JP4029328B2 - Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions - Google Patents

Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions Download PDF

Info

Publication number
JP4029328B2
JP4029328B2 JP2002300334A JP2002300334A JP4029328B2 JP 4029328 B2 JP4029328 B2 JP 4029328B2 JP 2002300334 A JP2002300334 A JP 2002300334A JP 2002300334 A JP2002300334 A JP 2002300334A JP 4029328 B2 JP4029328 B2 JP 4029328B2
Authority
JP
Japan
Prior art keywords
content point
cermet
cutting
coated
highest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002300334A
Other languages
Japanese (ja)
Other versions
JP2004130495A (en
Inventor
浩一 前田
暁裕 近藤
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002300334A priority Critical patent/JP4029328B2/en
Publication of JP2004130495A publication Critical patent/JP2004130495A/en
Application granted granted Critical
Publication of JP4029328B2 publication Critical patent/JP4029328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層が高強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆サーメット工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆サーメット工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたサーメット基体の表面に、組成式:(Ti1-(X+Y)AlX Y)N(ただし、原子比で、Xは0.40〜0.60、Y:0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆サーメット工具が知られており、かつ前記被覆サーメット工具の硬質被覆層である(Ti,Al,B)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって強度を具備し、さらに同Bによる一段の高温硬さの向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば、特許文献1参照)。
【0004】
さらに、上記の被覆サーメット工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記のサーメット基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記サーメット基体には、例えば−100Vのバイアス電圧を印加した条件で、前記サーメット基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特許第2793696号明細書
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、高切り込みや高送りなどの重切削条件での切削加工でもすぐれた切削性能を発揮する被覆サーメット工具が強く求められているが、上記の従来被覆サーメット工具においては、これを通常の高速切削加工条件で用いた場合には問題はないが、高速切削加工を高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の強度不足が原因で切刃部にチッピング(微小割れ)が発生し易く、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆サーメット工具の硬質被覆層を構成する(Ti,Al,B)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、および強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部にサーメット基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に上記の従来(Ti,Al,B)N層の形成にカソード電極(蒸発源)として用いられたTi−Al−B合金に相当する相対的にAl含有量の高いAl最高含有点形成用Ti−Al−B合金、他方側に相対的にAl含有量の低いAl最低含有点形成用Ti−Al−B合金をいずれもカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブルの外周部に沿って複数のサーメット基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的でサーメット基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記サーメット基体の表面に(Ti,Al,B)N層を形成すると、この結果の(Ti,Al,B)N層においては、回転テーブル上にリング状に配置された前記サーメット基体が上記の一方側の相対的にAl含有量の高いTi−Al−B合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記サーメット基体が上記の他方側の相対的にAl含有量の低いTi−Al−B合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Al,B)N層において、対向配置の一方側のカソード電極(蒸発源)であるTi−Al−B合金におけるAlおよびB含有量を上記の従来(Ti,Al,B)N層形成用Ti−Al−B合金のAlおよびB含有量に相当するものとし、同他方側のカソード電極(蒸発源)であるTi−Al−B合金におけるAl含有量を上記の従来Ti−Al−B合金のAl含有量に比して相対的に低いものとすると共に、サーメット基体が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、組成式:(Ti1-(X+Y)AlX Y)N(ただし、原子比で、Xは0.40〜0.60、Y:0.01〜0.10を示す)、
上記Al最低含有点が、組成式:(Ti1-(X+Y)AlX Y)N(ただし、原子比で、Xは0.10〜0.35、Y:0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、上記の従来(Ti,Al,B)N層のもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性を示し、一方上記Al最低含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、Ti含有量の高いものとなるので、一段と高い強度が確保され、かつこれらAl最高含有点とAl最低含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性を保持した状態で一段とすぐれた強度を具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Al,B)N層からなる被覆サーメット工具は、特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、装置中央部にサーメット基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にAl最高含有点形成用Ti−Al−B合金、他方側にAl最低含有点形成用Ti−Al−B合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブルの外周部に沿って複数のサーメット基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、前記サーメット基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記サーメット基体の表面に、(Ti,Al,B)N層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる被覆サーメット工具において、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al成分最高含有点が、組成式:(Ti1-(X+Y)AlX Y)N(ただし、原子比で、Xは0.40〜0.60、Y:0.01〜0.10を示す)、
上記Al成分最低含有点が、組成式:(Ti1-(X+Y)AlX Y)N(ただし、原子比で、Xは0.10〜0.35、Y:0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆サーメット工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al最高含有点の組成
Al最高含有点の(Ti,Al,B)NにおけるTi成分は、強度を向上させ、同Al成分は、高温硬さおよび耐熱性を向上させ、さらに同B成分は一段と高温硬さを向上させる作用があり、したがってAlおよびB成分の含有割合が高くなればなるほど高温硬さと耐熱性は向上したものになり、高熱発生を伴う高速切削に適応したものになるが、Alの含有割合を示すX値がTiとBの合量に占める割合(原子比)で0.60を越え、またBの含有割合を示すY値が同0.10を越えると、高強度を有するAl最低含有点が隣接して存在しても層自体の強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同X値が同0.40未満でも、また同Y値が0.01未満でも前記高温硬さと耐熱性に所望の向上効果が得られないことから、X値を0.40〜0.60、Y値を0.01〜0.10と定めた。
【0011】
(b)Al最低含有点の組成
上記の通りAl最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面強度の劣るものであるため、このAl最高含有点の強度不足を補う目的で、Ti含有割合が高く、一方Al含有量が低く、これによって高強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合を示すX値がTiおよびB成分との合量に占める割合(原子比)で0.35を越えると、相対的にTiの割合が少なくなることから、所望のすぐれた強度を確保することができず、一方同X値が0.10未満になると、Al最低含有点に所定の高温硬さおよび耐熱性を具備せしめることができなくなることから、Al最低含有点でのAlの割合を示すX値を0.10〜0.35と定めた。
Al最低含有点におけるB成分も、上記の通りAl成分との共存で高温硬さを向上させ、もって高熱発生を伴う高速切削に適応させる目的で含有するものであり、したがってY値が0.01未満では所望の高温硬さ向上効果が得られず、一方Y値が0.10を越えるとAl最低含有点の強度に低下傾向が現れるようになり、所望の耐チッピング性向上が困難になることから、Y値を0.01〜0.10と定めた。
【0012】
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果硬質被覆層に所望の高温硬さと耐熱性、さらに強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば強度不足、Al最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製のサーメット基体A1〜A10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製のサーメット基体B1〜B6を形成した。
【0016】
ついで、上記のサーメット基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブル外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)としてAl最低含有点形成用Ti−Al−B合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転するサーメット基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もってサーメット基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するサーメット基体に−100Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Al最高含有点形成用Ti−Al−B合金およびAl最低含有点形成用Ti−Al−B合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記サーメット基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これらサーメット基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−B合金をそれぞれ1種づつ装着し、またボンバート洗浄用金属Tiも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記サーメット基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もってサーメット基体表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記サーメット基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記サーメット基体A1〜A10およびB1〜B6のそれぞれの表面に、表5,6に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および従来被覆チップ1〜10については、
被削材:JIS・S40Cの丸棒、
切削速度:300m/min.、
切り込み:5mm、
送り:0.4mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min.、
切り込み:2mm、
送り:0.6mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式断続高速高送り切削加工試験を行なった。
【0019】
さらに、本発明被覆チップ11〜16および従来被覆チップ11〜16については、
被削材:JIS・FC250の丸棒、
切削速度:450m/min.、
切り込み:1.5mm、
送り:0.7mm/rev.、
切削時間:20分、
の条件での鋳鉄の乾式連続高速高送り切削加工試験、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:4.5mm、
送り:0.35mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7,8に示した。
【0020】
【表1】

Figure 0004029328
【0021】
【表2】
Figure 0004029328
【0022】
【表3】
Figure 0004029328
【0023】
【表4】
Figure 0004029328
【0024】
【表5】
Figure 0004029328
【0025】
【表6】
Figure 0004029328
【0026】
【表7】
Figure 0004029328
【0027】
【表8】
Figure 0004029328
【0028】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種のサーメット基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエア形状をもったサーメット基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0029】
ついで、これらのサーメット基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。
【0030】
また、比較の目的で、上記のサーメット基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。
【0031】
つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度:150m/min.、
溝深さ(切り込み):3mm、
テーブル送り:400mm/分、
の条件での工具鋼の乾式高速高切り込み溝切削加工試験、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM420の板材、
切削速度:200m/min.、
溝深さ(切り込み):6mm、
テーブル送り:550mm/分、
の条件での合金鋼の乾式高速高切り込み溝切削加工試験、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:180m/min.、
溝深さ(切り込み):3mm、
テーブル送り:500mm/分、
の条件での炭素鋼の乾式高速高送り溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表10,11にそれぞれ示した。
【0032】
【表9】
Figure 0004029328
【0033】
【表10】
Figure 0004029328
【0034】
【表11】
Figure 0004029328
【0035】
(実施例3)
上記の実施例2で製造した直径が8mm(サーメット基体C−1〜C−3形成用)、13mm(サーメット基体C−4〜C−6形成用)、および26mm(サーメット基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(サーメット基体D−1〜D−3)、8mm×22mm(サーメット基体D−4〜D−6)、および16mm×45mm(サーメット基体D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったサーメット基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0036】
ついで、これらのサーメット基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表12に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表12に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表12に示される目標全体層厚の硬質被覆層を蒸着することにより、本発明被覆サーメット工具としての本発明表面被覆サーメット製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。
【0037】
また、比較の目的で、上記のサーメット基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表13に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆サーメット工具としての従来表面被覆サーメット製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。
【0038】
つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、
切削速度:180m/min.、
送り:0.2mm/rev、
穴深さ:8mm
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC250の板材、
切削速度:200m/min.、
送り:0.3mm/rev、
穴深さ:16mm
の条件での鋳鉄の湿式高速高送り穴あけ切削加工試験、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SS400の板材、
切削速度:180m/min.、
送り:0.4mm/rev、
穴深さ:32mm
の条件での構造用鋼の湿式高速高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12,13にそれぞれ示した。
【0039】
【表12】
Figure 0004029328
【0040】
【表13】
Figure 0004029328
【0041】
この結果得られた本発明被覆サーメット工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8を構成する硬質被覆層におけるAl最高含有点とAl最低含有点の組成、並びに従来被覆サーメット工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層について、厚さ方向に沿ってTi、Al、およびBの含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆サーメット工具の硬質被覆層では、Al最高含有点とAl最低含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl成分含有量が連続的に変化する成分濃度分布構造を有することが確認され、また硬質被覆層の全体平均層厚も目標全体層厚と実質的に同じ値を示した。
一方前記従来被覆サーメット工具の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標全体層厚と実質的に同じ全体平均層厚を示すことが確認された。
【0042】
【発明の効果】
表3〜13に示される結果から、硬質被覆層が層厚方向に、すぐれた高温硬さと耐熱性を有するAl最高含有点と高強度を有するAl最低含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造を有する本発明被覆サーメット工具は、いずれも各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al,B)N層からなる従来被覆サーメット工具においては、前記硬質被覆層がすぐれた高温硬さと耐熱性を有するものの、強度に劣るものであるために、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、通常の条件での高速切削加工は勿論のこと、特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆サーメット工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆サーメット工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has high strength and is excellent in high-temperature hardness and heat resistance, and therefore, high-speed cutting such as various steels and cast irons, especially high cutting with high mechanical impact, high feed, etc. The present invention also relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance even when performed under heavy cutting conditions.
[0002]
[Prior art]
Generally, for coated cermet tools, drills used for slow-away inserts that are detachably attached to the tip of a bite for turning and planing of various steel and cast iron, drills for drilling, etc. And miniature drills, as well as solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached and the throw is performed in the same manner as the solid type endmill. Way end mill tools are known.
[0003]
Further, as a coated cermet tool, a composition formula (Ti) is formed on the surface of a cermet base composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. 1- (X + Y) Al X B Y ) Ti, Al and B composite nitride satisfying N (wherein X represents 0.40 to 0.60, Y: 0.01 to 0.10 in atomic ratio) [hereinafter referred to as (Ti, Al , B) a coated coating cermet tool obtained by physically vapor-depositing a hard coating layer comprising a layer with an average layer thickness of 1 to 15 μm is known, and is a hard coating layer of the coated cermet tool (Ti, Al, B) N layer has high-temperature hardness and heat resistance by Al as a constituent component, strength by Ti, and combined with the improvement effect of one-step high-temperature hardness by the same B, It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of steel and cast iron (see, for example, Patent Document 1).
[0004]
Further, the above-described coated cermet tool is used, for example, in which the above cermet substrate is loaded into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. An arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) in which a Ti—Al—B alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the cermet substrate is subjected to the above (Ti) on the surface of the cermet substrate under the condition that a bias voltage of, for example, −100 V is applied. , Al, B) It is also known to be manufactured by vapor-depositing a hard coating layer composed of an N layer (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent No. 2793696
[0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting devices has been dramatically improved, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting under heavy cutting conditions such as high cutting and high feed. However, there is a strong demand for a coated cermet tool that exhibits excellent cutting performance. However, the above-mentioned conventional coated cermet tool has no problem when it is used under normal high-speed cutting conditions. When cutting under heavy cutting conditions such as high cutting and high feed with high mechanical impact, chipping (microcracking) is likely to occur at the cutting edge due to insufficient strength of the hard coating layer. The current situation is that the service life is reached in a short time.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors configure the above-described conventional coated cermet tool in order to develop a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer particularly excellent in high-speed heavy cutting. As a result of conducting research focusing on the hard coating layer,
(A) The (Ti, Al, B) N layer constituting the hard coating layer of the conventional coated cermet tool formed using the arc ion plating apparatus shown in FIG. For example, an arc having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in FIG. 1 (b). An ion plating apparatus, that is, a rotating table for mounting a cermet substrate is provided at the center of the apparatus, and the conventional (Ti, Al, B) N layer is formed on one side of the rotating table with a cathode electrode (evaporation source) interposed therebetween. Ti-Al-B alloy for forming the highest Al content point with a relatively high Al content corresponding to the Ti-Al-B alloy used as the low-Al content point formation with a relatively low Al content on the other side Ti-A Using an arc ion plating apparatus in which all of the -B alloys are arranged opposite to each other as a cathode electrode (evaporation source), along the outer periphery of the table at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus A plurality of cermet substrates are mounted in a ring shape, and in this state, the atmosphere inside the apparatus is set to a nitrogen atmosphere to rotate the rotary table, and the cermet substrate itself is also used for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. While rotating, arc discharge was generated between the cathode electrode (evaporation source) and the anode electrode on both sides to form a (Ti, Al, B) N layer on the surface of the cermet substrate. In the (Ti, Al, B) N layer, the cermet substrate arranged in a ring shape on the rotary table has a relatively Al content on one side. At the point closest to the cathode electrode (evaporation source) of the high Ti—Al—B alloy, the highest Al content point is formed in the layer, and the cermet substrate is a Ti having a relatively low Al content on the other side. -When the Al-B alloy cathode electrode is closest to the layer, a minimum Al content point is formed in the layer, and by rotation of the rotary table, the Al maximum content point and the minimum Al content are included in the layer along the layer thickness direction. The point repeatedly appears alternately at a predetermined interval, and has a component concentration distribution structure in which the Al content continuously changes from the Al highest content point to the Al lowest content point and from the Al lowest content point to the Al highest content point. To be like that.
[0008]
(B) In the (Ti, Al, B) N layer of the repeated continuous change component concentration distribution structure of (a) above, Al in the Ti—Al—B alloy which is a cathode electrode (evaporation source) on one side facing each other The B content corresponds to the Al and B contents of the above-described conventional (Ti, Al, B) N-layer forming Ti-Al-B alloy, and Ti-- which is the cathode electrode (evaporation source) on the other side The Al content in the Al-B alloy is relatively lower than the Al content in the conventional Ti-Al-B alloy, and the rotational speed of the turntable on which the cermet substrate is mounted is controlled. And
The Al highest content point is the composition formula: (Ti 1- (X + Y) Al X B Y ) N (however, in terms of atomic ratio, X represents 0.40 to 0.60, Y represents 0.01 to 0.10),
The minimum Al content point is the composition formula: (Ti 1- (X + Y) Al X B Y ) N (however, in terms of atomic ratio, X represents 0.10 to 0.35, Y represents 0.01 to 0.10),
And the interval in the thickness direction of the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
The Al highest content point portion shows excellent high temperature hardness and heat resistance corresponding to the high temperature hardness and heat resistance of the conventional (Ti, Al, B) N layer, while the Al minimum content point portion Since the Al content is lower than the highest Al content point and the Ti content is higher, a much higher strength is secured, and the distance between the highest Al content point and the lowest Al content point is extremely small. Therefore, it has a higher strength while maintaining excellent high temperature hardness and heat resistance as the characteristics of the entire layer, and therefore, the hard coating layer is composed of the (Ti, Al, B) N layer having such a configuration. Coated cermet tools are particularly resistant to chipping even when high-speed cutting of various types of steel and cast iron is performed under heavy cutting conditions such as high cutting and high feed with high mechanical impact. To become able to exert grayed property.
The research results shown in (a) and (b) above were obtained.
[0009]
This invention was made based on the above research results, A cermet substrate mounting turntable is provided at the center of the apparatus, and the Ti-Al-B alloy for forming the highest Al content point on one side and Ti-Al-B for forming the lowest Al content point on the other side across the turntable. A plurality of cermets are provided along the outer periphery of the table at a position radially spaced from the central axis on the rotary table of the device by using an arc ion plating device in which the alloy is disposed as a cathode electrode (evaporation source). In this state, the substrate is mounted in a ring shape, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotating table is rotated, and the cermet substrate itself is rotated, while the cathode electrode (evaporation source) and the anode electrode on both sides are rotated. With arc discharge in between A hard coating layer composed of a (Ti, Al, B) N layer is formed on the surface of the cermet substrate with an overall average layer thickness of 1 to 15 μm. Vapor deposition In the coated cermet tool,
In the hard coating layer, the Al highest content point and the Al lowest content point are present alternately at predetermined intervals along the layer thickness direction, and the Al lowest content point, the Al A component concentration distribution structure in which the Al content continuously changes from the lowest content point to the Al highest content point,
Furthermore, the highest Al component content point is the composition formula: (Ti 1- (X + Y) Al X B Y ) N (however, in terms of atomic ratio, X represents 0.40 to 0.60, Y represents 0.01 to 0.10),
The Al component minimum content point is the composition formula: (Ti 1- (X + Y) Al X B Y ) N (however, in terms of atomic ratio, X represents 0.10 to 0.35, Y represents 0.01 to 0.10),
And the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm.
This is characterized by a coated cermet tool that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
[0010]
Next, in the coated cermet tool of the present invention, the reason why the configuration of the hard coating layer constituting the tool is limited as described above will be described.
(A) Composition of the highest Al content point
The Ti component in (Ti, Al, B) N at the highest Al content point improves the strength, the Al component improves the high temperature hardness and heat resistance, and the B component further improves the high temperature hardness. Therefore, the higher the content ratio of Al and B components, the higher the high-temperature hardness and heat resistance, and it is suitable for high-speed cutting with high heat generation. If the value exceeds 0.60 in terms of the total amount of Ti and B (atomic ratio), and if the Y value indicating the B content exceeds 0.10, the Al minimum content point with high strength is adjacent Even if it exists, a decrease in the strength of the layer itself is unavoidable, and as a result, chipping or the like is likely to occur. On the other hand, even if the X value is less than 0.40 and the Y value is less than 0.01, The desired improvement effect is obtained in high temperature hardness and heat resistance. From Ikoto, the X value 0.40 to 0.60, was defined as the Y value 0.01 to 0.10.
[0011]
(B) Composition of Al minimum content point
As described above, the highest Al content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in strength, so that the content of Ti is high in order to compensate for the insufficient strength of this Al highest content point, On the other hand, the Al minimum content point where the Al content is low and thereby has high strength is alternately interposed in the thickness direction. Therefore, the X value indicating the Al ratio is the total amount of Ti and B components. If the ratio (atomic ratio) in the ratio exceeds 0.35, the ratio of Ti becomes relatively small, so that the desired excellent strength cannot be secured, while the X value is less than 0.10. Then, since it becomes impossible to make the Al minimum content point have predetermined high-temperature hardness and heat resistance, the X value indicating the ratio of Al at the Al minimum content point was determined to be 0.10 to 0.35.
The B component at the Al minimum content point is also contained for the purpose of improving the high-temperature hardness in the coexistence with the Al component as described above, and thus adapting to high-speed cutting accompanied by the generation of high heat. If it is less than 1, the desired high-temperature hardness improvement effect cannot be obtained. On the other hand, if the Y value exceeds 0.10, the strength of the Al minimum content point tends to decrease, and it becomes difficult to improve the desired chipping resistance. Therefore, the Y value was determined to be 0.01 to 0.10.
[0012]
(C) Interval between Al highest content point and Al lowest content point
If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, it is impossible to ensure the desired high temperature hardness and heat resistance and further strength to the hard coating layer, Also, when the distance exceeds 0.1 μm, the disadvantages of each point, that is, insufficient strength at the highest Al content point, insufficient high temperature hardness and insufficient heat resistance at the lowest Al content point, appear locally in the layer. Because of this, chipping is likely to occur and the progress of wear is promoted, so the interval was set to 0.01 to 0.1 μm.
[0013]
(D) Overall average layer thickness of the hard coating layer
If the layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness is 1 to 15 μm. Determined.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
Example 1
WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr having an average particle diameter of 1 to 3 μm as raw material powders Three C 2 Powder and Co powder are prepared, and these raw material powders are blended in the blending composition shown in Table 1, wet mixed for 72 hours by a ball mill, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact is sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge part is subjected to a honing process of R: 0.03 to form a chip shape conforming to ISO standard CNMG120408. The cermet bases A1 to A10 made of WC base cemented carbide having the above were formed.
[0015]
In addition, as raw material powder, TiCN (TiC / TiN = 50/50 by weight) powder having an average particle diameter of 0.5 to 2 μm, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder are prepared. These raw material powders are blended in the blending composition shown in Table 2, and are wet-mixed for 24 hours in a ball mill and dried. After that, the green compact was press-molded into a green compact at a pressure of 100 MPa, and this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. : 0.03 honing was performed to form cermet bases B1 to B6 made of TiCN cermet having a chip shape of ISO standard / CNMG120408.
[0016]
Next, each of the cermet substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then the cermet bases A1 to A10 and B1 to B6 have a radius from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Ti-Al-B alloy for forming the highest Al content point with various component compositions as the cathode electrode (evaporation source) on one side at a predetermined distance in the direction along the outer periphery of the table, the other side As a cathode electrode (evaporation source), a Ti-Al-B alloy for forming the lowest Al content point is disposed opposite to the rotary table, and a metallic Ti for bombard cleaning is also mounted. While maintaining the vacuum at 5 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then applied to the cermet substrate that rotates while rotating on the rotary table. A bias voltage is applied and a current of 100 A is passed between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the surface of the cermet substrate with Ti bombardment, and then nitrogen as a reactive gas in the apparatus. A gas was introduced to form a reaction atmosphere of 2 Pa, a DC bias voltage of −100 V was applied to the cermet substrate rotating while rotating on the rotary table, and each cathode electrode (Ti for forming the highest Al content point) was applied. -Al-B alloy and Ti-Al-B alloy for forming the lowest Al content point) and an anode electrode to cause an arc discharge to flow, so that the surface of the cermet substrate has a thickness direction. Along with the targets shown in Tables 3 and 4 alternately, the Al highest content point and the Al lowest content point of the target composition shown in Tables 3 and 4 It has a component concentration distribution structure that repeatedly exists at intervals, and the Al content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and By depositing a hard coating layer having a target overall layer thickness shown in Tables 3 and 4, the surface-coated cermet throwaway tip (hereinafter referred to as the present invention-coated tip) 1-16 as the present invention-coated cermet tool. Were manufactured respectively.
[0017]
For comparison purposes, these cermet substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and each was loaded into a normal arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), one Ti-Al-B alloy with various component compositions is installed, and one bombard cleaning metal Ti is also installed. First, the inside of the apparatus is evacuated to 0.5 Pa or less. The apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of −1000 V, a −1000 V DC bias voltage was applied to the cermet substrate, and a current of 100 A was applied between the metal Ti and the anode electrode of the cathode electrode. To generate an arc discharge, thereby cleaning the surface of the cermet substrate with Ti bombardment, and then introducing nitrogen gas as a reaction gas into the apparatus. And the bias voltage applied to the cermet substrate is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode, and thus the cermet substrates A1 to A10 and B1 to B6 A hard coating layer comprising a (Ti, Al, B) N layer having a target composition and a target layer thickness shown in Tables 5 and 6 and substantially no composition change along the layer thickness direction on each surface. The conventional surface-coated cermet throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 as conventional coated cermet tools were produced, respectively.
[0018]
Next, in the state where all the above-mentioned various coated chips are screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the conventional coated chips 1 to 10 are as follows.
Work material: JIS / S40C round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-cut cutting test of carbon steel under the conditions of
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 400 m / min. ,
Cutting depth: 2mm,
Feed: 0.6 mm / rev. ,
Cutting time: 5 minutes
A dry intermittent high-speed high-feed cutting test of alloy steel was performed under the following conditions.
[0019]
Furthermore, for the present coated chips 11-16 and the conventional coated chips 11-16,
Work material: JIS / FC250 round bar,
Cutting speed: 450 m / min. ,
Incision: 1.5mm,
Feed: 0.7 mm / rev. ,
Cutting time: 20 minutes,
Dry continuous high-speed high-feed cutting test of cast iron under the conditions of
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 300 m / min. ,
Cutting depth: 4.5mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes
A dry interrupted high-speed, high-cut cutting test of alloy steel was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 7 and 8.
[0020]
[Table 1]
Figure 0004029328
[0021]
[Table 2]
Figure 0004029328
[0022]
[Table 3]
Figure 0004029328
[0023]
[Table 4]
Figure 0004029328
[0024]
[Table 5]
Figure 0004029328
[0025]
[Table 6]
Figure 0004029328
[0026]
[Table 7]
Figure 0004029328
[0027]
[Table 8]
Figure 0004029328
[0028]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr Three C 2 Prepare powder, VC powder of 1.5 μm, (Ti, W) C powder of 1.0 μm, and Co powder of 1.8 μm, and blend these raw material powders into the composition shown in Table 9. Further, wax was added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into various green compacts having a predetermined shape at a pressure of 100 MPa. These green compacts were placed in a 6 Pa vacuum atmosphere. The temperature is increased to a predetermined temperature within a range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min, held at this temperature for 1 hour, sintered under furnace cooling conditions, and having a diameter of 8 mm, 13 mm, and 26 mm of three types of cermet base body-forming round bar sintered bodies were formed, and from the above-mentioned three types of round bar sintered bodies, by grinding, in combinations shown in Table 9, the diameter of the cutting edge portion × Each length is 6mm x 13mm, 10mm x 22mm Dimensions and 20 mm × 45 mm, as well as any twist angle: 30 degrees 4 flute square shape with cermet substrate (end mill) C-1 through C-8 were prepared, respectively.
[0029]
Then, these cermet substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1, the highest Al content point and the lowest Al content point of the target composition shown in Table 10 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 10, and the Al The target total layer thickness having a component concentration distribution structure in which the Al content continuously changes from the highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and also shown in Table 10 The hard coating layer of the present invention was used to produce the surface coated cermet end mills (hereinafter referred to as the present coated end mill) 1 to 8 as the present coated cermet tool.
[0030]
For comparison purposes, the above cermet substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the same is applied to the ordinary arc ion plating apparatus shown in FIG. And having the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1, and substantially no composition change along the layer thickness direction (Ti, Al, B) By vapor-depositing a hard coating layer composed of an N layer, conventional surface-coated cermet end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as conventional coated cermet tools were produced, respectively.
[0031]
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 150 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 400mm / min,
With respect to the dry high-speed, high-grooving groove cutting test of the tool steel under the conditions of the present invention, the present coated end mills 4-6 and the conventional coated end mills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCM420 plate material,
Cutting speed: 200 m / min. ,
Groove depth (cut): 6 mm
Table feed: 550 mm / min,
With respect to the dry high-speed high-cut groove cutting test of alloy steel under the conditions of the present invention, the coated end mills 7 and 8 of the present invention, and the conventional coated end mills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S55C plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 500 mm / min,
Carbon steel dry high-speed and high-feed grooving tests were performed under the above conditions, and the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life in each grooving test. The cutting groove length up to was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0032]
[Table 9]
Figure 0004029328
[0033]
[Table 10]
Figure 0004029328
[0034]
[Table 11]
Figure 0004029328
[0035]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming cermet substrates C-1 to C-3), 13 mm (for forming cermet substrates C-4 to C-6), and 26 mm (cermet substrates C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (cermet substrate D) by grinding. −1 to D-3), 8 mm × 22 mm (cermet substrates D-4 to D-6), and 16 mm × 45 mm (cermet substrates D-7 and D-8), and the twist angle is 30 degrees. Cermet substrates (drills) D-1 to D-8 having a two-blade shape were produced, respectively.
[0036]
Next, the cutting blades of these cermet substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. In the same conditions as in Example 1 above, the highest Al content point and the lowest Al content point of the target composition shown in Table 12 along the layer thickness direction alternately at the target interval shown in Table 12 Repeatedly, and having a component concentration distribution structure in which the Al content continuously changes from the Al highest content point to the Al lowest content point, and from the Al lowest content point to the Al highest content point. The surface coated cermet drills (hereinafter referred to as the present invention coated drills) 1 to 8 as the present invention coated cermet tools are respectively deposited by vapor-depositing a hard coating layer having a target overall layer thickness shown in FIG. And elephants.
[0037]
In addition, for comparison purposes, the cutting blades of the cermet substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried. And having the target composition and target layer thickness shown in Table 13 under the same conditions as in Example 1 and substantially no composition change along the layer thickness direction. By vapor-depositing a hard coating layer composed of a (Ti, Al, B) N layer, conventional surface-coated cermet drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated cermet tools were produced.
[0038]
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 180 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm
For the wet high speed high feed drilling test of carbon steel under the conditions of the present invention, the present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FC250 plate material,
Cutting speed: 200 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 16mm
About the wet high-speed high-feed drilling test of cast iron under the conditions of the present invention, the coated drills 7 and 8 of the present invention and the conventional coated drills 7 and 8
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 180 m / min. ,
Feed: 0.4mm / rev,
Hole depth: 32mm
Wet high-speed high-feed drilling test of structural steel under the conditions of each, and the flank wear width of the tip cutting edge surface is 0.3 mm in any wet high-speed drilling cutting test (using water-soluble cutting oil) The number of drilling processes up to was measured. The measurement results are shown in Tables 12 and 13, respectively.
[0039]
[Table 12]
Figure 0004029328
[0040]
[Table 13]
Figure 0004029328
[0041]
As a result of the present invention coated chips 1-16, the present coated end mills 1-8, and the hard coated layers constituting the present coated drills 1-8 as the present coated cermet tool, the highest Al content point and the lowest Al About the composition of the content point, and the hard coating layers of the conventional coated tips 1 to 16, the conventional coated end mills 1 to 8, and the conventional coated drills 1 to 8 as a conventional coated cermet tool, along the thickness direction, Ti, Al, and When the content of B was measured using an Auger spectroscopic analyzer, the hard coating layer of the coated cermet tool of the present invention had the Al highest content point and the Al lowest content point at substantially the same composition and interval as the target values, respectively. Al component content is present alternately and from the highest Al content point to the lowest Al content point, from the lowest Al content point to the highest Al content point. It was confirmed to have a connection-varying component concentration distribution structure, also showing the overall mean layer thickness even entire target layer thickness substantially the same value of the hard layer.
On the other hand, the hard coating layer of the conventional coated cermet tool shows no composition change along the thickness direction, and shows a composition substantially the same as the target composition and an overall average layer thickness substantially the same as the target overall layer thickness. Was confirmed.
[0042]
【The invention's effect】
From the results shown in Tables 3 to 13, the hard coating layer has an Al maximum content point having excellent high temperature hardness and heat resistance and an Al minimum content point having high strength at predetermined intervals alternately in the layer thickness direction. The present coated cermet tool having a component concentration distribution structure that repeatedly exists and has an Al content continuously changing from the highest Al content point to the lowest Al content point, from the lowest Al content point to the highest Al content point, In all cases, the hard coating layer exhibits excellent chipping resistance even when high-speed cutting of various steels and cast iron is performed under heavy cutting conditions such as high cutting with high mechanical impact and high feed. On the other hand, in the conventional coated cermet tool in which the hard coating layer is composed of a (Ti, Al, B) N layer that has substantially no composition change along the layer thickness direction, the hard coating layer has excellent high-temperature hardness and Heat resistance Although having, because of inferior strength, chipping occurs and this is apparent that lead to a relatively short time service life due.
As described above, the coated cermet tool according to the present invention can be used not only for high-speed cutting under normal conditions, but also for high-speed cutting such as various steels and cast irons. Even when performed under heavy cutting conditions such as, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time. It is possible to cope with the above sufficiently.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated cermet tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used to form a hard coating layer constituting a conventional coated cermet tool.

Claims (1)

装置中央部に炭化タングステン基超硬合金基体および炭窒化チタン系サーメット基体のいずれか、または両方の装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にAl最高含有点形成用Ti−Al−B合金、他方側にAl最低含有点形成用Ti−Al−B合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にテーブルの外周部に沿って複数の前記基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、前記基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記基体の表面に、TiとAlとBの複合窒化物層からなる硬質被覆層を1〜15μmの全体平均層厚で蒸着してなる表面被覆超硬合金製切削工具にして
上記硬質被覆層が、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:[Ti1-( + )Al]N(ただし、原子比で、Xは0.40〜0.60、Yは0.01〜0.10を示す)、
上記Al最低含有点が、組成式:[Ti1-( + )Al]N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.10を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
A rotating table for mounting either or both of a tungsten carbide base cemented carbide substrate and a titanium carbonitride-based cermet substrate is provided in the center of the apparatus, and the Al-highest content point forming Ti- Using an arc ion plating apparatus in which an Al—B alloy and a Ti—Al—B alloy for forming an Al minimum content point on the other side are arranged to face each other as a cathode electrode (evaporation source), from the central axis on the rotary table of the apparatus A plurality of the bases are mounted in a ring shape along the outer periphery of the table at a predetermined distance in the radial direction. In this state, the rotary table is rotated with the atmosphere inside the apparatus as a nitrogen atmosphere, and the base itself also rotates. while, by generating arc discharge between the cathode (evaporation source) and an anode electrode on both sides of the the surface of the substrate, Ti and a And then a hard coat layer of composite nitride layer of B in total average layer formed by vapor deposition with a thickness surface-coated cemented carbide cutting tools of 1 to 15 m,
In the hard coating layer, the Al highest content point and the Al lowest content point are present alternately at predetermined intervals along the layer thickness direction, and the Al lowest content point, the Al A component concentration distribution structure in which the Al content continuously changes from the lowest content point to the Al highest content point,
Furthermore, the Al highest content point, composition formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is 0.40 to 0.60, Y is 0.01 0.10),
The Al minimum content point, composition formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 10),
And the interval between adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2002300334A 2002-10-15 2002-10-15 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions Expired - Fee Related JP4029328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300334A JP4029328B2 (en) 2002-10-15 2002-10-15 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300334A JP4029328B2 (en) 2002-10-15 2002-10-15 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions

Publications (2)

Publication Number Publication Date
JP2004130495A JP2004130495A (en) 2004-04-30
JP4029328B2 true JP4029328B2 (en) 2008-01-09

Family

ID=32289198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300334A Expired - Fee Related JP4029328B2 (en) 2002-10-15 2002-10-15 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions

Country Status (1)

Country Link
JP (1) JP4029328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771200B2 (en) * 2005-02-16 2011-09-14 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4720986B2 (en) * 2005-07-08 2011-07-13 三菱マテリアル株式会社 Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4720989B2 (en) * 2005-07-29 2011-07-13 三菱マテリアル株式会社 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Also Published As

Publication number Publication date
JP2004130495A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3991272B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4211508B2 (en) Surface coated cermet cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of difficult-to-cut materials
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4048365B2 (en) Surface coated cermet cutting tool with excellent wear resistance with hard coating layer under high speed heavy cutting conditions
JP3962921B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4029329B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4120458B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3972293B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3978775B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928497B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3928498B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees