスパッタリング装置のSiC焼結体からなるターゲット(蒸発源)にパルス電圧を印加しSiCをスパッタすると、アークイオンプレーティングとスパッタリングによってAlとTiとSiとCの複合窒化物層(以下、(Al,Ti,Si,C)N層で示す)が蒸着形成され、そして、上記複合窒化物層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Tiターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAl、Tiの含有割合が最大となって、Si、Cの含有割合が最小となる領域(以下、Al−Ti最高含有点という)が形成され、また、前記工具基体が、上記他方側のSiC焼結体ターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のSi、Cの含有割合が最大となって、Al、Tiの含有割合が最小となる領域(以下、Si−C最高含有点という)が形成され、上記回転テーブルの回転によって層中には層厚方向に沿って、前記Al−Ti最高含有点とSi−C最高含有点が上記回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al−Ti最高含有点から前記Si−C最高含有点、前記Si−C最高含有点から前記Al−Ti最高含有点へ、Al、Ti、Si、Cの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Ti,Si,C)N層という)が形成されること。
In view of the above, the inventors of the present invention focused on the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent wear resistance with a hard coating layer, particularly in high-speed cutting, and researched. As a result of
(B) For example, an arc ion for vapor deposition of Al and Ti nitrides (hereinafter referred to as (Al, Ti) N) having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. Using a deposition apparatus equipped with a plating apparatus and a magnetron sputtering apparatus for deposition of silicon carbonitride (hereinafter referred to as SiCN), a rotary table for mounting a tool substrate (for example, a carbide substrate) is provided at the center of the apparatus, and the rotation An arc ion plating apparatus for deposition of (Al, Ti) N with an Al—Ti target (evaporation source) of a predetermined composition on one side across a table, and a target (evaporation) made of a SiC sintered body on the other side A magnetron sputtering device for SiCN deposition provided with a source) is arranged opposite to each other, and a plurality of magnetron sputtering devices on a tool base mounting rotary table at a predetermined distance in the radial direction from the central axis thereof In this state, the tool base is mounted in a ring shape, and the atmosphere inside the apparatus is changed to a nitrogen atmosphere. The rotary table is rotated, and the tool base itself is rotated for the purpose of uniforming the thickness of the hard coating layer to be formed. The arc discharge is generated between the Al-Ti target (evaporation source) and the anode electrode of the arc ion plating apparatus for (Al, Ti) N vapor deposition, and at the same time, magnetron sputtering for SiCN vapor deposition disposed oppositely. When a pulse voltage is applied to a target (evaporation source) made of a SiC sintered body of the apparatus and SiC is sputtered, a composite nitride layer of Al, Ti, Si and C (hereinafter referred to as (Al, Ti) by arc ion plating and sputtering. , Si, C) N)) is deposited and the composite nitride layer is disposed on a turntable. In the position where the tool base is closest to the Al-Ti target (evaporation source) on the one side, the content ratio of Al and Ti in the vapor deposition layer is relatively maximum, and the content ratio of Si and C Is formed at a position where the tool base is closest to the SiC sintered body target (evaporation source) on the other side. A region where the content ratio of Si and C in the vapor deposition layer is maximized and the content ratio of Al and Ti is minimized (hereinafter referred to as the highest Si-C content point) is formed. In the layer thickness direction, the Al-Ti highest content point and the Si-C highest content point repeatedly appear alternately with a predetermined interval according to the rotation speed of the rotary table, and the Al-Ti highest content point To the highest Si-C content A vapor deposition layer having a component concentration distribution structure in which the content of Al, Ti, Si, and C changes continuously from the highest Si-C content point to the highest Al-Ti content point (hereinafter referred to as composition change (Al , Ti, Si, C) N layers) are formed.

(ロ)上記組成変化(Al,Ti,Si,C)N層からなる硬質被覆層において、Alは高温硬さおよび耐熱性を向上させ、Tiは高温強度を向上させるとともに、複合窒化物層におけるマトリックス相を形成し、硬質被覆層の耐摩耗性向上、高温強度向上に寄与する。一方、Si成分およびC成分については、その大半は上記マトリックス相中に固溶し、Si成分は耐熱塑性変形性を向上させ、C成分は皮膜硬さを向上させる作用があるが、Si成分およびC成分の一部は、SiCNというSiの炭窒化物として上記マトリックス相に分散分布した状態で存在し、SiCNそれ自体の持つ高硬度、耐酸化性、潤滑性に加え、マトリックス相の結晶粒微細化作用と相俟って、上記組成変化(Al,Ti,Si,C)N層からなる硬質被覆層の耐熱塑性変形性、耐摩耗性、潤滑性をより一層向上させる。
したがって、相対的にAl,Tiの含有割合が高いAl−Ti最高含有点では、上記組成変化(Al,Ti,Si,C)N層からなる硬質被覆層はすぐれた高温強度を具備し、同時にすぐれた高温硬さ、耐熱性を有するが、高速切削条件下ではより一層の耐摩耗性、潤滑性が要求されることから、上記組成変化(Al,Ti,Si,C)N層のAl−Ti最高含有点における耐摩耗性、潤滑性をさらに向上させる目的で、硬度、耐酸化性、潤滑性にすぐれ、さらに、結晶粒微細化作用によりより一段と耐摩耗性が向上したSi−C最高含有点を硬質被覆層の厚さ方向に交互に設けることによって、上記組成変化(Al,Ti,Si,C)N層からなる硬質被覆層全体として、すぐれた耐熱塑性変形性、高温硬さ、耐熱性、高温強度および潤滑性を具備するようになり、その結果として、高速切削条件下でも、溶着に基づくチッピング、偏摩耗を生じることなく一段とすぐれた耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) In the hard coating layer composed of the above composition change (Al, Ti, Si, C) N layer, Al improves the high temperature hardness and heat resistance, Ti improves the high temperature strength, and in the composite nitride layer Forms a matrix phase and contributes to improved wear resistance and high temperature strength of the hard coating layer. On the other hand, most of the Si component and the C component are dissolved in the matrix phase, the Si component improves the heat plastic deformation property, and the C component has an action of improving the film hardness. Part of the C component exists in a state of being distributed and distributed in the matrix phase as Si carbonitride of SiCN. In addition to the high hardness, oxidation resistance, and lubricity of SiCN itself, the crystal grains of the matrix phase are fine. Combined with the chemical action, the heat-resistant plastic deformation, wear resistance, and lubricity of the hard coating layer composed of the above-described composition change (Al, Ti, Si, C) N layer are further improved.
Therefore, at the Al-Ti highest content point where the content ratio of Al and Ti is relatively high, the hard coating layer composed of the composition change (Al, Ti, Si, C) N layer has excellent high-temperature strength, and at the same time Although it has excellent high-temperature hardness and heat resistance, it requires higher wear resistance and lubricity under high-speed cutting conditions. Therefore, the Al-- in the above composition change (Al, Ti, Si, C) N layer For the purpose of further improving the wear resistance and lubricity at the highest Ti content point, it has excellent hardness, oxidation resistance and lubricity, and further has the highest Si-C content with further improved wear resistance due to the grain refining action. By providing dots alternately in the thickness direction of the hard coating layer, the entire hard coating layer composed of the above composition change (Al, Ti, Si, C) N layer has excellent heat resistance plastic deformation, high temperature hardness, heat resistance , High temperature strength and lubrication Now comprises a, as a result, even in high-speed cutting conditions, chipping-based welding, to become to exert more excellent wear resistance without generating uneven wear.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にAl−Tiターゲットを、また、他方にSiC焼結材料ターゲットを設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Tiターゲット側でのアークイオンプレーティングと、SiC焼結材料ターゲット側でのスパッタリングにより、工具基体表面に、Siの炭窒化物がAlとTiの窒化物中に分散分布した組織からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜5μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Tiターゲット近傍で形成されるAl−Ti最高含有点と前記SiC焼結材料ターゲット近傍で形成されるSi−C最高含有点とが0.03〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Ti最高含有点から前記Si−C最高含有点、前記Si−C最高含有点から前記Al−Ti最高含有点へと、Al、Ti、Si、Cの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Tiターゲット近傍で形成される前記Al−Ti最高含有点におけるAl成分、Ti成分、Si成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、
Xは0.3〜0.5、Yは0.2〜0.3、Qは0.05〜0.2、Rは0.05〜0.2で、かつ、X+Y+Q+R=1を満足し、
(d)前記SiC焼結材料ターゲット近傍で形成される前記Si−C最高含有点におけるAl成分、Ti成分、Si成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、
Xは0.1〜0.25、Yは0.05〜0.15、Qは0.3〜0.45、Rは0.3〜0.45で、かつ、X+Y+Q+R=1を満足する組成変化(Al,Ti,Si,C)N層を蒸着形成してなる、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(表面被覆切削工具)に特徴を有するものである。
This invention was made based on the above research results,
A tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet was placed on a rotary table of a vapor deposition apparatus provided with an Al-Ti target on one side and a SiC sintered material target on the other side. Then, while rotating the tool base with a rotary table, arc carbon plating on the Al-Ti target side and sputtering on the SiC sintered material target side cause Si carbonitride to form Al and Ti on the tool base surface. In the surface-coated cutting tool formed by vapor-depositing a hard coating layer composed of a structure distributed in the nitride of
(A) The hard coating layer has an average layer thickness of 1 to 5 μm, and along the thickness direction of the hard coating layer, the Al—Ti highest content point formed in the vicinity of the Al—Ti target and the SiC firing The Si—C highest content point formed in the vicinity of the binder target is alternately present at intervals of 0.03 to 0.1 μm,
(B) The content ratio of Al, Ti, Si, and C is continuous from the highest Al-Ti content point to the highest Si-C content point and from the highest Si-C content point to the highest Al-Ti content point. Has a component concentration distribution structure that changes periodically,
(C) The Al component, the Ti component, the Si component, and the C component at the Al-Ti highest content point formed in the vicinity of the Al-Ti target have their content ratios (however, the atomic ratio) X, Y, When represented by Q and R,
X is 0.3 to 0.5, Y is 0.2 to 0.3, Q is 0.05 to 0.2, R is 0.05 to 0.2, and X + Y + Q + R = 1 is satisfied,
(D) The Al component, Ti component, Si component, and C component at the highest Si-C content point formed in the vicinity of the SiC sintered material target have their content ratios (however, the atomic ratio) X, Y, respectively. , Q, R
X is 0.1 to 0.25, Y is 0.05 to 0.15, Q is 0.3 to 0.45, R is 0.3 to 0.45, and X + Y + Q + R = 1 is satisfied Varying (Al, Ti, Si, C) N layer is formed by vapor deposition.
It is characterized by a surface-coated cutting tool (surface-coated cutting tool) that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.

つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Ti,Si,C)N層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the composition change (Al, Ti, Si, C) N layers constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)Al−Ti最高含有点のAl、Ti含有割合
組成変化(Al,Ti,Si,C)N層におけるAl成分は、高温硬さおよび耐熱性を向上させ、Ti成分は高温強度を向上させるとともに、AlとTiは複合窒化物層のマトリックス相を形成し、硬質被覆層の耐摩耗性向上、高温強度向上に寄与するので、相対的にAl,Ti成分の含有割合が高いAl−Ti最高含有点で組成変化(Al,Ti,Si,C)N層はすぐれた高温硬さ、耐熱性、高温強度を備えるが、Alの含有割合(X値)が0.3未満の場合には、硬質被覆層として最小限要求される高温硬さ、耐熱性を維持することはできず、Tiの含有割合(Y値)が0.2未満の場合には、高温強度の不足によるチッピング発生の恐れがあり、一方、Alの含有割合(X値)が0.5を超えたり、Tiの含有割合(Y値)が0.3を超えたりしたような場合には、Siの含有割合(Z値)およびCの含有割合(Q値)が少なくなりすぎて、硬質被覆層の耐熱塑性変形性を確保することができないばかりか、マトリックス相中へのSiCNの分散分布による作用を期待できなくなることから、Alの含有割合(X値)を0.3〜0.5、Tiの含有割合(Y値)を0.2〜0.3とそれぞれ定めた。
なお、Al−Ti最高含有点におけるSi成分の含有割合(Q値)およびC成分の含有割合(R値)は、高速切削で要求される耐熱塑性変形性、潤滑性を確保するという点から、それぞれ、0.05≦Q≦0.2、0.05≦R≦0.2の範囲とする必要があり、しかも、X、Y、Q、Rは、X+Y+Q+R=1を満たす数値でなければならない。
(A) Al and Ti content at the highest point of Al-Ti composition change (Al, Ti, Si, C) Al component in N layer improves high temperature hardness and heat resistance, Ti component improves high temperature strength At the same time, Al and Ti form a matrix phase of the composite nitride layer, and contribute to improving the wear resistance and high temperature strength of the hard coating layer. Therefore, Al-Ti having a relatively high content of Al and Ti components. Composition change at the highest content point (Al, Ti, Si, C) N layer has excellent high temperature hardness, heat resistance and high temperature strength, but when the Al content ratio (X value) is less than 0.3 If the Ti content (Y value) is less than 0.2, the chipping occurs due to insufficient high-temperature strength. On the other hand, the Al content ratio (X value) is 0. .5 or Ti content ratio (Y value) exceeds 0.3, Si content ratio (Z value) and C content ratio (Q value) are too small. In addition, not only cannot the heat-resistant plastic deformation of the hard coating layer be ensured, but also the effect of the dispersion distribution of SiCN in the matrix phase cannot be expected, so the Al content ratio (X value) is 0.3 to 0. .5, Ti content ratio (Y value) was determined to be 0.2 to 0.3, respectively.
In addition, the content ratio (Q value) of the Si component and the content ratio (R value) of the C component at the highest Al-Ti content point ensure heat-resistant plastic deformation and lubricity required in high-speed cutting. Each of them must be in the range of 0.05 ≦ Q ≦ 0.2 and 0.05 ≦ R ≦ 0.2, and X, Y, Q, and R must be numerical values satisfying X + Y + Q + R = 1. .

(b)Si−C最高含有点のSi、C含有割合
組成変化(Al,Ti,Si,C)N層のSi−C最高含有点において、Si成分およびC成分は、上記マトリックス相に大半が固溶しており、そして、Si成分はマトリックス層の耐熱塑性変形性を向上させ、C成分はマトリックス相の皮膜硬さを向上させ、また、Si成分とC成分の一部は、SiCNというSiの炭窒化物として、上記マトリックス相中に分散分布し潤滑性を向上させる作用を有するが、これに加え、SiCNそれ自体が高硬度、耐酸化性を有すること、さらに加え、マトリックス相の結晶粒微細化作用によって、組成変化(Al,Ti,Si,C)N層の耐摩耗性をよりいっそう向上させる。しかし、硬質被覆層は、これらの特性ばかりでなく、硬質被覆層として最小限要求される耐熱性、高温強度を当然備える必要があることから、Si−C最高含有点におけるSi含有割合(Q値)、C含有割合(R値)を、Al,Ti,Si,Cの合量に占める割合(原子比)で、それぞれ、0.3〜0.45、0.3〜0.45と定めた。
つまり、Si含有割合(Q値)が0.45を超えると、あるいは、C含有割合(R値)が0.45を超えると、(Al,Ti,Si,C)N層中のAl、Ti成分の含有量が減少し、その結果、高温強度、耐熱性が不十分となり、また、複合窒化物マトリックス相中に分散分布するSiCN相が粗大化し、硬質被覆層全体として層が脆弱化し、切刃にチッピング(微小欠け)などが発生し易くなり、一方、Si含有割合(Q値)が0.3未満になると、あるいは、C含有割合(R値)が0.3未満になると、(Al,Ti,Si,C)N層中のSiの含有割合が少なくなり過ぎて、上記マトリックス相に固溶するSi、Cの含有量が減少し、耐熱塑性変形性の向上、皮膜硬さの向上が期待できないばかりか、SiCN相の分散分布割合も減少し、結晶粒微細化作用による耐摩耗性の向上効果、SiCN自体による高温硬さ、耐酸化性および潤滑性向上効果を期待できなくなることから、Siの含有割合(Q値)を0.3〜0.45、また、Cの含有割合(R値)を、0.3〜0.45(いずれも、原子比)に定めた。
なお、Si−C最高含有点におけるAl成分の含有割合(X値)およびTi成分の含有割合(Y値)は、高速切削で最低限必要とされる高温硬さ、耐熱性、高温強度を確保するという点から、0.1≦X≦0.25、0.05≦Y≦0.15の範囲であることが必要であり、しかも、X、Y、Q、Rは、X+Y+Q+R=1を満たす数値でなければならない。
(B) Si and C content ratio of Si-C highest content point Composition change (Al, Ti, Si, C) In the Si-C highest content point of the N layer, Si component and C component are mostly contained in the matrix phase. The Si component improves the heat-resistant plastic deformation of the matrix layer, the C component improves the film hardness of the matrix phase, and a part of the Si component and the C component is SiCN, SiCN. In addition to this, the carbonitride has a function of improving the lubricity by being distributed and distributed in the matrix phase. In addition, SiCN itself has high hardness and oxidation resistance. The wear resistance of the composition change (Al, Ti, Si, C) N layer is further improved by the refining action. However, since the hard coating layer is required to have not only these characteristics but also the heat resistance and high temperature strength required as a minimum for the hard coating layer, the Si content ratio (Q value at the highest Si-C content point) is required. ) And C content ratio (R value) are ratios (atomic ratio) in the total amount of Al, Ti, Si, and C, and are determined to be 0.3 to 0.45 and 0.3 to 0.45, respectively. .
That is, when the Si content ratio (Q value) exceeds 0.45 or the C content ratio (R value) exceeds 0.45, Al, Ti in the (Al, Ti, Si, C) N layer As a result, the content of components decreases, resulting in insufficient high-temperature strength and heat resistance. Also, the SiCN phase dispersed and distributed in the composite nitride matrix phase becomes coarse, and the entire hard coating layer becomes brittle. When the chip content (Q value) is less than 0.3 or when the C content rate (R value) is less than 0.3, (Al) , Ti, Si, C) The Si content in the N layer is too low, the content of Si and C dissolved in the matrix phase is reduced, the heat plastic deformation resistance is improved, and the film hardness is improved. Not only expected, but also the dispersion distribution ratio of SiCN phase decreased Since the effect of improving the wear resistance by the grain refining action and the high temperature hardness, oxidation resistance and lubricity improvement effect by SiCN itself cannot be expected, the Si content ratio (Q value) is 0.3-0. .45, and the C content ratio (R value) was set to 0.3 to 0.45 (both atomic ratios).
In addition, the Al component content ratio (X value) and Ti component content ratio (Y value) at the highest Si-C content point ensure high-temperature hardness, heat resistance, and high-temperature strength that are at least required for high-speed cutting. Therefore, it is necessary to satisfy the following conditions: 0.1 ≦ X ≦ 0.25, 0.05 ≦ Y ≦ 0.15, and X, Y, Q, and R satisfy X + Y + Q + R = 1. Must be numeric.

(c)Al−Ti最高含有点とSi−C最高含有点間の間隔
この発明の硬質被覆層は、その層厚方向に亘って、複合窒化物を構成する成分の含有割合が、Al−Ti最高含有点からSi−C最高含有点へと、また、Si−C最高含有点からAl−Ti最高含有点へと連続的に変化するものであるため、例えば、成分含有量が不連続な変化をする複数層の積層構造からなる硬質被覆層に比べれば、複数層間での剥離等の恐れは無く硬質被覆層自体の密着強度・接合強度は非常にすぐれたものであるが、Al−Ti最高含有点とSi−C最高含有点間の間隔が0.03μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、高温強度、耐熱性、耐熱塑性変形性および潤滑性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちSi−C最高含有点であれば高温強度および耐熱性の不足、また、Al−Ti最高含有点であれば高温硬さ、耐熱塑性変形性および潤滑性の不足が層内に局部的に現れ、これが原因で切粉の溶着が生じたり、切刃にチッピングが発生し易くなり、また、摩耗進行も促進されるようになることから、その間隔を0.03〜0.1μmと定めた。
なお、Al−Ti最高含有点とSi−C最高含有点間の間隔は、(Al,Ti)N蒸着用アークイオンプレーティング装置とSiC蒸着用マグネトロンスパッタリング装置を併設した蒸着装置を用い、アークイオンプレーティンとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができ、回転テーブルの回転速度の大小に応じて、Al−Ti最高含有点とSi−C最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Ti,Si,C)N層を容易に形成することができる。
また、上記組成変化(Al,Ti,Si,C)N層からなる硬質被覆層を工具基体表面に蒸着形成するにあたっては、工具基体表面と硬質被覆層の密着性、特に、蒸着開始直後にSiCターゲット近傍で形成されるSi−C最高含有点の組成変化(Al,Ti,Si,C)N層と工具基体表面の密着性、を確保するために、工具基体表面に、予めアークイオンプレーティンでAlとTiの複合窒化物層を0.5〜1.0μmの平均層厚で下地層として蒸着形成し、この後、アークイオンプレーティンとスパッタリングの同時蒸着によって、上記組成変化(Al,Ti,Si,C)N層を蒸着形成することも勿論可能である。
(C) Spacing between Al-Ti highest content point and Si-C highest content point In the hard coating layer of this invention, the content ratio of the components constituting the composite nitride is Al-Ti over the layer thickness direction. Since the maximum content point changes continuously from the highest Si-C content point and from the highest Si-C content point to the highest Al-Ti content point, for example, the component content changes discontinuously. Compared with a hard coating layer consisting of a multi-layered laminated structure, there is no fear of delamination between multiple layers, and the adhesion strength and bonding strength of the hard coating layer itself are very good, but the best Al-Ti If the interval between the content point and the Si-C highest content point is less than 0.03 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature hardness and high temperature strength. Ensure heat resistance, heat plastic deformation and lubricity If the distance exceeds 0.1 μm, the disadvantage of each point, that is, if the Si-C highest content point, the high temperature strength and heat resistance are insufficient, and the Al-Ti highest content point. Insufficient high-temperature hardness, heat-resistant plastic deformation and lubricity appear locally in the layer, which may cause chip welding, chipping on the cutting edge, and accelerated wear progress. Therefore, the interval was set to 0.03 to 0.1 μm.
The interval between the highest Al-Ti content point and the highest Si-C content point is determined by using a vapor deposition apparatus provided with an arc ion plating apparatus for (Al, Ti) N vapor deposition and a magnetron sputtering apparatus for SiC vapor deposition. When forming a deposition film by performing platein and sputtering simultaneously, for example, it can be adjusted by controlling the rotational speed of the rotary table mounted with the tool base, depending on the rotational speed of the rotary table, It is possible to easily form a composition change (Al, Ti, Si, C) N layer in which the distance between the Al—Ti highest content point and the Si—C highest content point is a desired value within the above numerical range.
Further, when the hard coating layer composed of the above composition change (Al, Ti, Si, C) N layer is formed on the surface of the tool base by vapor deposition, the adhesion between the tool base surface and the hard coating layer, particularly immediately after the start of vapor deposition, is obtained. In order to ensure the adhesiveness between the composition change (Al, Ti, Si, C) N layer and the tool base surface at the highest Si-C content point formed in the vicinity of the target, an arc ion plate is previously formed on the tool base surface. A composite nitride layer of Al and Ti is deposited as an underlayer with an average layer thickness of 0.5 to 1.0 μm, and then the above composition change (Al, Ti is performed by simultaneous deposition of arc ion plate and sputtering. , Si, C) N layers can of course be deposited.

(d)平均層厚
その平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、高温強度、耐熱性、耐熱塑性変形性および潤滑性を長期に亘って確保することができず、その結果、高速切削における耐摩耗性の向上を期待することができず、一方、その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the hard coating layer cannot secure the desired high temperature hardness, high temperature strength, heat resistance, heat plastic deformation and lubricity over a long period of time, As a result, improvement in wear resistance in high-speed cutting cannot be expected. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. It was set to 5 μm.

この発明の被覆工具は、硬質被覆層を構成する組成変化(Al,Ti,Si,C)N層が、全体として、すぐれた高温硬さ、高温強度、耐熱性を有するとともに、さらに、すぐれた耐熱塑性変形性と潤滑性をも具備することから、各種の鋼や鋳鉄などを、特に大きな発熱を伴う高速切削条件で加工した場合であっても、溶着、チッピング、偏摩耗を生じることなく、長期に亘ってすぐれた耐摩耗性を発揮するものである。   In the coated tool of the present invention, the composition change (Al, Ti, Si, C) N layer constituting the hard coating layer as a whole has excellent high-temperature hardness, high-temperature strength, and heat resistance, and further excellent Since it also has heat-resistant plastic deformation and lubricity, even when various steels and cast iron are processed under high-speed cutting conditions with particularly large heat generation, welding, chipping, and partial wear do not occur. It exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Ti合金、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてSiC焼結体を装着し、またボンバード洗浄用金属Crも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をCrボンバード洗浄し、
(b)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、工具基体の表面に、まず、下地層としてのAlとTiの複合窒化物層を0.5〜1.0μmの平均層厚でアークイオンプレーティングにより蒸着形成し、
(c)ついで、装置内に反応ガスとして窒素ガスとアルゴンガスの混合ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、また、それと同時に、SiC焼結体のターゲットにパルス電源を用いて4.5kWのパルス電力を印加してSiCをスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に形成された上記下地層の上に、表3,4に示される目標組成のAl−Ti最高含有点とSi−C最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al−Ti最高含有点から前記Si−C最高含有点、前記Si−C最高含有点から前記Al−Ti最高含有点へと、Al、Ti、Si、Cの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16をそれぞれ製造した。
なお、上記実施例では、Al−Ti最高含有点とSi−C最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
Next, each of the tool bases A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the inside of the vapor deposition apparatus provided with the arc ion plating apparatus and the magnetron sputtering apparatus shown in FIG. Of the arc ion plating apparatus on one side, and the cathode electrode (evaporation source) of the arc ion plating apparatus on one side, Al-Ti alloy having various component compositions, magnetron sputtering apparatus on the other side A SiC sintered body is mounted as a target (evaporation source), and a bombard cleaning metal Cr is also mounted. First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater. After heating, a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. By flowing a 100A current between said metallic Cr and the anode electrode of the cathode electrode to generate arc discharge, a tool substrate surface was washed Cr bombardment with,
(B) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode An arc discharge is generated by passing a current of 90 A between the electrode and the anode electrode. First, an Al and Ti composite nitride layer as an underlayer is first placed on the tool substrate surface at an average of 0.5 to 1.0 μm. Vapor deposition by arc ion plating with layer thickness,
(C) Next, a mixed gas of nitrogen gas and argon gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. Is applied to cause a 90 A current to flow between the cathode electrode and the anode electrode to generate an arc discharge, and at the same time, a pulse power of 4.5 kW is applied to the SiC sintered compact target using a pulse power source. Applied to sputter SiC,
(D) On the foundation layer formed on the surface of the tool base rotating while rotating on the rotary table, the Al-Ti highest content point and Si-C highest content of the target composition shown in Tables 3 and 4 The points alternately exist repeatedly at the target intervals shown in Tables 3 and 4, and from the Al-Ti highest content point to the Si-C highest content point, from the Si-C highest content point to the Al -It has a component concentration distribution structure in which the content ratio of Al, Ti, Si, C continuously changes to the Ti maximum content point, and further, the composition change of the target layer thickness shown in Tables 3 and 4 ( By depositing a hard coating layer composed of an Al, Ti, Si, C) N layer, the present invention coated tools 1 to 16 each having a throwaway tip shape defined in ISO / CNMG120408 were produced.
In addition, in the said Example, the target space | interval of Al-Ti highest content point and Si-C highest content point is a predetermined target space | interval by changing the rotational speed of a rotary table within the range of 0.5-10 rpm. It adjusted so that it might become a value.

また、比較の目的で、これら工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Ti−Si−Cターゲットを装着し、さらにボンバード洗浄用金属Crも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をCrボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着することにより、同じくスローアウエイチップ形状の従来被覆工具1〜16をそれぞれ製造した。   Further, for the purpose of comparison, these tool bases A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and each is loaded into a normal arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), an Al—Ti—Si—C target having various component compositions is mounted, and a bombard cleaning metal Cr is also mounted, and the inside of the apparatus is evacuated to a vacuum of 0.5 Pa or less. While being held, the inside of the apparatus was heated to 500 ° C. with a heater, a −1000 V DC bias voltage was applied to the tool base, and a current of 100 A was passed between the metal Cr and the anode electrode of the cathode electrode. An arc discharge is generated, and the surface of the tool base is cleaned with Cr bombardment. Then, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa. The bias voltage applied to the tool base is lowered to -100 V, and a current of 90 A is caused to flow between the cathode electrode and the anode electrode to generate an arc discharge, whereby each of the tool bases A1 to A10 and B1 to B6. By depositing a hard coating layer composed of a compositionally uniform (Al, Ti, Si, C) N layer having the target composition and target layer thickness shown in Tables 5 and 6 on the surface of Chip-shaped conventional coated tools 1 to 16 were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・S55Cの丸棒、
切削速度: 200 m/min.、
切り込み: 2.5 mm、
送り: 0.3 mm/rev.、
切削時間: 8 分、
の条件(切削条件A)での炭素鋼の乾式高速連続切削加工試験(通常の切削速度は、130m/min.)、
被削材:JIS・SCM420の丸棒、
切削速度: 250 m/min.、
切り込み: 2.0 mm、
送り: 0.45 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)での合金鋼の乾式高速連続切削加工試験(通常の切削速度は、170m/min.)、
被削材:JIS・FC100の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 350 m/min.、
切り込み: 2.5 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での鋳鉄の乾式高速断続切削加工試験(通常の切削速度は、230m/min.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: JIS / S55C round bar,
Cutting speed: 200 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 8 minutes,
Dry high-speed continuous cutting test of carbon steel under the conditions (cutting condition A) (normal cutting speed is 130 m / min.),
Work material: JIS / SCM420 round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed continuous cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed is 170 m / min.),
Work material: JIS / FC100 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 350 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
The dry high speed intermittent cutting test (normal cutting speed is 230 m / min.) Of cast iron under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any of the cutting tests. The measurement results are shown in Table 7.

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl−Ti最高含有点とSi−C最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al−Ti最高含有点から前記Si−C最高含有点、前記Si−C最高含有点から前記Al−Ti最高含有点へと、Al、Ti、Si、Cの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. 1 were also provided. In the vapor deposition apparatus, under the same conditions as in Example 1 above, the Al-Ti highest content point and the Si-C highest content point of the target composition shown in Table 9 along the layer thickness direction alternately, Repetitively present at the target intervals shown in Table 9, and from the Al-Ti highest content point to the Si-C highest content point, from the Si-C highest content point to the Al-Ti highest content point, Al, Ti A hard coating layer having a component concentration distribution structure in which the content ratios of Si, C continuously change, and a composition change (Al, Ti, Si, C) N layer of a target layer thickness also shown in Table 9 Vapor deposition formation Accordingly, the present invention coated end mills 1-8 as the present invention coated tool was produced, respectively.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆エンドミル1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the tool base (end mill) C-1 to C-8 is ultrasonically cleaned in acetone and dried, and the ordinary arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, the surfaces of the tool bases (end mills) C-1 to C-8 were uniformly compositionally provided with the target composition and target layer thickness shown in Table 10. Conventional coating end mills 1 to 8 as conventional coating tools were manufactured by vapor-depositing a hard coating layer composed of an (Al, Ti, Si, C) N layer.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 10 mm、
テーブル送り: 560 mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は、85m/min.)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420の板材、
切削速度: 120 m/min.、
溝深さ(切り込み): 15 mm、
テーブル送り: 400 mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は、80m/min.)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・FC100の板材、
切削速度: 130 m/min.、
溝深さ(切り込み): 20 mm、
テーブル送り: 560 mm/分、
の条件での鋳鉄の乾式高速溝切削加工試験(通常の切削速度は、80m/min.)
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.15mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 120 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 560 mm / min,
Carbon steel dry high-speed grooving test (normal cutting speed is 85 m / min.),
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / SCM420 plate material,
Cutting speed: 120 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 400 mm / min,
Dry high-speed grooving test of alloy steel under the conditions (normal cutting speed is 80 m / min.),
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC100 plate material,
Cutting speed: 130 m / min. ,
Groove depth (cut): 20 mm,
Table feed: 560 mm / min,
Cast iron dry high-speed grooving test (normal cutting speed is 80 m / min.)
In each of the groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.15 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl−Ti最高含有点とSi−C最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al−Ti最高含有点から前記Si−C最高含有点、前記Si−C最高含有点から前記Al−Ti最高含有点へと、Al、Ti、Si、Cの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Then, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plating apparatus shown in FIG. The Al-Ti highest content point and the Si-C highest content point of the target composition shown in Table 11 along the layer thickness direction were charged in a vapor deposition apparatus provided with a magnetron sputtering apparatus and under the same conditions as in Example 1 above. Are alternately present at the target intervals shown in Table 11, and from the Al-Ti highest content point to the Si-C highest content point, from the Si-C highest content point to the Al-Ti highest content point. The compositional change of the target layer thickness (Al, Ti, Si, C) N, which has a component concentration distribution structure in which the content ratio of Al, Ti, Si, C continuously changes and is also shown in Table 11 Layered hard By the covering layer vapor deposited, the present invention coated drill 1-8 as the present invention coated tool was produced, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Ti,Si,C)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆ドリル1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, as shown in FIG. The sample was charged into an arc ion plating apparatus, and had the target composition and target layer thickness shown in Table 12 on the surfaces of the tool bases (drills) D-1 to D-8 under the same conditions as in Example 1. Conventionally coated drills 1 to 8 as conventional coated tools were manufactured by vapor-depositing a hard coating layer composed of a compositionally uniform (Al, Ti, Si, C) N layer.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、
本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度: 85 m/min.、
送り: 0.2 mm/rev、
穴深さ: 10 mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、55m/min.)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420の板材、
切削速度: 100 m/min.、
送り: 0.25 mm/rev、
穴深さ: 15 mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は、60m/min.)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・FC100の板材、
切削速度: 130 m/min.、
送り: 0.4 mm/rev、
穴深さ: 20 mm、
の条件での鋳鉄の湿式高速穴あけ切削加工試験(通常の切削速度は、85m/min.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.45mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, among the above-mentioned present invention coated drills 1-8 and conventional coated drills 1-8,
About this invention coated drill 1-3 and conventional coated drill 1-3,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 85 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 10 mm,
Wet high-speed drilling test of carbon steel under the conditions (normal cutting speed is 55 m / min.),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / SCM420 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 15 mm,
Wet high-speed drilling machining test of alloy steel under the conditions of (normal cutting speed is 60 m / min.),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / FC100 plate material,
Cutting speed: 130 m / min. ,
Feed: 0.4 mm / rev,
Hole depth: 20 mm,
Wet high-speed drilling machining test of cast iron under the conditions (normal cutting speed is 85 m / min.),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.45 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2008173751
Figure 2008173751

Figure 2008173751
Figure 2008173751

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する組成変化(Al,Ti,Si,C)N層について、透過型電子顕微鏡を用いて、組織観察を行ったところ、Al―Ti最高含有点の複合窒化物マトリックス相には、平均径5〜30nmの大きさのSiCN相が、平均面積率で40〜10%存在し、また、Si―C最高含有点の複合窒化物マトリックス相には、平均径5〜30nmの大きさのSiCN相が、平均面積率で60〜90%存在していることが確認された。   As a result, composition changes (Al, Ti, Si) constituting the hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tool obtained as a result. , C) When the structure of the N layer was observed using a transmission electron microscope, the composite nitride matrix phase having the highest Al—Ti content point contained an SiCN phase having an average diameter of 5 to 30 nm. An average area ratio of 40 to 10% exists, and a SiCN phase having an average diameter of 5 to 30 nm exists in an average area ratio of 60 to 90% in the composite nitride matrix phase having the highest Si—C content point. It was confirmed that

上記本発明被覆工具それぞれの硬質被覆層を構成する組成変化(Al,Ti,Si,C)N層について、Al−Ti最高含有点およびSi−C最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定(分散SiC相についても平均化した組成として計測カウント)したところ、それぞれ目標組成のAl−Ti最高含有点およびSi−C最高含有点と実質的に同じ平均組成を示した。
また、従来被覆工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層を構成する組成的に均一な(Al,Ti)CN層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
Regarding the composition change (Al, Ti, Si, C) N layer constituting the hard coating layer of each of the above-mentioned coated tools of the present invention, the composition of the Al-Ti highest content point and the Si-C highest content point is measured with a transmission electron microscope. When measured by the energy dispersive X-ray analysis method used (measured and counted as an averaged composition for the dispersed SiC phase), the Al-Ti highest content point and the Si-C highest content point of the target composition are substantially the same. Average composition was shown.
Moreover, the composition of the compositionally uniform (Al, Ti) CN layer which comprises the hard coating layer of the conventional coating | coated chips 1-16 as a conventional coating | coated tool, the conventional coating | coated end mills 1-8, and the conventional coated drill 1-8. When measured by energy dispersive X-ray analysis using a transmission electron microscope, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7、9〜12に示される結果から、本発明被覆工具は、鋼や鋳鉄などの高熱発生を伴う高速条件下での切削加工に用いた場合であっても、SiCN相が分散分布する組成変化(Al,Ti,Si,C)N層からなる硬質被覆層が、全体として、すぐれた高温硬さ、高温強度、耐熱性、耐熱塑性変形性と潤滑性を備えていることによって、切粉の溶着、チッピングの発生、偏摩耗の発生がなく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Ti,Si,C)N層で構成された従来被覆工具においては、高速切削加工で高熱発生を伴うことにより、溶着、チッピング、偏摩耗の発生等により、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 and 9 to 12, the coated tool of the present invention has a composition in which the SiCN phase is dispersed and distributed even when it is used for cutting under high-speed conditions with high heat generation such as steel and cast iron. As a whole, the hard coating layer composed of the change (Al, Ti, Si, C) N layer has excellent high-temperature hardness, high-temperature strength, heat resistance, heat-resistant plastic deformability and lubricity, so that chips No welding, chipping, uneven wear, and excellent wear resistance over a long period of time, while the hard coating layer is compositionally uniform (Al, Ti, Si, C) N In the conventional coated tool composed of layers, it is clear that high heat generation is accompanied by high-speed cutting, so that the service life is reached in a relatively short time due to occurrence of welding, chipping, partial wear, and the like.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴う高速切削加工に用いた場合でも、長期に亘ってすぐれた耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention exhibits excellent wear resistance over a long period of time even when used for high-speed cutting with high heat generation, as well as cutting of general steel and ordinary cast iron. However, since it shows excellent cutting performance, it can satisfactorily cope with the FA of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置の概略平面図である。1 is a schematic plan view of a vapor deposition apparatus provided with an arc ion plating apparatus and a magnetron sputtering apparatus used to form a hard coating layer constituting the coated tool of the present invention. 従来被覆工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the normal arc ion plating apparatus used in forming the hard coating layer which comprises a conventional coating tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にAl−Tiターゲットを、また、他方にSiC焼結材料ターゲットを設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Tiターゲット側でのアークイオンプレーティングと、SiC焼結材料ターゲット側でのスパッタリングにより、工具基体表面に、Siの炭窒化物がAlとTiの窒化物中に分散分布した組織からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜5μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Tiターゲット近傍で形成されるAl−Ti最高含有点と前記SiC焼結材料ターゲット近傍で形成されるSi−C最高含有点とが0.03〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Ti最高含有点から前記Si−C最高含有点、前記Si−C最高含有点から前記Al−Ti最高含有点へと、Al、Ti、Si、Cの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Tiターゲット近傍で形成される前記Al−Ti最高含有点におけるAl成分、Ti成分、Si成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、
Xは0.3〜0.5、Yは0.2〜0.3、Qは0.05〜0.2、Rは0.05〜0.2で、かつ、X+Y+Q+R=1を満足し、
(d)前記SiC焼結材料ターゲット近傍で形成される前記Si−C最高含有点におけるAl成分、Ti成分、Si成分およびC成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Q、Rで表したときに、
Xは0.1〜0.25、Yは0.05〜0.15、Qは0.3〜0.45、Rは0.3〜0.45で、かつ、X+Y+Q+R=1を満足する組成変化(Al,Ti,Si,C)N層を蒸着形成してなる、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
A tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet was placed on a rotary table of a vapor deposition apparatus provided with an Al-Ti target on one side and a SiC sintered material target on the other side. Then, while rotating the tool base with a rotary table, arc carbon plating on the Al-Ti target side and sputtering on the SiC sintered material target side cause Si carbonitride to form Al and Ti on the tool base surface. In the surface-coated cutting tool formed by vapor-depositing a hard coating layer composed of a structure distributed in the nitride of
(A) The hard coating layer has an average layer thickness of 1 to 5 μm, and along the thickness direction of the hard coating layer, the Al—Ti highest content point formed in the vicinity of the Al—Ti target and the SiC firing The Si—C highest content point formed in the vicinity of the binder target is alternately present at intervals of 0.03 to 0.1 μm,
(B) The content ratio of Al, Ti, Si, and C is continuous from the highest Al-Ti content point to the highest Si-C content point and from the highest Si-C content point to the highest Al-Ti content point. Has a component concentration distribution structure that changes periodically,
(C) The Al component, the Ti component, the Si component, and the C component at the Al-Ti highest content point formed in the vicinity of the Al-Ti target have their content ratios (however, the atomic ratio) X, Y, When represented by Q and R,
X is 0.3 to 0.5, Y is 0.2 to 0.3, Q is 0.05 to 0.2, R is 0.05 to 0.2, and X + Y + Q + R = 1 is satisfied,
(D) The Al component, Ti component, Si component, and C component at the highest Si-C content point formed in the vicinity of the SiC sintered material target have their content ratios (however, the atomic ratio) X, Y, respectively. , Q, R
X is 0.1 to 0.25, Y is 0.05 to 0.15, Q is 0.3 to 0.45, R is 0.3 to 0.45, and X + Y + Q + R = 1 is satisfied Varying (Al, Ti, Si, C) N layer is formed by vapor deposition.
Surface coated cutting tool that exhibits high wear resistance with a hard coating layer in high speed cutting.
JP2007012042A 2007-01-22 2007-01-22 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting Withdrawn JP2008173751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012042A JP2008173751A (en) 2007-01-22 2007-01-22 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012042A JP2008173751A (en) 2007-01-22 2007-01-22 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting

Publications (1)

Publication Number Publication Date
JP2008173751A true JP2008173751A (en) 2008-07-31

Family

ID=39701152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012042A Withdrawn JP2008173751A (en) 2007-01-22 2007-01-22 Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting

Country Status (1)

Country Link
JP (1) JP2008173751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018768A1 (en) * 2011-08-01 2013-02-07 日立ツール株式会社 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
CN103898465A (en) * 2014-04-10 2014-07-02 太原理工大学 Method for preparing titanium aluminum intermetallic compound coating through magnetron sputtering on surface of titanium alloy
CN113529038A (en) * 2021-07-19 2021-10-22 中山市气相科技有限公司 Preparation method of friction-resistant and corrosion-resistant TiN film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018768A1 (en) * 2011-08-01 2013-02-07 日立ツール株式会社 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
CN103717331A (en) * 2011-08-01 2014-04-09 日立工具股份有限公司 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
JPWO2013018768A1 (en) * 2011-08-01 2015-03-05 日立ツール株式会社 Surface-modified WC-based cemented carbide member, hard-coated WC-based cemented carbide member, and methods for producing the same
US9492872B2 (en) 2011-08-01 2016-11-15 Hitachi Tool Engineering, Ltd. Surface-modified, WC-based cemented carbide member, hard-coated, WC-based cemented carbide member, and their production methods
CN103898465A (en) * 2014-04-10 2014-07-02 太原理工大学 Method for preparing titanium aluminum intermetallic compound coating through magnetron sputtering on surface of titanium alloy
CN113529038A (en) * 2021-07-19 2021-10-22 中山市气相科技有限公司 Preparation method of friction-resistant and corrosion-resistant TiN film

Similar Documents

Publication Publication Date Title
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2008173751A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP5035527B2 (en) Surface coated cutting tool
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2008030158A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloy
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2009095916A (en) Surface-coated cutting tool
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP2008173754A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2008173703A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2008023671A (en) Surface coated cutting tool having hard coating layer achieving excellent wear resistance in high-speed cutting
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4029329B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406