JP4621975B2 - Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer - Google Patents

Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer Download PDF

Info

Publication number
JP4621975B2
JP4621975B2 JP2004353531A JP2004353531A JP4621975B2 JP 4621975 B2 JP4621975 B2 JP 4621975B2 JP 2004353531 A JP2004353531 A JP 2004353531A JP 2004353531 A JP2004353531 A JP 2004353531A JP 4621975 B2 JP4621975 B2 JP 4621975B2
Authority
JP
Japan
Prior art keywords
layer
cutting
coated
hard coating
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004353531A
Other languages
Japanese (ja)
Other versions
JP2006159340A (en
Inventor
強 大上
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004353531A priority Critical patent/JP4621975B2/en
Priority to EP04807992.5A priority patent/EP1757388B1/en
Priority to PCT/JP2004/019637 priority patent/WO2005123312A1/en
Publication of JP2006159340A publication Critical patent/JP2006159340A/en
Application granted granted Critical
Publication of JP4621975B2 publication Critical patent/JP4621975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層が、すぐれた高温硬さおよび耐熱性を有する下部層と、すぐれた高温耐酸化性を有する上部層によって構成され、したがって特に各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の切削加工を高熱発生を伴う高速切削条件で行った場合にも、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   In the present invention, the hard coating layer is constituted by a lower layer having excellent high-temperature hardness and heat resistance and an upper layer having excellent high-temperature oxidation resistance, and therefore various Ti-based alloys and high Si-containing Al- Even when cutting hard hard-to-cut materials such as Si-based alloys under high-speed cutting conditions with high heat generation, a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance over a long period of time (hereinafter referred to as the following) This is related to a coated carbide tool.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.75を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質被覆層を1〜10μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、前記(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備することから、前記被覆超硬工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.40 to 0.75),
There is known a coated carbide tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Ti and Al satisfying the following conditions (hereinafter referred to as (Ti, Al) N) with an average layer thickness of 1 to 10 μm. Since the (Ti, Al) N layer has high-temperature hardness and heat resistance due to Al as a constituent component and high-temperature strength due to the Ti, the coated carbide tool is continuously cut from various steels and cast irons. It is also known to exhibit excellent cutting performance when used for intermittent cutting.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2644710号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied with a bias voltage of, for example, −100 V on the surface of the carbide substrate. It is also known that it is produced by vapor-depositing a hard coating layer composed of a (Ti, Al) N layer.
Japanese Patent No. 2644710

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆超硬工具が強く望まれる傾向にあるが、上記の従来被覆超硬工具においては、これを各種の鋼や鋳鉄などの被削材を通常の切削加工条件で行うのに用いた場合には問題はないが、これを特に各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の切削加工を高速切削条件で行うのに用いた場合、切削時に発生するきわめて高い発熱によって、硬質被覆層の摩耗進行が著しく促進するようになることから、比較的短時間で使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. Although there is a tendency that a general-purpose coated carbide tool not limited to the above is widely desired, in the above-mentioned conventional coated carbide tool, this is performed on various cutting materials such as steel and cast iron under normal cutting conditions. There is no problem when it is used for, but when this is used to perform cutting of hard difficult-to-cut materials such as various Ti-based alloys and high Si-containing Al-Si based alloys under high-speed cutting conditions, The extremely high heat generated at the time of cutting significantly accelerates the progress of wear of the hard coating layer, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に上記の硬質難削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al)N層を下部層とし、これの上に上部層として硼化クロム(以下、CrBで示す)層を形成すると、前記CrB層はすぐれた高温耐酸化性を有するので、特に被削材である上記の硬質難削材の高速切削時に発生する高熱による加熱雰囲気から、前記下部層である(Ti,Al)N層を良く保護し、この結果(Ti,Al)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the present inventors have developed the above-described coated carbide tool that exhibits excellent wear resistance in which the hard coating layer is excellent in high-speed cutting of the hard difficult-to-cut materials. As a result of conducting research focusing on conventional coated carbide tools,
(A) When a (Ti, Al) N layer, which is a hard coating layer of the above conventional coated carbide tool, is used as a lower layer, and a chromium boride (hereinafter referred to as CrB 2 ) layer is formed thereon as an upper layer, Since the CrB 2 layer has excellent high-temperature oxidation resistance, the lower layer (Ti, Al) N is formed from a heated atmosphere caused by high heat generated during high-speed cutting of the hard hard-to-cut material, which is a work material. The layer is well protected, and as a result, the excellent properties of the (Ti, Al) N layer can be fully exerted over a long period of time.

(b)しかし、上記上部層であるCrB層と下部層である(Ti,Al)N層との密着性は、特に上記の硬質難削材の高速切削加工を、断続切削形態で行った場合には剥離現象が発生し易く、十分なものとは云えないが、前記CrB層と(Ti,Al)N層との間に窒化クロム(以下、CrNで示す)層を介在させると、前記CrN層は前記CrB層および(Ti,Al)N層のいずれとも強固に密着することから、前記(Ti,Al)N層が超硬基体表面に対してすぐれた密着性を有することと相俟って、前記CrB層と(Ti,Al)N層との間にCrN層を介在させてなる硬質被覆層は、高熱発生を伴なう上記の硬質難削材の高速切削でも、層間剥離の発生なく、すぐれた耐摩耗性を発揮するようになること。 (B) However, the adhesion between the CrB 2 layer as the upper layer and the (Ti, Al) N layer as the lower layer was particularly high-speed cutting of the hard difficult-to-cut material in an intermittent cutting mode. In some cases, peeling phenomenon is likely to occur, and it cannot be said that it is sufficient. However, when a chromium nitride (hereinafter referred to as CrN) layer is interposed between the CrB 2 layer and the (Ti, Al) N layer, Since the CrN layer firmly adheres to both the CrB 2 layer and the (Ti, Al) N layer, the (Ti, Al) N layer has excellent adhesion to the surface of the carbide substrate; In combination, the hard coating layer formed by interposing the CrN layer between the CrB 2 layer and the (Ti, Al) N layer is capable of high-speed cutting of the hard difficult-to-cut material with high heat generation. Demonstrate excellent wear resistance without delamination.

(c)上記(b)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として金属Cr、他方側に前記SP装置のカソード電極(蒸発源)としてCr硼化物(以下、CrBで示す)粉末の焼結体(以下、CrB焼結体という)を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属CrおよびCrB焼結体のそれぞれから90度離れた位置に前記AIP装置のカソード電極(蒸発源)として所定の組成を有するTi−Al合金を配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Al)N層を0.8〜5μmの平均層厚で下部層として蒸着形成し、ついで、前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、前記AIP装置のカソード電極(蒸発源)である金属Crとアノード電極との間にアーク放電を発生させて、密着接合層としてCrN層を0.1〜0.5μmの平均層厚で蒸着した後、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、Arと窒素の混合ガス雰囲気とするが、経時的にArの導入割合を漸次増加させ、一方窒素の導入割合は漸次減少させた雰囲気として、最終的にAr雰囲気とすると共に、前記蒸着装置中へのArと窒素の混合ガス導入と同時に前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体のスパッタリングを開始し、前記スパッタリング開始後所定時間経過して、前記金属Crとアノード電極との間のアーク放電を停止し、所定時間の前記CrB焼結体のスパッタリングを行って前記CrN層に重ねて上部層として0.8〜5μmの平均層厚でCrB層を蒸着することにより形成することができること。 (C) The hard coating layer of (b) is, for example, an arc ion plating apparatus (hereinafter, abbreviated as AIP apparatus) having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in (b). And a sputtering apparatus (hereinafter abbreviated as SP apparatus), that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and the cathode of the AIP apparatus is placed on one side of the rotary table. A metal Cr as an electrode (evaporation source) and a sintered body of Cr boride (hereinafter referred to as CrB 2 ) as a cathode electrode (evaporation source) of the SP device on the other side (hereinafter referred to as a CrB 2 sintered body) opposite arrangement, further along the rotary table, and a predetermined composition as a cathode electrode (vapor source) of the AIP device in a position 90 degrees apart from each of the metal Cr and CrB 2 sintered body Using a vapor deposition apparatus in which a Ti-Al alloy is disposed, and mounting a plurality of cemented carbide substrates in a ring shape along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus, In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the carbide substrate itself is rotated for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition. An arc discharge is generated between the cathode electrode (evaporation source) of the Ti—Al alloy and the anode electrode, and a (Ti, Al) N layer is formed on the surface of the carbide substrate with an average layer thickness of 0.8 to 5 μm. The lower layer is deposited and then the arc discharge between the Ti—Al alloy cathode electrode (evaporation source) and the anode electrode is stopped, and the metal Cr and anode serving as the cathode electrode (evaporation source) of the AIP device Electric After generating an arc discharge between the electrodes and depositing a CrN layer as an adhesion bonding layer with an average layer thickness of 0.1 to 0.5 μm, the atmosphere in the deposition apparatus is replaced with a nitrogen atmosphere, Although the mixed gas atmosphere of Ar and nitrogen is used, the Ar introduction rate is gradually increased over time, while the nitrogen introduction rate is gradually reduced. Simultaneously with the introduction of the mixed gas of Ar and nitrogen, sputtering of the CrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus was started, and after a predetermined time had elapsed after the start of sputtering, the metal Cr and anode electrode The arc discharge is stopped, and the CrB 2 sintered body is sputtered for a predetermined time, and is deposited on the CrN layer to deposit a CrB 2 layer with an average layer thickness of 0.8 to 5 μm as an upper layer. Can be formed.

(d)上記の下部層、密着接合層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に著しい高熱発生を伴なう各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の高速切削で、上記下部層である(Ti,Al)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、さらに密着接合層としてのCrN層によって強固に密着し、かつすぐれた高温耐酸化性を有する前記CrB層からなる上部層によって切削時の高温酸化雰囲気から保護され、摩耗促進の原因となる雰囲気酸化が著しく抑制されることから、層間剥離の発生なく、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) A coated carbide tool formed by vapor-depositing a hard coating layer composed of the lower layer, the adhesive bonding layer, and the upper layer is a variety of Ti-based alloys and high Si alloys that generate particularly high heat. In high-speed cutting of hard difficult-to-cut materials such as Al-Si alloys, the lower layer (Ti, Al) N layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength. The upper layer composed of the CrB 2 layer, which is firmly adhered by the CrN layer as the bonding layer and has excellent high temperature oxidation resistance, is protected from the high temperature oxidation atmosphere at the time of cutting, and the atmospheric oxidation that causes wear promotion is remarkable. Since it is suppressed, it exhibits excellent wear resistance over a long period of time without delamination.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1-XAlX)N(ただし、原子比で、Xは0.40〜0.75を示す)を満足する(Ti,Al)N層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有するCrN層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有するCrB層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を物理蒸着してなる、高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.75 in terms of atomic ratio) A lower layer consisting of a satisfactory (Ti, Al) N layer,
(B) an adhesive bonding layer comprising a CrN layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer composed of two CrB layers having an average layer thickness of 0.8 to 5 μm,
The present invention is characterized by a coated cemented carbide tool which is formed by physical vapor deposition of the hard coating layer composed of the above (a) to (c) and exhibits excellent wear resistance by high-speed cutting.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.

(a)下部層の組成式のX値
下部層を構成する(Ti,Al)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には、高温強度を向上させる作用があるが、Alの割合を示すX値がTiとの合量に占める割合(原子比、以下同じ)で0.40未満になると、相対的にTiの割合が多くなり過ぎて、高速切削に要求されるすぐれた高温硬さと耐熱性を確保することができなくなり、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.75を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピング(微少欠け)などが発生し易くなり、摩耗進行が急激に促進するようになることから、X値を0.40〜0.75と定めた。
さらに、その平均層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の硬質難削材の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(A) X value of the composition formula of the lower layer The Al component in the (Ti, Al) N layer constituting the lower layer improves the high temperature hardness and heat resistance, while the Ti component improves the high temperature strength. However, when the X value indicating the proportion of Al is less than 0.40 in terms of the total amount with Ti (atomic ratio, the same shall apply hereinafter), the proportion of Ti will be relatively large, and high-speed cutting will occur. The required high temperature hardness and heat resistance cannot be ensured, and the progress of wear is accelerated rapidly. On the other hand, if the X value indicating the proportion of Al exceeds 0.75, relatively Ti The ratio of the amount becomes too small, and the high-temperature strength rapidly decreases. As a result, chipping (small chipping) is likely to occur at the cutting edge, and the progress of wear is rapidly accelerated. It was set to 0.40 to 0.75.
Further, if the average layer thickness is less than 0.8 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time. Since the chipping tends to occur at the cutting edge portion in high-speed cutting of the work material, the average layer thickness is set to 0.8 to 5 μm.

(b)密着接合層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が0.5μmを越えると、硬質被覆層の強度が密着接合層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜0.5μmと定めた。
(B) Average layer thickness of the adhesive bonding layer If the average layer thickness is less than 0.1 μm, a strong bonding strength cannot be ensured between the upper layer and the lower layer, while the average layer thickness is 0.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases in the tight bonding layer portion, which causes chipping, so the average layer thickness was determined to be 0.1 to 0.5 μm.

(c)上部層の平均層厚
硬質被覆層は、上記の通り下部層のもつすぐれた高温硬さおよび耐熱性と、上部層であるCrB層のもつすぐれた高温耐酸化性との共存によって、高い発熱を伴なう硬質難削材の高速切削ですぐれた耐摩耗性を発揮するようになるものであるが、前記CrB層の平均層厚が0.8μm未満では、上記下部層を切削時における高温酸化雰囲気から使用寿命に至るまで保護するには不十分であり、一方その平均層厚が5μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(C) the average layer thickness hard layer of the top layer, the coexistence of the high-temperature hardness and heat resistance which is superior with street lower layer described above, and have excellent high-temperature oxidation resistance of CrB 2 layer which is the upper layer , Which exhibits excellent wear resistance in high-speed cutting of hard difficult-to-cut materials with high heat generation, the average layer thickness of the CrB 2 layer is less than 0.8 μm, It is insufficient to protect from the high-temperature oxidizing atmosphere at the time of cutting to the end of its service life. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur at the cutting edge portion. .8-5 μm.

この発明の被覆超硬工具は、硬質被覆層の下部層である(Ti,Al)N層がすぐれた高温硬さと耐熱性を有し、前記下部層に密着接合層としてのCrN層を介して強固に密着接合した上部層であるCrB層がすぐれた高温耐酸化性を有し、前記CrB層が切削時の高温酸化雰囲気から前記(Ti,Al)N層を良く保護することから、特に著しい高熱発生を伴なう各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の高速切削でも、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated carbide tool of the present invention, the (Ti, Al) N layer which is the lower layer of the hard coating layer has excellent high temperature hardness and heat resistance, and the lower layer is provided with a CrN layer as an adhesive bonding layer. The CrB 2 layer, which is the upper layer that is tightly bonded tightly, has excellent high-temperature oxidation resistance, and the CrB 2 layer protects the (Ti, Al) N layer well from the high-temperature oxidizing atmosphere during cutting. Demonstrates excellent wear resistance over a long period of time without delamination even during high-speed cutting of hard-to-cut materials such as various Ti-based alloys and high Si-containing Al-Si-based alloys that generate particularly high heat. To do.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。
さらに、硬質被覆層の上部層形成用カソード電極(蒸発源)として、0.8μmの平均粒径を有するCrB粉末を温度:1500℃、圧力:20MPa、保持時間:3時間の条件でホットプレスして成形したCrB焼結体を用意した。
In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. TiCN-based cemented carbide substrates B-1 to B-6 having the following chip shape were formed.
Furthermore, as a cathode electrode (evaporation source) for forming the upper layer of the hard coating layer, CrB 2 powder having an average particle diameter of 0.8 μm was hot pressed under the conditions of temperature: 1500 ° C., pressure: 20 MPa, holding time: 3 hours. Then, a CrB 2 sintered body formed by molding was prepared.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として密着接合層形成用金属Cr、他方側のSP装置のカソード電極(蒸発源)として上部層形成用CrB焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属CrおよびCrB焼結体のそれぞれから90度離れた位置にAIP装置のカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じ3Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧(−100V)も同じくしたままで、カソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって同じく表3に示される目標層厚のCrN層を硬質被覆層の密着接合層として蒸着形成し、
(e)上記金属Crとアノード電極とのアーク放電を続行させながら、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、Arと窒素の混合ガス雰囲気とするが、経時的にArの導入割合を漸次増加させ、一方窒素の導入割合は漸次減少させた雰囲気として、最終的にAr雰囲気とすると共に、この間の反応雰囲気も同じく経時的に3Paから0.3Paに漸減し、かつ前記蒸着装置中へのArと窒素の混合ガス導入と同時に前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体に、スパッタ出力:3kWの条件でスパッタリングを開始し、前記金属Crとアノード電極とのアーク放電は前記反応雰囲気のArと窒素の混合ガスの窒素の割合が10容量%になった時点で中止し、
(f)以後、上記の0.3PaのAr雰囲気を保持しながら、上記CrB焼結体とアノード電極と間のスパッタ出力も3kWと同じくした条件でスパッタリングを続行し、同じく表3に示される目標層厚のCrB層を硬質被覆層の上部層として蒸着形成しすることにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table, a close contact bonding layer forming metal Cr as the cathode electrode (evaporation source) of the AIP device on one side, and the SP on the other side As a cathode electrode (evaporation source) of the apparatus, a CrB 2 sintered body for forming an upper layer is disposed oppositely, and further along the rotary table and at a position 90 degrees away from each of the metal Cr and CrB 2 sintered bodies. A Ti—Al alloy for forming a lower layer having a predetermined composition is disposed as a cathode electrode (evaporation source) of the AIP device,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated to a carbide substrate that rotates while rotating on the rotary table. A DC bias voltage is applied, and a current of 100 A is passed between the Ti-Al alloy and the anode electrode of the cathode electrode to generate an arc discharge, whereby the carbide substrate surface is bombarded with the Ti-Al alloy. And
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode An arc discharge is generated by passing a current of 100 A between the Ti-Al alloy and the anode electrode, and the target composition and target layer thickness (Ti, Al) shown in Table 3 are formed on the surface of the carbide substrate. ) N layer is deposited as a lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy for forming the lower layer is stopped, the atmosphere in the apparatus is maintained in the same nitrogen atmosphere of 3 Pa, and direct current to the carbide substrate is maintained. While maintaining the same bias voltage (−100V), a current of 100 A is passed between the metal Cr of the cathode electrode and the anode electrode to generate an arc discharge, and thus a CrN layer having a target layer thickness similarly shown in Table 3 Is vapor-deposited as an adhesive bonding layer of a hard coating layer,
(E) While continuing the arc discharge between the metal Cr and the anode electrode, the atmosphere in the vapor deposition apparatus is changed to a mixed gas atmosphere of Ar and nitrogen instead of a nitrogen atmosphere. The ratio is gradually increased, while the nitrogen introduction ratio is gradually decreased, and finally the Ar atmosphere is obtained, and the reaction atmosphere is gradually decreased from 3 Pa to 0.3 Pa with time, and the vapor deposition apparatus. Simultaneously with the introduction of a mixed gas of Ar and nitrogen into the inside, sputtering was started on a CrB 2 sintered body arranged as a cathode electrode (evaporation source) of the SP apparatus under the condition of sputtering output: 3 kW, and the metal Cr and anode electrode Arc discharge with the reaction atmosphere was stopped when the ratio of nitrogen in the mixed gas of Ar and nitrogen reached 10% by volume,
(F) After that, while maintaining the Ar atmosphere of 0.3 Pa, the sputtering was continued under the same conditions as the sputtering output of 3 kW between the CrB 2 sintered body and the anode electrode. By depositing a CrB 2 layer having a target layer thickness as an upper layer of the hard coating layer, the surface-coated carbide throw-away tip of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the present coated chip). 1 to 16 were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される蒸着装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, in the vapor deposition apparatus shown in FIG. The Ti-Al alloy with various component compositions was attached as the cathode electrode (evaporation source). First, the inside of the apparatus was evacuated and kept at a vacuum of 0.1 Pa or less with the heater. After heating to 500 ° C., a DC bias voltage of −1000 V is applied to the cemented carbide substrate, and an arc discharge is generated by flowing a current of 100 A between the Ti—Al alloy of the cathode electrode and the anode electrode, Accordingly, the surface of the carbide substrate is bombarded with the Ti—Al alloy, and then nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, and a bias voltage applied to the carbide substrate is −100 V. And generating an arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy, and thus on the surfaces of the carbide substrates A-1 to A-10 and B-1 to B-6, A conventional surface-coated carbide throwaway tip (hereinafter referred to as a conventional coated carbide tool) as a conventionally coated carbide tool is formed by vapor deposition of a (Ti, Al) N layer having a target composition and a target layer thickness shown in Table 4 as a hard coating layer. (Referred to as coated chips) 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:質量%で、Al−18%Si合金の丸棒、
切削速度:280m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件での高Si含有Al−Si系合金の乾式連続高速切削加工試験(通常の切削速度は180m/min.)、
被削材:Ti−6%Al−4%V合金の丸棒、
切削速度:85m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件でのTi系合金の乾式連続高速切削加工試験(通常の切削速度は40m/min.)、
被削材:質量%で、Al−13%Si合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:1.2mm、
送り:0.2mm/rev.、
切削時間:13分、
の条件での高Si含有Al−Si系合金の乾式断続高速切削加工試験(通常の切削速度は150m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: Al-18% Si alloy round bar by mass%,
Cutting speed: 280 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Dry-type continuous high-speed cutting test of a high Si content Al—Si based alloy under the conditions of (normal cutting speed is 180 m / min.),
Work material: Ti-6% Al-4% V alloy round bar,
Cutting speed: 85 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Dry continuous high-speed cutting test of Ti-based alloy under the conditions (normal cutting speed is 40 m / min.),
Work material: Mass%, Al-13% Si alloy lengthwise equidistant 4 round rods with flutes,
Cutting speed: 250 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 13 minutes
The dry interrupted high-speed cutting test (normal cutting speed was 150 m / min.) Of the high Si-containing Al—Si alloy under the conditions was performed, and the flank wear width of the cutting edge was measured in any of the cutting tests. The measurement results are shown in Table 5.

Figure 0004621975
Figure 0004621975

Figure 0004621975
Figure 0004621975

Figure 0004621975
Figure 0004621975

Figure 0004621975
Figure 0004621975

Figure 0004621975
Figure 0004621975

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表7に示される目標層厚のCrN層からなる密着接合層およびCrB層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. Under the same conditions as those shown in Table 7, an adhesive layer composed of a CrN layer with a target composition and a target layer thickness shown in Table 7, a CrN layer with a target layer thickness shown in Table 7, and CrB By forming a hard coating layer composed of two upper layers by vapor deposition, the present invention surface coated carbide end mill (hereinafter referred to as the present invention coated end mill) 1 to 8 as the present coated carbide tool is formed. Each was manufactured.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. Conventionally as a conventional coated carbide tool by vapor-depositing a hard coating layer comprising a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 7 under the same conditions as in Example 1 above. Surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった高Si含有Al−Si系合金(質量%で、Al−18%Si合金)の板材、
切削速度:260m/min.、
溝深さ(切り込み):3mm、
テーブル送り:800mm/分、
の条件での高Si含有Al−Si系合金の乾式高速溝切削加工試験(通常の切削速度は150m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−3%Al−2.5%V合金)の板材、
切削速度:55m/min.、
溝深さ(切り込み):3.5mm、
テーブル送り:250mm/分、
の条件でのTi系合金の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−6%Al−4%V合金)の板材、
切削速度:50m/min.、
溝深さ(切り込み):5mm、
テーブル送り:160mm/分、
の条件でのTi系合金の乾式高速溝切削加工試験(通常の切削速度は30m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm high Si content Al—Si alloy (mass%, Al-18% Si alloy) plate material,
Cutting speed: 260 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 800mm / min,
The dry high-speed grooving test (normal cutting speed is 150 m / min.) Of the high Si content Al—Si alloy under the conditions of the present invention, the coated end mills 4 to 6 and the conventional coated end mills 4 to 6 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-3% Al-2.5% V alloy) plate material,
Cutting speed: 55 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 250 mm / min,
With respect to the dry high-speed grooving test of a Ti-based alloy under the conditions (normal cutting speed is 30 m / min.), The present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-6% Al-4% V alloy) plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 160 mm / min,
A dry high-speed grooving test of a Ti-based alloy under normal conditions (normal cutting speed is 30 m / min.) Was performed, and the flank wear width of the outer peripheral edge of the cutting edge was the service life in any grooving test. The cutting groove length up to 0.1 mm, which is a guideline, was measured. The measurement results are shown in Table 7, respectively.

Figure 0004621975
Figure 0004621975

Figure 0004621975
Figure 0004621975

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表8に示される目標層厚のCrN層からなる密着接合層およびCrB層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer consisting of the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 and the CrN layer having the target layer thickness also shown in Table 8 are used. The surface-coated carbide drill of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the coated drill of the present invention) is formed by vapor-depositing a hard coated layer composed of an adhesive bonding layer and an upper layer composed of two CrB layers. 1) -8 were produced respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. Conventionally, a hard coating layer composed of a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 is formed by vapor deposition under the same conditions as in Example 1 above. Conventional surface-coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as coated carbide tools were produced, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもった高Si含有Al−Si系合金(質量%で、Al−18%Si合金)の板材、
切削速度:85m/min.、
送り:0.2mm/rev、
穴深さ:10mm、
の条件での高Si含有Al−Si系合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−3%Al−2.5%V合金)の板材、
切削速度:50m/min.、
送り:0.2mm/rev、
穴深さ:15mm、
の条件でのTi系合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−6%Al−4%V合金)の板材、
切削速度:55m/min.、
送り:0.3mm/rev、
穴深さ:28mm、
の条件でのTi系合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-plane: 100 mm × 250, thickness: 50 mm high Si content Al—Si based alloy (mass%, Al-18% Si alloy) plate material,
Cutting speed: 85 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 10mm,
Wet high-speed drilling test of a high Si content Al-Si alloy under the conditions (normal cutting speed is 30 m / min.), The present invention coated drills 4-6 and conventional coated drills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-3% Al-2.5% V alloy) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 15mm,
With respect to the wet-type high-speed drilling test of the Ti-based alloy under the conditions (normal cutting speed is 30 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: plate material of Ti-based alloy (Ti-6% Al-4% V alloy in mass%) having dimensions of 50 mm,
Cutting speed: 55 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 28mm,
The high-speed drilling machining test (normal cutting speed is 25 m / min.) Of the Ti-based alloy under the above conditions, and the tip cutting edge surface in any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width of 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 0004621975
この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する耐摩耗硬質層の組成、並びに比較被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層の耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
Figure 0004621975
The composition of the wear-resistant hard layer constituting the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result. The composition of the hard coating layer of the hard coating layer of the conventional coated tips 1 to 16, the conventional coated end mills 1 to 8 and the conventional coated drills 1 to 8 as a comparative coated carbide tool using a transmission electron microscope When measured by an energy dispersive X-ray analysis method, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the constituent layers of the hard coating layer was measured by a cross-section using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の高速切削でも、高い発熱を伴うのにもかかわらず、硬質被覆層の下部層である(Ti,Al)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、さらに前記(Ti,Al)N層が密着接合層としてのCrN層によって強固に密着し、かつすぐれた高温耐酸化性を有するCrB層によって保護されることから、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するのに対して、(Ti,Al)N層だけからなる従来被覆超硬工具においては、高熱発生を伴う高速切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, the coated carbide tool of the present invention is accompanied by high heat generation even in high-speed cutting of hard difficult-to-cut materials such as various Ti-based alloys and high Si-containing Al-Si based alloys. Nevertheless, the (Ti, Al) N layer, which is the lower layer of the hard coating layer, has excellent high-temperature hardness and heat resistance, and further excellent high-temperature strength. Because it is firmly adhered by the CrN layer as a layer and protected by a CrB 2 layer having excellent high-temperature oxidation resistance, it exhibits excellent wear resistance over a long period without delamination. On the other hand, in the conventional coated carbide tool consisting only of (Ti, Al) N layer, it is clear that high-speed cutting with high heat generation causes the wear of the cutting edge to progress rapidly and reach the service life in a relatively short time. It is.

上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴なう上記の硬質難削材の高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention is not only capable of cutting under normal cutting conditions such as various types of steel and cast iron, but also has a particularly high speed of the hard hard-to-cut materials with high heat generation. Because it exhibits excellent wear resistance even during cutting and exhibits excellent cutting performance over a long period of time, the cutting device has high performance and automation, cutting labor saving and energy saving, and low cost It is possible to cope with the conversion sufficiently satisfactorily.

被覆超硬工具を構成する表面被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for forming the surface coating layer which comprises a coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1-XAlX)N(ただし、原子比で、Xは0.40〜0.75を示す)を満足するTiとAlの複合窒化物層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有する窒化クロム層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有する硼化クロム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.75 in terms of atomic ratio) A lower layer consisting of a satisfactory nitride layer of Ti and Al,
(B) an adhesive bonding layer comprising a chromium nitride layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer comprising a chromium boride layer having an average layer thickness of 0.8 to 5 μm;
A surface-coated cemented carbide cutting tool that exhibits the wear resistance of the hard coating layer that is excellent in high-speed cutting processing, formed by forming the hard coating layer configured as described above in (a) to (c).
JP2004353531A 2004-06-18 2004-12-07 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer Expired - Fee Related JP4621975B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004353531A JP4621975B2 (en) 2004-12-07 2004-12-07 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
EP04807992.5A EP1757388B1 (en) 2004-06-18 2004-12-28 Surface-coated cutware and process for producing the same
PCT/JP2004/019637 WO2005123312A1 (en) 2004-06-18 2004-12-28 Surface-coated cutware and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353531A JP4621975B2 (en) 2004-12-07 2004-12-07 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Publications (2)

Publication Number Publication Date
JP2006159340A JP2006159340A (en) 2006-06-22
JP4621975B2 true JP4621975B2 (en) 2011-02-02

Family

ID=36661897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353531A Expired - Fee Related JP4621975B2 (en) 2004-06-18 2004-12-07 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Country Status (1)

Country Link
JP (1) JP4621975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273687B (en) * 2013-05-13 2015-02-18 山东大学 TiSiN+ZrSiN composite nanometer coated cutting tool and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
GB2378187A (en) * 2001-08-01 2003-02-05 Peter Albany Dearnley Wear Resistant Metal Boride Coatings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
GB2378187A (en) * 2001-08-01 2003-02-05 Peter Albany Dearnley Wear Resistant Metal Boride Coatings

Also Published As

Publication number Publication date
JP2006159340A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP2006289538A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2006346777A (en) Surface coated cemented carbide cutting tool having lubricative coating layer exhibiting excellent wear resistance
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2008260097A (en) Surface-coated cutting tool
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4485146B2 (en) Surface-coated cermet cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006001001A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of highly reactive material to be cut
JP4621974B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101017

R150 Certificate of patent or registration of utility model

Ref document number: 4621975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees