JP2005022044A - Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting - Google Patents

Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting Download PDF

Info

Publication number
JP2005022044A
JP2005022044A JP2003191858A JP2003191858A JP2005022044A JP 2005022044 A JP2005022044 A JP 2005022044A JP 2003191858 A JP2003191858 A JP 2003191858A JP 2003191858 A JP2003191858 A JP 2003191858A JP 2005022044 A JP2005022044 A JP 2005022044A
Authority
JP
Japan
Prior art keywords
layer
content point
cutting
cemented carbide
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003191858A
Other languages
Japanese (ja)
Other versions
JP4120500B2 (en
Inventor
Tsutomu Ogami
強 大上
Kazunori Sato
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003191858A priority Critical patent/JP4120500B2/en
Publication of JP2005022044A publication Critical patent/JP2005022044A/en
Application granted granted Critical
Publication of JP4120500B2 publication Critical patent/JP4120500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide with a hard coating layer exhibiting excellent wear resistance in high-speed cutting. <P>SOLUTION: The surface coated cutting tool is formed by physical vapor deposition of (a) a Cr boride layer with the average layer thickness of 0.5-5 μm as a surface layer and (b) a compound nitride layer of Al and Ti with the average layer thickness of 0.5-10 μm as a wear resistant hard layer, on the surface of a carbide substrate formed of cemented carbide or cermet. The wear resistant hard layer is composed of a compound nitride layer of Al and Ti having a component concentration distribution structure wherein Al maximum content points and Al minimum content points exist in alternate repetition at prescribed spaces along a layer thickness direction, and the content rates of Al and Ti continuously change between both points. Further, the Al minimum and maximum content points satisfy specific composition formulas respectively, and the spacing of the adjacent Al minimum content point and Al maximum content points is 0.01-0.1 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、表面被覆層が、すぐれた高温硬さおよび耐熱性を有する耐摩耗硬質層と、すぐれた高温耐酸化性を有する表面層によって構成され、したがって特に各種の鋼や鋳鉄などの高熱発生を伴う高速切削加工で、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Al1−X Ti)N(ただし、原子比で、Xは0.35〜0.60を示す)、
を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる耐摩耗硬質層を表面被覆層として0.5〜10μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、前記(Al,Ti)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備することから、前記被覆超硬工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Al,Ti)N層からなる耐摩耗硬質層を表面被覆層として蒸着することにより製造されることも知られている(例えば特許文献1参照)。
【0005】
【特許文献1】
特許第2644710号明細書
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、これを高い発熱を伴う高速切削条件で用いた場合、耐摩耗硬質層の摩耗進行が著しく促進するようになることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高速切削加工で耐摩耗硬質層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する耐摩耗硬質層からなる表面被覆層に着目し、研究を行った結果、
(A)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆超硬工具を構成する(Al,Ti)Nからなる耐摩耗硬質層は、層厚全体に亘って均質な高温硬さと耐熱性、および高温強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に上記の従来(Al,Ti)N層の形成にカソード電極(蒸発源)として用いられたAl−Ti合金に相当する相対的にTi含有量の高いAl−Ti合金、他方側に相対的にTi含有量の低いAl−Ti合金をいずれもカソード電極(蒸発源)として対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Al,Ti)N層を形成すると、この結果の(Al,Ti)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にTi含有量の高いAl−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最低含有点が形成され、また前記超硬基体が上記の他方側の相対的にTi含有量の低いAl−Ti合金のカソード電極に最も接近した時点で層中にAl最高含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最低含有点とAl最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最低含有点から前記Al最高含有点、前記Al最高含有点から前記Al最低含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(B)上記(A)の繰り返し連続変化成分濃度分布構造の(Al,Ti)N層において、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成を調製すると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Al最低含有点が、組成式:(Al1−X Ti)N(ただし、原子比で、Xは0.35〜0.60を示す)、
上記Al最高含有点が、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.05〜0.30を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最低含有点とAl最高含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、上記の従来(Al,Ti)N層に比してAl含有割合が相対的に高くなることから、より一段とすぐれた高温硬さと耐熱性を示し、一方上記Al最低含有点部分は、上記従来(Al,Ti)N層と同等の組成、すなわち前記Al最高含有点部分に比して相対的にAl含有量が低く、Ti含有割合の高い組成をもつので、高い高温強度を保持し、かつこれらAl最低含有点とAl最高含有点の間隔をきわめて小さくしたことから、層全体の特性として高い高温強度を保持した状態で、すぐれた高温硬さと耐熱性を具備するようになること。
【0009】
(C)さらに、上記(A)および(B)の繰り返し連続変化成分濃度分布構造の(Al,Ti)N層を0.5〜10μmの平均層厚で耐摩耗硬質層として蒸着形成し、ついで、同じく図1の蒸着装置におけるSP装置を用い、Ar(アルゴン)ガス雰囲気中で、同じくカソード電極(蒸発源)として配置したCr硼化物(以下、CrBで示す)合金のスパッタリングを行い、前記(Al,Ti)N層に重ねて表面層として0.5〜5μmの平均層厚でCrB層を蒸着形成すると、この結果の被覆超硬工具は、特に高熱発生を伴なう高速切削で、上記従来(Al,Ti)N層に比して一段とすぐれた高温硬さと耐熱性を有する上記繰り返し連続変化成分濃度分布構造の(Al,Ti)N層からなる耐摩耗硬質層が、すぐれた高温耐酸化性を有する前記CrB層からなる表面層によって切削時の高温酸化雰囲気から保護され、摩耗促進の原因となる雰囲気酸化が著しく抑制されることから、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(A)〜(C)に示される研究結果を得たのである。
【0010】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)表面層として、0.5〜5μmの平均層厚を有するCrB層、
(b)耐摩耗硬質層として、0.5〜10μmの平均層厚を有する(Al,Ti)N層、
以上(a)および(b)からなる表面被覆層を物理蒸着してなる被覆超硬工具にして、
上記耐摩耗硬質層を、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最低含有点が、組成式:(Al1−X Ti)N(ただし、原子比で、Xは0.35〜0.60を示す)、
上記Al最高含有点が、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.05〜0.30を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最低含有点とAl最高含有点の間隔が、0.01〜0.1μmである(Al,Ti)N層、
で構成してなる、高速切削加工で表面被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
【0011】
つぎに、この発明の被覆超硬工具において、これを構成する表面被覆層の構成を上記の通りに限定した理由を説明する。
(a)耐摩耗硬質層におけるAl最高含有点の組成
Al最高含有点の(Al,Ti)NにおけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には、高温強度を向上させる作用があるので、前記Al最高含有点では相対的にTi含有量を低くし、Al含有量を高くして、高熱発生を伴う高速切削に適応するすぐれた高温硬さと耐熱性を具備せしめたものであるが、Tiの割合を示すY値がAlとの合量に占める割合(原子比、以下同じ)で0.05未満になると、相対的にAlの割合が多くなり過ぎて、高い高温強度を有するAl最低含有点が隣接して存在しても層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方Tiの割合を示すY値が同0.30を越えると、相対的にAlの割合が少なくなり過ぎて、高速切削に要求されるすぐれた高温硬さと耐熱性を確保することができなくなることから、Y値を0.05〜0.30と定めた。
【0012】
(b)耐摩耗硬質層におけるAl最低含有点の組成
上記の通りAl最高含有点は高温硬さと耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、上記の従来(Al,Ti)N層と同等の組成、すなわち相対的にTi含有割合が高く、一方Al含有量が低く、これによって高い高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってTiの割合を示すX値がAl成分との合量に占める割合で0.35未満では、所望のすぐれた高温強度を確保することができず、一方同X値が0.60を越えると、Alに対するTiの割合が多くなり過ぎて、Al最低含有点の高温硬さと耐熱性が不十分となり、摩耗促進の原因となることから、Al最低含有点でのTiの割合を示すX値を0.35〜0.60と定めた。
【0013】
(c)耐摩耗硬質層におけるAl最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果耐摩耗硬質層にすぐれた高温硬さと耐熱性、および高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0014】
(d)耐摩耗硬質層の平均層厚
その平均層厚が0.5μm未満では、上記耐摩耗硬質層のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が10μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜10μmと定めた。
【0015】
(e)表面層の平均層厚
表面被覆層は、上記の通り耐摩耗硬質層のもつすぐれた高温硬さおよび耐熱性と、表面層であるCrB層のもつすぐれた高温耐酸化性との共存によって、高い発熱を伴なう高速切削ですぐれた耐摩耗性を発揮するようになるものであるが、前記CrB層の平均層厚が0.5μm未満では、上記耐摩耗硬質層を切削時における高温酸化雰囲気から使用寿命に至るまで保護するには不十分であり、一方その平均層厚が5μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
【0016】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
【0017】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。
【0018】
ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、表面被覆層の耐摩耗硬質層形成に、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Al−Ti合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Al−Ti合金を前記回転テーブルを挟んで対向配置し、さらに同じくカソード電極として表面層形成用CrB合金およびボンバード洗浄用金属Crも装着し、まず装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Al最高含有点形成用Al−Ti合金およびAl最低含有点形成用Al−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最低含有点から前記Al最高含有点、前記Al最高含有点から前記Al最低含有点へAlおよびTiの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の(Al,Ti)N層を表面被覆層の耐摩耗硬質層として蒸着形成し、ついで上記のAl最高含有点形成用Al−Ti合金およびAl最低含有点形成用Al−Ti合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内に導入するガスをArと窒素の混合ガス(容量比で、Ar/窒素=70/30)に切り替えて、装置内を3Paの雰囲気とすると共に、カソード電極である前記CrB合金とアノード電極との間で、スパッタ出力:1kWの条件でスパッタリングを開始し、スパッタリング開始後15分経過した時点で装置内に導入するガスを前記Arと窒素の混合ガスからArガスに切り替える以外は同一の条件でスパッタリングを続行し、同じく表3,4に示される目標層厚のCrB層を表面被覆層の表面層として蒸着形成しすることにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
【0019】
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ同じく図1に示される蒸着装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったAl−Ti合金(一方側のみ)およびCrB合金を装着し、またボンバード洗浄用金属Crも装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Al−Ti合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる耐摩耗硬質層を表面被覆層として蒸着形成し、ついで前記Al−Ti合金のカソード電極とアノード電極との間のアーク放電を停止し、前記(Al,Ti)N層からなる耐摩耗硬質層を蒸着形成したもののうちの半数について、同じく装置内に導入するガスをArと窒素の混合ガス(容量比で、Ar/窒素=70/30)に切り替えて、装置内を3Paの雰囲気とすると共に、カソード電極である前記CrB合金とアノード電極との間で、スパッタ出力:1kWの条件でスパッタリングを開始し、スパッタリング開始後15分経過した時点で装置内に導入するガスを前記Arと窒素の混合ガスからArガスに切り替える以外は同一の条件でスパッタリングを続行し、同じく表5に示される目標層厚のCrB層を表面被覆層の表面層として蒸着形成することにより、比較被覆超硬工具としての比較表面被覆超硬製スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。
【0020】
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:330m/min.、
切り込み:2.5mm、
送り:0.25mm/rev.、
切削時間:2分、
の条件での合金鋼の乾式断続高速切削加工試験(通常の切削速度は180m/min.)、
被削材:JIS・S45Cの丸棒、
切削速度:300m/min.、
切り込み:2mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)、
被削材:JIS・FC300の丸棒、
切削速度:320m/min.、
切り込み:1.5mm、
送り:0.5mm/rev.、
切削時間:4分、
の条件での鋳鉄の乾式連続高速切削加工試験(通常の切削速度は200m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0021】
【表1】

Figure 2005022044
【0022】
【表2】
Figure 2005022044
【0023】
【表3】
Figure 2005022044
【0024】
【表4】
Figure 2005022044
【0025】
【表5】
Figure 2005022044
【0026】
【表6】
Figure 2005022044
【0027】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0028】
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記Al最低含有点から前記Al最高含有点、前記Al最高含有点から前記Al最低含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、同じく表8に示される目標層厚の(Al,Ti)N層からなる耐摩耗硬質層と、同じく表8に示される目標層厚のCrB層からなる表面層で構成された表面被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。
【0029】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる耐摩耗硬質層を表面被覆層として蒸着形成し、さらに前記(Al,Ti)N層からなる耐摩耗硬質層を蒸着形成したもののうちの半数について、同じく表9に示される目標層厚のCrB層を表面被覆層の表面層として蒸着形成しすることにより、比較被覆超硬工具としての比較表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。
【0030】
つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCM440の板材、
切削速度:180m/min.、
溝深さ(切り込み):3.5mm、
テーブル送り:800mm/分、
の条件での合金鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)、本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・S50Cの板材、
切削速度:250m/min.、
溝深さ(切り込み):5mm、
テーブル送り:700mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は170m/min.)、本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD61の板材、
切削速度:180m/min.、
溝深さ(切り込み):8mm、
テーブル送り:300mm/分、
の条件での工具鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8、9にそれぞれ示した。
【0031】
【表7】
Figure 2005022044
【0032】
【表8】
Figure 2005022044
【0033】
【表9】
Figure 2005022044
【0034】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0035】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最低含有点から前記Al最高含有点、前記Al最高含有点から前記Al最低含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の(Al,Ti)N層からなる耐摩耗硬質層と、同じく表10に示される目標層厚のCrB層からなる表面層で構成された表面被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。
【0036】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる耐摩耗硬質層を表面被覆層として蒸着形成し、さらに前記(Al,Ti)N層からなる耐摩耗硬質層を蒸着形成したもののうちの半数について、同じく表11に示される目標層厚のCrB層を表面被覆層の表面層として蒸着形成することにより、比較被覆超硬工具としての比較表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。
【0037】
つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもったJIS・SCM440の板材、
切削速度:80m/min.、
送り:0.2mm/rev、
穴深さ:8mm、
の条件での合金鋼の湿式高速穴あけ切削加工試験(通常の切削速度は40m/min.)、本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・FC400の板材、
切削速度:180m/min.、
送り:0.3mm/rev、
穴深さ:15mm、
の条件でのダクタイル鋳鉄の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)、本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SKD61の板材、
切削速度:100m/min.、
送り:0.25mm/rev、
穴深さ:20mm、
の条件での工具鋼の湿式高速穴あけ切削加工試験(通常の切削速度は60m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0038】
【表10】
Figure 2005022044
【0039】
【表11】
Figure 2005022044
【0040】
この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の表面被覆層を構成する耐摩耗硬質層におけるAl最低含有点とAl最高含有点の組成、並びに比較被覆超硬工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の表面被覆層の耐摩耗硬質層について、厚さ方向に沿ってAlおよびTiの含有量を透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、前記本発明被覆超硬工具の耐摩耗硬質層では、Al最低含有点とAl最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Al最低含有点から前記Al最高含有点、前記Al最高含有点から前記Al最低含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、一方前記比較被覆超硬工具の耐摩耗硬質層を構成する(Al,Ti)N層では厚さ方向に沿って組成変化が見られなかったが、目標組成と実質的に同じ組成を示した。
また、上記の表面被覆層の表面層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
【0041】
【発明の効果】
表3〜11に示される結果から、表面被覆層が、層厚方向にAl最高含有点とAl最低含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最低含有点から前記Al最高含有点、前記Al最高含有点から前記Al最低含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、前記成分濃度分布構造によって従来(Al,Ti)N層のもつ高温強度と同等の高温強度を具備した状態で、より一段とすぐれた高温硬さおよび耐熱性を有するようになる(Al,Ti)N層の耐摩耗硬質層と、すぐれた高温耐酸化性を有し、切削時の高温酸化雰囲気から前記耐摩耗硬質層を保護するCrB層の表面層で構成された本発明被覆超硬工具は、いずれも鋼や鋳鉄の切削加工を高い発熱を伴う高速で行っても、すぐれた耐摩耗性を発揮するのに対して、耐摩耗硬質層が従来(Al,Ti)N層、すなわち層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる比較被覆超硬工具においては、表面被覆層として前記CrB層の表面層を形成したとしても高熱発生を伴う高速切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、切削加工を高速条件で行なった場合にもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】被覆超硬工具を構成する表面被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the surface coating layer is constituted by a wear-resistant hard layer having excellent high-temperature hardness and heat resistance and a surface layer having excellent high-temperature oxidation resistance, and therefore, high heat generation such as various types of steel and cast iron is generated. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent wear resistance over a long period of time.
[0002]
[Prior art]
In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
[0003]
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.35 to 0.60),
A coating formed by physical vapor deposition with an average layer thickness of 0.5 to 10 μm using a wear-resistant hard layer composed of a composite nitride of Al and Ti [hereinafter referred to as (Al, Ti) N] layer satisfying the following conditions: A cemented carbide tool is known, and the (Al, Ti) N layer has high temperature hardness and heat resistance due to Al as a constituent component, and high temperature strength due to the same Ti. It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of steel and cast iron (see, for example, Patent Document 1).
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in the state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) in which an Al—Ti alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied with a bias voltage of, for example, −100 V on the surface of the carbide substrate. It is also known that it is produced by vapor-depositing a wear-resistant hard layer made of an (Al, Ti) N layer as a surface coating layer (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent No. 2644710
[0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, there is no problem when used under normal cutting conditions, but when this is used under high-speed cutting conditions with high heat generation, the wear progress of the wear-resistant hard layer is significantly accelerated. As a result, the service life is reached in a relatively short time.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool exhibiting excellent wear resistance with an excellent wear-resistant hard layer particularly in high-speed cutting. As a result of conducting research, focusing on the surface coating layer consisting of the hard-wearing hard layer
(A) The wear-resistant hard layer made of (Al, Ti) N constituting the conventional coated carbide tool formed using the arc ion plating apparatus shown in FIG. 2 is homogeneous over the entire layer thickness. An arc ion plating apparatus (hereinafter referred to as an AIP apparatus) having a structure shown in FIG. 1 (a) is a schematic plan view and FIG. 1 (b) is a schematic front view. (Hereinafter abbreviated) and sputtering apparatus (hereinafter abbreviated as SP apparatus) coexisting vapor deposition apparatus, that is, a rotating table for mounting a carbide substrate is provided at the center of the apparatus, and the conventional ( Al—Ti alloy having a relatively high Ti content corresponding to the Al—Ti alloy used as the cathode electrode (evaporation source) for forming the Al, Ti) N layer, and having a relatively low Ti content on the other side Al-T Using a vapor deposition apparatus in which all of the alloys are arranged as cathode electrodes (evaporation sources) and facing each other, a plurality of cemented carbide substrates are disposed along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. While mounting in a ring shape and rotating the rotary table with the atmosphere inside the apparatus as a nitrogen atmosphere in this state, while rotating the carbide substrate itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, When an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides to form an (Al, Ti) N layer on the surface of the cemented carbide substrate, the resulting (Al, Ti) In the N layer, when the cemented carbide substrate arranged in a ring shape on the rotary table is closest to the cathode electrode (evaporation source) of the Al-Ti alloy having a relatively high Ti content on one side. layer The lowest Al content point is formed in the layer, and the highest Al content point is formed in the layer when the cemented carbide substrate comes closest to the cathode electrode of the relatively low Ti content Al-Ti alloy on the other side. The minimum Al content point and the Al maximum content point alternately appear in the layer along the layer thickness direction by rotation of the rotary table, and the Al maximum content point from the Al minimum content point, It has a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the highest Al content point to the lowest Al content point.
[0008]
(B) In the (Al, Ti) N layer having the repeated continuous change component concentration distribution structure of (A) above, for example, the respective compositions of the cathode electrodes (evaporation sources) arranged opposite to each other are prepared, and a carbide substrate is mounted. Control the rotation speed of the rotating table
The Al minimum content point is the composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.35 to 0.60),
The Al maximum content point is the composition formula: (Al 1-Y Ti Y ) N (however, in atomic ratio, Y represents 0.05 to 0.30),
And the distance in the thickness direction of the adjacent Al minimum content point and Al maximum content point adjacent to each other is 0.01 to 0.1 μm,
In the Al highest content point portion, since the Al content ratio is relatively higher than that of the conventional (Al, Ti) N layer, it exhibits higher temperature hardness and heat resistance, while the Al minimum content. The content point portion has the same composition as the conventional (Al, Ti) N layer, that is, the Al content is relatively low compared to the Al highest content point portion, and the composition has a high Ti content ratio. Since the high temperature strength is maintained and the distance between the Al minimum content point and the Al maximum content point is made extremely small, it has excellent high temperature hardness and heat resistance while maintaining high high temperature strength as a characteristic of the entire layer. To be like that.
[0009]
(C) Furthermore, the (Al, Ti) N layer having the repeated continuous change component concentration distribution structure of the above (A) and (B) is vapor-deposited as an abrasion-resistant hard layer with an average layer thickness of 0.5 to 10 μm, Similarly, Cr boride (hereinafter referred to as CrB) disposed as a cathode electrode (evaporation source) in an Ar (argon) gas atmosphere using the SP apparatus in the vapor deposition apparatus of FIG. 2 The alloy is sputtered, and is superposed on the (Al, Ti) N layer to form a surface layer of CrB with an average layer thickness of 0.5 to 5 μm. 2 When the layer is formed by vapor deposition, the resulting coated carbide tool has the high-temperature hardness and heat resistance that are superior to those of the conventional (Al, Ti) N layer, particularly in high-speed cutting with high heat generation. The above-mentioned CrB, which has a wear-resistant hard layer composed of an (Al, Ti) N layer having a repeated continuous change component concentration distribution structure, has excellent high-temperature oxidation resistance 2 It is protected from the high-temperature oxidizing atmosphere at the time of cutting by the surface layer consisting of layers, and the atmospheric oxidation that causes wear promotion is remarkably suppressed, so that it exhibits excellent wear resistance over a long period of time.
The research results shown in (A) to (C) above were obtained.
[0010]
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) As a surface layer, CrB having an average layer thickness of 0.5 to 5 μm 2 layer,
(B) (Al, Ti) N layer having an average layer thickness of 0.5 to 10 μm as the wear-resistant hard layer,
A coated carbide tool formed by physical vapor deposition of the surface coating layer comprising the above (a) and (b),
The wear-resistant hard layer has an Al highest content point and an Al lowest content point alternately and repeatedly at predetermined intervals along the layer thickness direction, and the Al lowest content point from the Al highest content point, A component concentration distribution structure in which the content ratios of Al and Ti continuously change from the lowest Al content point to the highest Al content point,
Further, the Al minimum content point is the composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.35 to 0.60),
The Al maximum content point is the composition formula: (Al 1-Y Ti Y ) N (however, in atomic ratio, Y represents 0.05 to 0.30),
(Al, Ti) N layer in which the interval between the Al minimum content point and the Al maximum content point adjacent to each other is 0.01 to 0.1 μm,
It is characterized by a coated carbide tool that exhibits excellent wear resistance with a high surface coating layer by high-speed cutting.
[0011]
Next, in the coated carbide tool of the present invention, the reason why the configuration of the surface coating layer constituting the tool is limited as described above will be described.
(A) Composition of Al highest content point in wear-resistant hard layer
The Al component in (Al, Ti) N at the highest Al content point improves high-temperature hardness and heat resistance, while the Ti component has the effect of improving high-temperature strength. The Ti content is low, the Al content is high, and it has excellent high-temperature hardness and heat resistance suitable for high-speed cutting with high heat generation. When the ratio to the total amount (atomic ratio, the same shall apply hereinafter) is less than 0.05, the ratio of Al becomes relatively large, and there is an adjacent Al minimum content point having high high-temperature strength. However, a decrease in the high-temperature strength of the layer itself is inevitable, and as a result, chipping is likely to occur. On the other hand, when the Y value indicating the Ti ratio exceeds 0.30, the Al ratio is relatively decreased. Excellent high temperature required for high speed cutting Since it becomes impossible to To ensure the heat resistance, it determined the Y value 0.05 to 0.30.
[0012]
(B) Composition of Al minimum content point in wear-resistant hard layer
As described above, the Al highest content point is excellent in high temperature hardness and heat resistance, but on the other hand, it is inferior in high temperature strength. Therefore, the above conventional (Al , Ti) The composition equivalent to that of the N layer, that is, the Ti content is relatively high, while the Al content is low, thereby alternately interposing in the thickness direction the Al minimum content points that have high high-temperature strength. Therefore, if the X value indicating the proportion of Ti is less than 0.35 in the total amount with the Al component, the desired excellent high-temperature strength cannot be ensured, while the X value is 0.00. If it exceeds 60, the ratio of Ti with respect to Al will increase too much, resulting in insufficient high-temperature hardness and heat resistance at the Al minimum content point, and will cause wear promotion. The X value shown is 0.35 It was defined as 0.60.
[0013]
(C) Distance between the highest Al content point and the lowest Al content point in the wear-resistant hard layer
If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, excellent high temperature hardness and heat resistance, and high temperature strength can be secured in the wear resistant hard layer. When the distance exceeds 0.1 μm, each point has defects in the layer, that is, if the Al content is the highest, the high temperature strength is insufficient, and if the Al content is the minimum, high temperature hardness and insufficient heat resistance are localized in the layer. Therefore, the chipping is likely to occur at the cutting edge, and the progress of wear is promoted. Therefore, the interval is set to 0.01 to 0.1 μm.
[0014]
(D) Average layer thickness of the wear-resistant hard layer
If the average layer thickness is less than 0.5 μm, it is insufficient to exhibit the excellent wear resistance of the wear-resistant hard layer over a long period of time, while if the average layer thickness exceeds 10 μm, the cutting edge portion Therefore, the average layer thickness was determined to be 0.5 to 10 μm.
[0015]
(E) Average layer thickness of the surface layer
As described above, the surface coating layer has excellent high temperature hardness and heat resistance of the wear-resistant hard layer, and CrB which is the surface layer. 2 Coexistence with the excellent high-temperature oxidation resistance of the layer makes it possible to exhibit excellent wear resistance in high-speed cutting with high heat generation. 2 If the average layer thickness is less than 0.5 μm, it is insufficient to protect the wear-resistant hard layer from the high-temperature oxidizing atmosphere during cutting to the service life, while if the average layer thickness exceeds 5 μm, Since the chipping is likely to occur at the blade portion, the average layer thickness was determined to be 0.5 to 5 μm.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
(Example 1)
As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr, all having an average particle diameter of 1 to 3 μm. 3 C 2 Powder, TiN powder, TaN powder, and Co powder are prepared. These raw material powders are blended in the blending composition shown in Table 1, wet-mixed by a ball mill for 72 hours, dried, and then compacted at a pressure of 100 MPa. The green compact was sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO Cemented carbide substrates A-1 to A-10 made of a WC-based cemented carbide having a standard / CNMG120408 chip shape were formed.
[0017]
In addition, as raw material powder, TiCN (TiC / TiN = 50/50 by weight) powder having an average particle diameter of 0.5 to 2 μm, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder are prepared. These raw material powders are blended in the blending composition shown in Table 2, and are wet-mixed for 24 hours in a ball mill and dried. After that, the green compact was press-molded into a green compact at a pressure of 100 MPa, and this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. : A honing process of 0.03 was performed to form TiCN-based cemented carbide substrates B-1 to B-6 having an ISO standard / CNMG120408 chip shape.
[0018]
Next, each of the above-mentioned superhard substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the rotating table in the vapor deposition apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the upper central axis, it has various component compositions as a cathode electrode (evaporation source) on one side for forming the wear-resistant hard layer of the surface coating layer. The Al-Ti alloy for forming the highest Al content point and the Al-Ti alloy for forming the lowest Al content point having various component compositions as the cathode electrode (evaporation source) on the other side are arranged opposite to each other with the rotary table interposed therebetween. Furthermore, CrB for surface layer formation as a cathode electrode 2 The alloy and bombarding metal Cr are also mounted, and the inside of the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater and then rotated while rotating on the rotary table. A DC bias voltage of −1000 V is applied to the carbide substrate, and a current of 100 A is passed between the metal Cr and anode electrode of the cathode electrode to generate an arc discharge, thereby cleaning the surface of the carbide substrate with Cr bombardment. Then, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the carbide substrate rotating while rotating on the rotary table, and 1 between the cathode electrode (the Al-Ti alloy for forming the highest Al content point and the Al-Ti alloy for forming the lowest Al content point) and the anode electrode An arc discharge is generated by applying an electric current of 0 A, so that the highest Al content point and the lowest Al content point of the target composition shown in Tables 3 and 4 are alternately formed on the surface of the cemented carbide substrate along the layer thickness direction. Similarly, the Al and Ti content ratios are repeatedly present at the target intervals shown in Tables 3 and 4, and the Al and Ti content points are continuously changed from the Al minimum content point to the Al highest content point. (Al, Ti) N layer having a varying component concentration distribution structure and also having the target layer thicknesses shown in Tables 3 and 4 is vapor-deposited as a wear-resistant hard layer of the surface coating layer, and then the above-mentioned highest Al content The arc discharge between the cathode electrode and the anode electrode of the point forming Al-Ti alloy and the Al minimum content point forming Al-Ti alloy is stopped, and the gas introduced into the apparatus is a mixed gas of Ar and nitrogen (capacity ratio). Where Ar / nitrogen = Switch to 0/30), with the atmosphere 3Pa in the apparatus, a cathode electrode and the CrB 2 Sputtering is started between the alloy and the anode electrode under the condition of sputtering output: 1 kW, and the gas to be introduced into the apparatus is changed from Ar mixed gas of Ar and nitrogen to Ar gas at the time when 15 minutes have elapsed since the start of sputtering. Continues sputtering under the same conditions, and CrB with the target layer thickness also shown in Tables 3 and 4 2 By forming the layer as a surface layer of the surface coating layer, the surface coated carbide throwaway tips (hereinafter referred to as the present invention coated tips) 1 to 16 as the present coated carbide tools are produced, respectively. did.
[0019]
For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the vapor deposition apparatus shown in FIG. Al-Ti alloy (only one side) and CrB having various composition as cathode electrode (evaporation source) 2 The alloy is mounted, and the bombard cleaning metal Cr is also mounted. First, the interior of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the interior of the apparatus is heated to 500 ° C. with a heater. A DC bias voltage of −1000 V is applied to the electrode, and a current of 100 A is passed between the metal Cr and the anode electrode of the cathode electrode to generate an arc discharge, thereby cleaning the surface of the carbide substrate with Cr bombardment, Nitrogen gas is introduced as a reaction gas into the reaction atmosphere of 3 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to −100 V between the cathode electrode and the anode electrode of the Al—Ti alloy. An arc discharge is generated, so that each of the surfaces of the carbide substrates A-1 to A-10 and B-1 to B-6 has the target composition and the target layer thickness shown in Table 5. And an abrasion-resistant hard layer composed of an (Al, Ti) N layer substantially unchanged in composition along the layer thickness direction is deposited as a surface coating layer, and then the cathode electrode and anode electrode of the Al-Ti alloy are formed. For half of the deposited layers of wear-resistant hard layers composed of the (Al, Ti) N layers, the gas introduced into the apparatus was similarly mixed gas of Ar and nitrogen (capacity ratio) Then, Ar / nitrogen = 70/30) and the inside of the apparatus is set to an atmosphere of 3 Pa, and the CrB as the cathode electrode 2 Sputtering is started between the alloy and the anode electrode under the condition of sputtering output: 1 kW, and the gas to be introduced into the apparatus is changed from Ar mixed gas of Ar and nitrogen to Ar gas at the time when 15 minutes have elapsed since the start of sputtering. Continues sputtering under the same conditions, and CrB with the target layer thickness also shown in Table 5 2 By forming the layer as a surface layer of the surface coating layer, comparative surface-coated carbide throwaway tips (hereinafter referred to as comparative coated chips) 1 to 16 as comparative coated carbide tools were produced, respectively.
[0020]
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 330 m / min. ,
Incision: 2.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 2 minutes
Dry interrupted high-speed cutting test of alloy steel under the conditions (normal cutting speed is 180 m / min.),
Work material: JIS / S45C round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 2mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Dry continuous high-speed cutting test of carbon steel under the conditions of (normal cutting speed is 200 m / min.),
Work material: JIS / FC300 round bar,
Cutting speed: 320 m / min. ,
Incision: 1.5mm,
Feed: 0.5 mm / rev. ,
Cutting time: 4 minutes
The dry continuous high-speed cutting test of cast iron under the conditions (normal cutting speed is 200 m / min.) Was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.
[0021]
[Table 1]
Figure 2005022044
[0022]
[Table 2]
Figure 2005022044
[0023]
[Table 3]
Figure 2005022044
[0024]
[Table 4]
Figure 2005022044
[0025]
[Table 5]
Figure 2005022044
[0026]
[Table 6]
Figure 2005022044
[0027]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 Prepare powder, VC powder of 1.5 μm, (Ti, W) C powder of 1.0 μm, and Co powder of 1.8 μm, and blend these raw material powders into the composition shown in Table 7, respectively. Further, wax was added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into various green compacts having a predetermined shape at a pressure of 100 MPa. These green compacts were placed in a 6 Pa vacuum atmosphere. The temperature is increased to a predetermined temperature within a range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min, held at this temperature for 1 hour, sintered under furnace cooling conditions, and having a diameter of 8 mm, 13 mm, and The diameter of the cutting edge portion was formed by forming three types of 26 mm round rod sintered bodies for forming a carbide substrate and grinding the above three types of round bar sintered bodies in the combinations shown in Table 7. × Length is 6mm × 13mm, 10mm × 22mm, and Dimensions of 20 mm × 45 mm, as well as any twist angle of 30 degrees 4 flute square shape having a WC-based cemented carbide carbide substrate (end mills) C-1 through C-8 were prepared, respectively.
[0028]
Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. And the Al maximum content point and the Al minimum content point of the target composition shown in Table 8 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 8, and the Al minimum content. A target layer having a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the content point to the Al highest content point and from the Al highest content point to the Al minimum content point, respectively, and also shown in Table 8 A wear-resistant hard layer composed of a thick (Al, Ti) N layer and a target layer thickness CrB also shown in Table 8 2 By forming a surface coating layer composed of a surface layer consisting of layers by vapor deposition, the surface coated carbide end mills (hereinafter referred to as the present invention coated end mills) 1 to 8 as the coated carbide tools of the present invention are respectively provided. Manufactured.
[0029]
Further, for the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. Under the same conditions as in Example 1, the anti-resistance composed of an (Al, Ti) N layer having the target composition and target layer thickness shown in Table 9 and substantially no composition change along the layer thickness direction. Half of the wear hard layer formed by vapor deposition of the wear hard layer as a surface coating layer and further deposited by wear deposition of the (Al, Ti) N layer is CrB having the target layer thickness shown in Table 9 as well. 2 By forming the layer as a surface layer of the surface coating layer, comparative surface-coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 8 as comparative coated carbide tools were manufactured, respectively.
[0030]
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8, the present invention coated end mills 1-3 and comparative coated end mills 1-3 are as follows:
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm, JIS / SCM440 plate,
Cutting speed: 180 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 800mm / min,
The dry high-speed grooving test of alloy steel under the conditions of (normal cutting speed is 100 m / min.), The present invention coated end mills 4 to 6 and the comparative coated end mills 4 to 6
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / S50C plate,
Cutting speed: 250 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 700mm / min,
The dry high-speed grooving test of carbon steel under the conditions (normal cutting speed is 170 m / min.), The coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material-Plane: 100 mm x 250 mm, JIS SKD61 plate material with thickness: 50 mm,
Cutting speed: 180 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 300mm / min,
The dry high-speed grooving test of the tool steel under the conditions (normal cutting speed is 100 m / min.) Is performed, and the flank wear width of the outer peripheral edge of the cutting edge is the service life in any grooving test. The cutting groove length up to 0.1 mm as a standard was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0031]
[Table 7]
Figure 2005022044
[0032]
[Table 8]
Figure 2005022044
[0033]
[Table 9]
Figure 2005022044
[0034]
Example 3
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.
[0035]
Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the highest Al content point and the lowest Al content point of the target composition shown in Table 10 along the layer thickness direction are repeatedly present at the target interval shown in Table 10 alternately. And having a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the Al lowest content point to the Al highest content point, from the Al highest content point to the Al lowest content point, respectively. A wear-resistant hard layer composed of an (Al, Ti) N layer having a target layer thickness shown in Table 10 and a CrB having a target layer thickness also shown in Table 10 2 By forming a surface coating layer composed of a surface layer consisting of layers by vapor deposition, the surface-coated carbide drills of the present invention (hereinafter referred to as the present invention-coated drill) 1 to 8 as the coated carbide tools of the present invention are respectively provided. Manufactured.
[0036]
For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. In the apparatus, under the same conditions as in Example 1, the target composition and the target layer thickness shown in Table 11 are obtained, and there is substantially no change in composition along the layer thickness direction (Al, Ti). The target layer shown in Table 11 is also used for half of the wear-resistant hard layer made of N layer formed by vapor deposition as a surface coating layer and the wear-resistant hard layer made of (Al, Ti) N layer. Thick CrB 2 By forming the layer as a surface layer of the surface coating layer, comparative surface-coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 8 as comparative coated carbide tools were manufactured.
[0037]
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane: 100 mm × 250, thickness: 50 mm JIS / SCM440 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm,
About the wet high speed drilling cutting test (normal cutting speed is 40 m / min.) Of the alloy steel under the conditions of the present invention, the coated drills 4 to 6 and the comparative coated drills 4 to 6
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / FC400 plate material,
Cutting speed: 180 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 15mm,
For the wet high speed drilling test of the ductile cast iron under the conditions (normal cutting speed is 60 m / min.), The inventive coated drills 7 and 8 and the comparative coated drills 7 and 8,
Work material-Plane: 100 mm x 250 mm, JIS SKD61 plate material with thickness: 50 mm,
Cutting speed: 100 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 20mm,
Each of the high-speed drilling machining test of the tool steel under the conditions (normal cutting speed is 60 m / min.), And any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width reached 0.3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0038]
[Table 10]
Figure 2005022044
[0039]
[Table 11]
Figure 2005022044
[0040]
As a result, Al in the wear-resistant hard layer constituting the surface coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool. Composition of lowest content point and highest Al content point, and wear resistant hard layer of surface coating layer of comparative coated tip 1-16, comparative coated end mill 1-8, and comparative coated drill 1-8 as comparative coated carbide tool When the content of Al and Ti along the thickness direction was measured by energy dispersive X-ray analysis using a transmission electron microscope, the wear resistant hard layer of the coated carbide tool of the present invention contained the lowest Al content. Points and Al maximum content points are alternately repeated at substantially the same composition and interval as the target value, and from the Al minimum content point to the Al maximum content point, the Al maximum content point It is confirmed that the Al concentration content has a component concentration distribution structure in which the Al and Ti content ratios continuously change to the Al minimum content point, while constituting the wear-resistant hard layer of the comparative coated carbide tool (Al, Ti) In the N layer, no composition change was observed along the thickness direction, but the composition was substantially the same as the target composition.
Further, when the average layer thickness of the surface layer of the surface coating layer and the wear-resistant hard layer was measured with a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of five locations). )showed that.
[0041]
【The invention's effect】
From the results shown in Tables 3 to 11, in the surface coating layer, the highest Al content point and the lowest Al content point are alternately present at predetermined intervals in the layer thickness direction, and the Al lowest content point causes the Al It has a component concentration distribution structure in which the content ratios of Al and Ti continuously change from the highest content point, the Al highest content point to the Al lowest content point, respectively, and the conventional (Al, Ti) N by the component concentration distribution structure (Al, Ti) N wear-resistant hard layer with better high-temperature hardness and heat resistance, with high-temperature strength equivalent to the high-temperature strength of the layer, and excellent high-temperature oxidation resistance CrB that protects the wear-resistant hard layer from high-temperature oxidizing atmosphere during cutting 2 The coated carbide tool of the present invention composed of the surface layer of each layer shows excellent wear resistance even when cutting steel and cast iron at high speed with high heat generation, whereas wear-resistant In a comparative coated carbide tool in which the hard layer is a conventional (Al, Ti) N layer, that is, an (Al, Ti) N layer having substantially no composition change along the layer thickness direction, the CrB is used as the surface coating layer. 2 Even if the surface layer of the layer is formed, it is clear that the wear of the cutting edge portion is fast in high-speed cutting with high heat generation, and the service life is reached in a relatively short time.
As described above, the coated carbide tool of the present invention has excellent wear resistance not only when cutting under normal cutting conditions such as various types of steel and cast iron, but also when cutting is performed under high speed conditions. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can fully satisfy the high performance of cutting equipment, labor saving and energy saving of cutting work, and cost reduction. is there.
[Brief description of the drawings]
FIG. 1 shows a vapor deposition apparatus used to form a surface coating layer constituting a coated carbide tool, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory diagram of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に、
(a)表面層として、0.5〜5μmの平均層厚を有するCr硼化物層、
(b)耐摩耗硬質層として、0.5〜10μmの平均層厚を有するAlとTiの複合窒化物層、
以上(a)および(b)からなる表面被覆層を物理蒸着してなる表面被覆超硬合金製切削工具にして、
上記耐摩耗硬質層を、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最低含有点が、組成式:(Al1−X Ti)N(ただし、原子比で、Xは0.35〜0.60を示す)、
上記Al最高含有点が、組成式:(Al1−Y Ti)N(ただし、原子比で、Yは0.05〜0.30を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最低含有点とAl最高含有点の間隔が、0.01〜0.1μmである、AlとTiの複合窒化物層で構成したこと、
を特徴とする高速切削加工で表面被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of a cemented carbide substrate made of tungsten carbide based cemented carbide or titanium carbonitride cermet,
(A) As a surface layer, a Cr boride layer having an average layer thickness of 0.5 to 5 μm,
(B) As an abrasion-resistant hard layer, a composite nitride layer of Al and Ti having an average layer thickness of 0.5 to 10 μm,
A surface-coated cemented carbide cutting tool formed by physical vapor deposition of the surface coating layer comprising the above (a) and (b),
The wear-resistant hard layer has an Al highest content point and an Al lowest content point alternately and repeatedly at predetermined intervals along the layer thickness direction, and the Al lowest content point from the Al highest content point, A component concentration distribution structure in which the content ratios of Al and Ti continuously change from the lowest Al content point to the highest Al content point,
Furthermore, the Al minimum content point is a composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.35 to 0.60),
The Al highest content point, the composition formula: (Al 1-Y Ti Y ) N ( provided that an atomic ratio, Y denotes the 0.05 to 0.30),
And the interval between the adjacent Al lowest content point and the Al highest content point adjacent to each other is 0.01 to 0.1 μm, and is composed of a composite nitride layer of Al and Ti,
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance due to its high-speed cutting process.
JP2003191858A 2003-07-04 2003-07-04 Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting Expired - Fee Related JP4120500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191858A JP4120500B2 (en) 2003-07-04 2003-07-04 Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191858A JP4120500B2 (en) 2003-07-04 2003-07-04 Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Publications (2)

Publication Number Publication Date
JP2005022044A true JP2005022044A (en) 2005-01-27
JP4120500B2 JP4120500B2 (en) 2008-07-16

Family

ID=34189306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191858A Expired - Fee Related JP4120500B2 (en) 2003-07-04 2003-07-04 Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Country Status (1)

Country Link
JP (1) JP4120500B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006573A (en) * 2006-06-30 2008-01-17 Mitsubishi Materials Corp Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy
WO2009031958A1 (en) * 2007-09-05 2009-03-12 Sandvik Intellectual Property Ab Coated drill and a method of making the same
JP2013146839A (en) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
CN112839759A (en) * 2018-10-10 2021-05-25 住友电工硬质合金株式会社 Cutting tool and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006573A (en) * 2006-06-30 2008-01-17 Mitsubishi Materials Corp Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy
WO2009031958A1 (en) * 2007-09-05 2009-03-12 Sandvik Intellectual Property Ab Coated drill and a method of making the same
JP2013146839A (en) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
CN112839759A (en) * 2018-10-10 2021-05-25 住友电工硬质合金株式会社 Cutting tool and method for manufacturing same

Also Published As

Publication number Publication date
JP4120500B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4158191B2 (en) A method of forming a hard coating layer on the surface of a cutting tool that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4211500B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4485146B2 (en) Surface-coated cermet cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2006015451A (en) Method of manufacturing surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high speed cutting
JP2007307690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4320714B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4257512B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4379912B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4029329B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4150915B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4320715B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP2008173703A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2005224868A (en) Surface coated cermet made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed heavy cutting condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees