JP5796778B2 - Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance - Google Patents

Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance Download PDF

Info

Publication number
JP5796778B2
JP5796778B2 JP2012010736A JP2012010736A JP5796778B2 JP 5796778 B2 JP5796778 B2 JP 5796778B2 JP 2012010736 A JP2012010736 A JP 2012010736A JP 2012010736 A JP2012010736 A JP 2012010736A JP 5796778 B2 JP5796778 B2 JP 5796778B2
Authority
JP
Japan
Prior art keywords
layer
tool
hard coating
sputtering
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010736A
Other languages
Japanese (ja)
Other versions
JP2013146839A (en
Inventor
田中 耕一
耕一 田中
田中 裕介
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012010736A priority Critical patent/JP5796778B2/en
Priority to CN201310022345.2A priority patent/CN103212728B/en
Publication of JP2013146839A publication Critical patent/JP2013146839A/en
Application granted granted Critical
Publication of JP5796778B2 publication Critical patent/JP5796778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、切削時に硬質被覆層中に金属ホウ化物を含有させることですぐれた耐熱性を発揮し、高硬度鋼の高速旋削加工においても、長期間に亘りすぐれた耐摩耗性と耐クラック性を維持する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention exhibits excellent heat resistance by including a metal boride in the hard coating layer during cutting, and excellent wear resistance and crack resistance over a long period of time even in high-speed turning of high-hardness steel. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that maintains the above.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや該インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for coated tools, inserts that can be used to attach and detachably attach to the tip of a cutting tool when turning various work materials such as steel and cast iron, and attach and detachably attach the insert, so that chamfering and grooving Further, an insert type end mill that performs cutting similarly to a solid type end mill used for shoulder processing or the like is known.

例えば、特許文献1に示されるように、高速度鋼基体の表面にTiC、TiN、TiCNのうちの1種の単層または2種以上の複層からなる平均層厚:0.5〜5μmの下部層と、TiとAlの複合窒化物からなる平均層厚:0.5〜5μmの中間層と、TiとAlの複合酸窒化物からなる平均層厚:0.5〜5μmの上部層で構成された硬質被覆層を形成してなる被覆工具が知られている。すなわち、最表面に(Ti,Al)(O,N)を被覆し酸化物の形成を促し、化学的安定性を高めた被覆工具が知られている。
また、特許文献2に示されるように、基体表面にAl、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の金属元素からなる硼化物皮膜を被覆した被覆工具において該硼化物皮膜が六方晶の結晶構造を有し、X線回折において最強回折強度を(001)面に有し、残留圧縮応力が0.1GPa以上であること、さらには、硼化物皮膜のX線回折における(001)面の半価幅Hw値が、0.6≦Hw≦1.1であることを特徴とする被覆工具が知られている。
また、特許文献3に示されるように、炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に、(a)表面層として、0.8 〜 5 μmの平均層厚を有するCr硼化物層、( b ) 耐摩耗硬質層として、組成式:(Ti1−xAl)N(x =0.40〜0.75)を満足し、0.8 〜 5μmの平均層厚を有するTiとAlの複合窒化物層、以上(a)および(b)からなる硬質被覆層を物理蒸着してなる表面被覆超硬合金製切削工具が知られている。
For example, as shown in Patent Document 1, on the surface of a high-speed steel substrate, an average layer thickness of one type of TiC, TiN, or TiCN or two or more types of TiCN: 0.5 to 5 μm Lower layer, average layer thickness composed of composite nitride of Ti and Al: 0.5-5 μm intermediate layer, and average layer thickness composed of composite oxynitride of Ti and Al: upper layer of 0.5-5 μm A coated tool formed by forming a structured hard coating layer is known. That is, a coated tool is known in which the outermost surface is coated with (Ti, Al) (O, N) to promote the formation of oxides and has improved chemical stability.
In addition, as shown in Patent Document 2, in a coated tool in which a substrate surface is coated with a boride film made of one or more metal elements selected from Al, Si, Cr, W, Ti, Nb, and Zr. The nitride film has a hexagonal crystal structure, the X-ray diffraction has the strongest diffraction intensity in the (001) plane, the residual compressive stress is 0.1 GPa or more, and the X-ray diffraction of the boride film A coated tool is known in which the half-value width Hw value of the (001) plane is 0.6 ≦ Hw ≦ 1.1.
Moreover, as shown in Patent Document 3, an average layer thickness of 0.8 to 5 μm is formed on the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride cermet (a) as a surface layer. Cr boride layer having, as a (b) wear a hard layer, the composition formula: satisfy (Ti 1-x Al x) N (x = 0.40~0.75), the average layer of 0.8 ~ 5 [mu] m A surface-coated cemented carbide cutting tool obtained by physical vapor deposition of a Ti and Al composite nitride layer having a thickness and a hard coating layer composed of (a) and (b) above is known.

特開平7−328811号公報Japanese Unexamined Patent Publication No. 7-328811 特開2008−238281号公報JP 2008-238281 A 特開2006−26883号公報JP 2006-26883 A

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、前記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、先端摩耗が進行しやすいチタン合金等の高硬度鋼の高速旋削加工に用いた場合には、熱伝導率および耐熱性の不足から切刃にクラックが発生しやすく、また、摩耗進行が相対的に速く、このため比較的短時間で使用寿命に至るのが現状である。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高硬度鋼を高速旋削加工した場合においても、熱伝導率と耐熱性を維持したまま、すぐれた耐摩耗性および耐クラック性を発揮する表面被覆切削工具を提供することである。
In recent years, the FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and with this, high-efficiency heavy cutting such as high feed and high cutting However, in the above-mentioned conventional coated tools, there is no particular problem when various steels and cast irons are machined under normal conditions. When used for high-speed turning of high-hardness steel, cracks are likely to occur in the cutting edge due to insufficient thermal conductivity and heat resistance, and wear progresses relatively quickly, so it can be used in a relatively short time. The current situation is that it reaches the end of its life.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent wear resistance and heat resistance while maintaining high thermal conductivity and heat resistance even when high-hardness steel is subjected to high-speed turning. The object is to provide a surface-coated cutting tool that exhibits crack resistance.

そこで、本発明者らは、前述のような観点から、被覆工具の熱伝導率と耐熱性を高め、使用寿命の延命化を図るべく、鋭意研究を行った結果、炭化タングステン基超硬合金焼結体または高速度鋼からなる工具基体の上に硬質被覆層を有する表面被覆切削工具において、 硬質被覆層を、工具基体上に形成された、(Ti1−xAl)N(ただし、X=0〜0.7)の成分系からなる1〜5μmの平均層厚を有するTiとAlの複合窒化物層からなる下部層と該下部層の上に形成された0.5〜3μmの平均層厚を有するクロムホウ化物層からなる上部層とから構成するとともに、下部層と上部層の界面において隣り合う結晶粒の方位差を測定した時に、(Ti1−xAl)Nの(111)方位とクロムホウ化物の(0001)方位の角度差が0〜5度の範囲に存在する界面長が全体の50線分%以上となるようにすることによって、上部層と下部層との密着性を改善し、工具の耐摩耗性特性を向上させることができるという知見を得た。 In view of the above, the present inventors have conducted extensive research to increase the thermal conductivity and heat resistance of the coated tool and to prolong the service life of the coated tool. In a surface-coated cutting tool having a hard coating layer on a tool substrate made of a kneaded body or high speed steel, the hard coating layer is formed on the tool substrate by (Ti 1-x Al x ) N (where X = 0 to 0.7), a lower layer made of a composite nitride layer of Ti and Al having an average layer thickness of 1 to 5 µm, and an average of 0.5 to 3 µm formed on the lower layer (111) of (Ti 1-x Al x ) N when measuring the orientation difference between adjacent grains at the interface between the lower layer and the upper layer. Direction and angle of (0001) orientation of chromium boride By making the interface length in the range of 0 to 5 degrees more than 50% of the total line segment, the adhesion between the upper layer and the lower layer is improved, and the wear resistance characteristics of the tool are improved. The knowledge that it can improve was obtained.

従来の被覆工具の(Ti,Al)N層からなる硬質被覆層は、例えば、図2に示される物理蒸着装置の1種であるアークイオンプレーティング蒸着源と直流スパッタリング蒸着源を持つ成膜装置に炭化タングステン基超硬合金焼結体からなる工具基体を装着し、例えば、蒸着初期には
装置内加熱温度:300〜500℃、
工具基体に印加する直流バイアス電圧:−30〜−50V、
カソード電極:TiAl合金、
アーク電流値:100〜120A
装置内ガス種:窒素(N)ガスのみ
装置内ガス圧力:3〜5Pa、
の条件で、(Ti,Al)N層(以下、従来(Ti,Al)N層という)を形成したのち、蒸着後期には
工具基体に印加する直流バイアス電圧:−30V、
カソード電極:CrB
蒸着方式:直流(DC)スパッタリング
スパッタリング電力:2〜3kW
装置内ガス種:アルゴン(Ar)ガスのみ
装置内ガス圧力:0.2〜0.6Pa、
の条件で、クロムホウ化物層(以下、従来クロムホウ化物層という)を蒸着形成することにより製造されている。
A hard coating layer made of a (Ti, Al) N layer of a conventional coating tool is, for example, a film forming apparatus having an arc ion plating vapor deposition source and a direct current sputtering vapor deposition source, which is one type of physical vapor deposition apparatus shown in FIG. A tool base made of a tungsten carbide-based cemented carbide sintered body is attached to, for example, in the initial stage of vapor deposition, heating temperature in the apparatus: 300 to 500 ° C,
DC bias voltage applied to the tool base: -30 to -50V,
Cathode electrode: TiAl alloy,
Arc current value: 100-120A
In-apparatus gas type: nitrogen (N 2 ) gas only In-apparatus gas pressure: 3 to 5 Pa,
After forming a (Ti, Al) N layer (hereinafter referred to as a conventional (Ti, Al) N layer) under the conditions of the following, a DC bias voltage applied to the tool base in the latter stage of vapor deposition: −30V,
Cathode electrode: CrB 2
Vapor deposition method: Direct current (DC) sputtering Sputtering power: 2-3 kW
In-apparatus gas type: Argon (Ar) gas only In-apparatus gas pressure: 0.2 to 0.6 Pa,
Under these conditions, a chromium boride layer (hereinafter referred to as a conventional chromium boride layer) is formed by vapor deposition.

しかし、本発明者らは、(Ti,Al)N層およびクロムホウ化物層からなる硬質被覆層(以下、改質硬質被覆層という)の形成を、例えば、図1に概略説明図で示される物理蒸着装置の1種である高出力パルススパッタリング装置を用いて行った。スパッタ法は、真空チャンバに供給したAr、He、Xeなどのスパッタガスをプラズマ雰囲気中でイオン化し、そのイオンを成膜材料(ターゲット材)で形成されたターゲットに衝突させ、ターゲットからスパッタ粒子(主にターゲット材の原子)を放出させ、放出したスパッタ粒子イオン化して基材の表面に堆積させて薄膜を形成する方法である。このスパッタ法において、カソードを構成するターゲットに供給するスパッタ電力として、パルス状のスパッタ電力を用いるものをパルススパッタという。   However, the present inventors have formed a hard coating layer (hereinafter referred to as a modified hard coating layer) composed of a (Ti, Al) N layer and a chromium boride layer, for example, by a physical diagram schematically shown in FIG. A high power pulse sputtering apparatus which is a kind of vapor deposition apparatus was used. In the sputtering method, a sputtering gas such as Ar, He, or Xe supplied to a vacuum chamber is ionized in a plasma atmosphere, and the ions are collided with a target formed of a film forming material (target material). This is a method of forming a thin film by mainly emitting atoms of a target material, ionizing the emitted sputtered particles, and depositing them on the surface of the substrate. In this sputtering method, a method using pulsed sputtering power as the sputtering power supplied to the target constituting the cathode is called pulse sputtering.

近年、パルス化した大電力をターゲットに投入することによりスパッタ粒子を高率でイオン化する大出力パルススパッタ法が実用化されてきている。このようなパルス化した大電力を用いてスパッタリングを行うパルススパッタ法は、大出力パルススパッタ法やHIPIMS(High Power Impulse Magnetron Sputtering) とも呼ばれている。ターゲットにパルス化した大電力を投入することにより、ターゲットから放出したスパッタ粒子を高率でイオン化することができるため、イオン化が寄与する成膜プロセスに効力を発揮する。例えば、表面摩擦の小さなトライボ膜などの緻密性や結晶性にすぐれた薄膜の成膜、トレンチ(溝)構造や凹面への回り込みのよい成膜に好適に用いられる。本発明者らは、このような高出力パルススパッタ法の特性に着目し、この方法を用いて(Ti,Al)N層の上にクロムホウ化物層を形成することによって、界面において隣り合う結晶粒の方位が揃った積層を形成できることを見出した。 In recent years, a high-power pulse sputtering method in which sputtered particles are ionized at a high rate by applying a pulsed high power to a target has been put into practical use. Such a pulse sputtering method in which sputtering is performed using a large amount of pulsed power is also referred to as a high-power pulse sputtering method or HIPIMS (High Power Impulse Magnet Sputtering). By applying high pulsed power to the target, the sputtered particles emitted from the target can be ionized at a high rate, so that the film formation process contributed by ionization is effective. For example, it is suitably used for film formation of a thin film excellent in denseness and crystallinity such as a tribo film having a small surface friction, and film formation with good trench (groove) structure and wraparound. The inventors pay attention to the characteristics of such a high-power pulse sputtering method, and by using this method to form a chromium boride layer on the (Ti, Al) N layer, the adjacent crystal grains at the interface It was found that a laminate having the same orientation can be formed.

具体的には、装置内に工具基体を装着し、まず、
蒸着源1:TiAl合金ターゲット
バイアス電圧:−1000V
という条件下で、工具基体のボンバード処理を行う。ついで、蒸着初期には、
基体温度:400〜450℃、
蒸着源1:TiAl合金ターゲット
蒸着源1のスパッタリング電力:平均8〜9kW、最大120kW
スパッタリング周期:40Hz
バイアス電圧:−90〜−100V
装置内ガス種:窒素(N)ガス:アルゴン(Ar)ガス=流量比で70:30〜80:20
装置内ガス圧力:0.4〜0.5Pa、
という条件下で蒸着を行い、工具基体側の(Ti,Al)N層(下部層)を蒸着する。ついで、蒸着後期には、
蒸着源2:CrBターゲット、
蒸着源2のスパッタリング電力:平均2〜3kW、
スパッタリング周期:12Hz、
バイアス電圧:−120〜−130V
装置内ガス種:アルゴン(Ar)ガス
装置内ガス圧力:0.3〜0.4Pa、
CrBターゲットをスパッタする時のパルス出力形式を、
(a)パルス初期は120kW、パルス後期は200kWとなる2段階のパルス波形状
(b)パルス初期は150kW、パルス後期は250kWとなる2段階のパルス波形状
の2つのパルス波形状を30分周期で切り替える。
この結果形成された下部層と上部層とからなる改質硬質被覆層は、耐摩耗層としての(Ti,Al)Nの(111)方位と潤滑特性にすぐれたクロムホウ化物の(0001)配向組織がきわめて近い傾斜方向に存在するため、上部層と下部層とがすぐれた密着特性を発揮し、工具の耐摩耗性を向上させることができることを見出した。
さらに、下部層である(Ti,Al)Nの(111)ピークの半価幅と上部層であるクロムホウ化物の(0001)ピークの半価幅が所定の値に含まれる、すなわち、結晶性または結晶子サイズをバランスよく制御することで耐摩耗性を高めたまま耐クラック性を向上させ、すぐれた工具寿命を実現する表面被覆切削工具が得られることを見出した。
Specifically, a tool base is mounted in the apparatus,
Deposition source 1: TiAl alloy target bias voltage: -1000V
Under such conditions, the bombardment of the tool base is performed. Then, at the beginning of deposition,
Substrate temperature: 400 to 450 ° C.
Vapor deposition source 1: TiAl alloy target Sputtering power of vapor deposition source 1: 8-9 kW on average, maximum 120 kW
Sputtering cycle: 40 Hz
Bias voltage: -90 to -100V
Gas type in apparatus: nitrogen (N 2 ) gas: argon (Ar) gas = 70: 30 to 80:20 in flow rate ratio
In-apparatus gas pressure: 0.4 to 0.5 Pa,
Vapor deposition is performed under the above conditions to deposit a (Ti, Al) N layer (lower layer) on the tool base side. Then, in the later stage of deposition,
Deposition source 2: CrB 2 target,
Sputtering power of the evaporation source 2: 2 to 3 kW on average
Sputtering period: 12 Hz
Bias voltage: -120 to -130V
Gas type in the apparatus: Argon (Ar) gas Gas pressure in the apparatus: 0.3 to 0.4 Pa,
The pulse output format when sputtering the CrB 2 target
(A) Two-stage pulse wave shape with 120 kW at the initial stage of the pulse and 200 kW at the latter part of the pulse (b) Two pulse wave forms with a two-stage pulse form of 150 kW at the initial stage of the pulse and 250 kW at the latter stage of the pulse Switch with.
As a result, the modified hard coating layer composed of the lower layer and the upper layer has the (111) orientation of (Ti, Al) N as the wear resistant layer and the (0001) oriented structure of chromium boride excellent in lubrication characteristics. It was found that the upper layer and the lower layer exhibit excellent adhesion characteristics and the wear resistance of the tool can be improved.
Further, the half-value width of the (111) peak of the (Ti, Al) N as the lower layer and the half-value width of the (0001) peak of the chromium boride as the upper layer are included in the predetermined values, that is, crystalline or It has been found that by controlling the crystallite size in a well-balanced manner, it is possible to obtain a surface-coated cutting tool that improves crack resistance while improving wear resistance and realizes an excellent tool life.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金焼結体または高速度鋼からなる工具基体の上に硬質被覆層を有する表面被覆切削工具において、
前記硬質被覆層が、工具基体上に形成された、(Ti1−xAl)N(ただし、x=0〜0.7)の成分系からなる1〜5μmの平均層厚を有するTiとAlの複合窒化物層からなる下部層と該下部層の上に形成された0.5〜3μmの平均層厚を有するクロムホウ化物層からなる上部層とからなり、
かつ、前記下部層と上部層の界面において隣り合う結晶粒の方位差を測定した時に、(Ti1−xAl)Nの(111)方位とクロムホウ化物の(0001)方位の角度差が0〜5度の範囲に存在する界面長が全観察界面長に対して50線分%以上であることを特徴とする表面被覆切削工具。
(2) X線回折により測定した前記クロムホウ化物の(0001)ピークの半価幅HBが0.2〜0.5度であり、前記(Ti1−xAl)Nの(111)ピークの半価幅HNが0.8〜1.5度であることを特徴とする(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool having a hard coating layer on a tool substrate made of a tungsten carbide-based cemented carbide sintered body or high-speed steel,
Ti having an average layer thickness of 1 to 5 μm composed of a component system of (Ti 1-x Al x ) N (where x = 0 to 0.7), wherein the hard coating layer is formed on a tool base; A lower layer composed of a composite nitride layer of Al and an upper layer composed of a chromium boride layer having an average layer thickness of 0.5 to 3 μm formed on the lower layer,
In addition, when the orientation difference between adjacent grains at the interface between the lower layer and the upper layer is measured, the angle difference between the (111) orientation of (Ti 1-x Al x ) N and the (0001) orientation of chromium boride is 0. A surface-coated cutting tool characterized in that an interface length existing in a range of ˜5 degrees is 50% or more by segment with respect to the total observed interface length.
(2) The half width HB of the (0001) peak of the chromium boride measured by X-ray diffraction is 0.2 to 0.5 degrees, and the (111) peak of the (Ti 1-x Al x ) N The surface-coated cutting tool according to (1), wherein the half width HN is 0.8 to 1.5 degrees. "
It has the characteristics.

本発明について、以下に詳細に説明する。
既に述べたように、本発明は、例えば、図1に概略説明図で示される高出力パルススパッタ装置を用いて、装置内に炭化タングステン基超硬合金焼結体または高速度鋼からなる工具基体を装着し、例えば、蒸着初期は、
基体温度:400〜450℃、
蒸着源1:TiAl合金ターゲット
蒸着源1のスパッタリング電力:平均8〜9kW、最大120kW
スパッタリング周期:40Hz
バイアス電圧:−90〜−100V
装置内ガス種:窒素(N)ガス:アルゴン(Ar)ガス=流量比で70:30〜80:20
装置内ガス圧力:0.4〜0.5Pa、
という条件下で蒸着を行い、工具基体側の(Ti,Al)N層(下部層)を蒸着する。ついで、蒸着後期には、
蒸着源2:CrBターゲット、
蒸着源2のスパッタリング電力:平均2〜3kW、
スパッタリング周期:12Hz、
バイアス電圧:−120〜−130V
装置内ガス種:アルゴン(Ar)ガス
装置内ガス圧力:0.3〜0.4Pa、
CrBターゲットをスパッタする時のパルス出力形式を、
(a)パルス初期は120kW、パルス後期は200kWとなる2段階のパルス波形状
(b)パルス初期は150kW、パルス後期は250kWとなる2段階のパルス波形状
の2つのパルス波形状を30分周期で切り替える。
このような蒸着方法をとることにより、結果形成された下部層と上部層とからなる改質硬質被覆層は、耐摩耗層としての(Ti,Al)Nの(111)方位と潤滑特性にすぐれるクロムホウ化物の(0001)方位がきわめて近い傾斜方向に存在するため、上部層と下部層とがすぐれた密着特性を発揮し、工具の耐摩耗性を向上させることができることができる。
さらに、下部層である(Ti,Al)Nの(111)ピークの半価幅と上部層であるクロムホウ化物の(0001)ピークの半価幅が所定の値に含まれるように制御することで、すなわち、結晶性または結晶子サイズをバランスよく制御することで耐摩耗性を高めたまま耐クラック性を向上させ、すぐれた工具寿命を実現する表面被覆切削工具が得られる。
そして、その理由は以下に述べるような、改質硬質被覆層の特異な結晶質相と強い関連性を有する。
The present invention will be described in detail below.
As already described, the present invention uses, for example, a high-power pulse sputtering apparatus schematically shown in FIG. 1, and uses a tungsten carbide-based cemented carbide sintered body or a high-speed steel in the apparatus. For example, at the initial stage of vapor deposition,
Substrate temperature: 400 to 450 ° C.
Vapor deposition source 1: TiAl alloy target Sputtering power of vapor deposition source 1: 8-9 kW on average, maximum 120 kW
Sputtering cycle: 40 Hz
Bias voltage: -90 to -100V
Gas type in apparatus: nitrogen (N 2 ) gas: argon (Ar) gas = 70: 30 to 80:20 in flow rate ratio
In-apparatus gas pressure: 0.4 to 0.5 Pa,
Vapor deposition is performed under the above conditions to deposit a (Ti, Al) N layer (lower layer) on the tool base side. Then, in the later stage of deposition,
Deposition source 2: CrB 2 target,
Sputtering power of the evaporation source 2: 2 to 3 kW on average
Sputtering period: 12 Hz
Bias voltage: -120 to -130V
Gas type in the apparatus: Argon (Ar) gas Gas pressure in the apparatus: 0.3 to 0.4 Pa,
The pulse output format when sputtering the CrB 2 target
(A) Two-stage pulse wave shape with 120 kW at the initial stage of the pulse and 200 kW at the latter part of the pulse (b) Two pulse wave forms with a two-stage pulse form of 150 kW at the initial stage of the pulse and 250 kW at the latter stage of the pulse Switch with.
By adopting such a vapor deposition method, the resulting modified hard coating layer composed of a lower layer and an upper layer has a (111) orientation of (Ti, Al) N as a wear-resistant layer and lubrication characteristics. Since the (0001) orientation of the chromium boride to be present exists in an extremely close inclination direction, the upper layer and the lower layer can exhibit excellent adhesion characteristics, and the wear resistance of the tool can be improved.
Furthermore, by controlling so that the half width of the (111) peak of (Ti, Al) N as the lower layer and the half width of the (0001) peak of the chromium boride as the upper layer are included in the predetermined values. That is, by controlling the crystallinity or crystallite size in a well-balanced manner, it is possible to obtain a surface-coated cutting tool that improves crack resistance while improving wear resistance and realizes an excellent tool life.
The reason is strongly related to the unique crystalline phase of the modified hard coating layer as described below.

まず、前述のような高出力パルススパッタ法で形成された改質硬質被覆層について、下部層の(Ti,Al)N層と上部層のクロムホウ化物層との界面において、電子後方散乱回折装置を用いて(Ti,Al)Nの(111)方位とクロムホウ化物の(0001)方位を測定し、その角度差が0〜5度の範囲に存在する界面の長さを測定したところ、界面の全長に対する割合が50線分%以上であることが確認された。すなわち、下部層と上部層とがその界面において結晶学的な整合性が高い、すなわち、岩塩形構造である(Ti,Al)N薄膜の細密面であり、6回回転軸を持つ(111)面と、六方晶構造であるクロムホウ化物の細密面であり、同じく6回回転軸を持つ(0001)面とが平行となる方位関係を有して成長していることが、密着性の向上に寄与していることが分かった。
さらに、(Ti,Al)Nの(111)ピークの半価幅が0.8〜1.5度の範囲に存在し、クロムホウ化物の(0001)方位の半値幅が0.2〜0.5度に存在するとき、結晶性および結晶子サイズがバランスよく制御され、耐摩耗性を高めたまま耐クラック性を向上させることができることが分かった。
First, with respect to the modified hard coating layer formed by the high-power pulse sputtering method as described above, an electron backscattering diffractometer is installed at the interface between the lower (Ti, Al) N layer and the upper chromium boride layer. The (111) orientation of (Ti, Al) N and the (0001) orientation of chromium boride were measured and the length of the interface where the angle difference was in the range of 0 to 5 degrees was measured. It was confirmed that the ratio with respect to was 50 line% or more. That is, the lower layer and the upper layer have high crystallographic consistency at the interface, that is, a fine surface of a (Ti, Al) N thin film having a rock salt structure and has a six-fold rotation axis (111) It is a dense surface of a chromium boride having a hexagonal crystal structure and growing in a parallel orientation with the (0001) plane having the same 6-fold rotation axis, which improves adhesion. It turns out that it contributes.
Further, the half width of the (111) peak of (Ti, Al) N is in the range of 0.8 to 1.5 degrees, and the half width of the (0001) orientation of the chromium boride is 0.2 to 0.5. When present, the crystallinity and the crystallite size are controlled in a well-balanced manner, and it has been found that the crack resistance can be improved while the wear resistance is improved.

つぎに、本発明における数値範囲の限定理由について説明する。
(a)下部層の平均層厚を1〜5μmに限定した理由は、下部層の膜厚が1μmを下回ると耐摩耗性を維持できず、5μmを超えると圧縮応力の増加によりチッピングしやすくなるからである。下部層の平均層厚は主に成膜時間を適切に調整することにより所定の範囲に制御することが出来る。
また、下部層の(Ti,Al)NのAlの含有比率xをx=0〜0.7に限定した理由は、0.7を超えると、高い靭性を有する立方晶型結晶構造をとらず六方晶型結晶構造へ変化し強度が低下するとともに、同時に相対的にTiの含有割合が減少し、高温特性が低下するからである。下部層の(Ti,Al)NのAlの含有比率xは、使用する合金ターゲットの組成を適切に調整することにより制御することが出来る。
(b)上部層の平均層厚を0.5〜3μmに限定した理由は、上部層の膜厚が0.5μmを下回ると、耐摩耗性が不十分であり、3μmを超えると圧縮応力の増加によりチッピングなどの原因となるからである。上部層の平均層厚は主に成膜時間を適切に調整することにより所定の範囲に制御することが出来る。
(c)(Ti,Al)Nの(111)方位とクロムホウ化物の(0001)方位の角度差が、5度以上では方位整合性が低く、所望の界面強度を維持できない。そこで、前記角度差が0〜5度の範囲に存在する界面長を界面長全体の50線分%以上とした。前記角度差が0〜5度の範囲に存在する界面長の線分割合は、主に、成膜温度と、目標とする皮膜組成、クロムホウ化物層を形成する際の平均スパッタリング電力を適切に調整することで所定の範囲に制御することが出来る。
(d)(Ti,Al)Nの(111)ピークの半価幅が0.8度未満では結晶性が高すぎて耐欠損性に劣り、1.5度以上では結晶性が低すぎて窒化物層がもつ耐摩耗性を維持できない。そのため、(Ti,Al)Nの(111)ピークの半価幅は、0.8〜1.5度とすることが好ましい。
また、クロムホウ化物の(0001)ピークの半値幅が0.2度未満では結晶性が高すぎて耐欠損性に劣り、0.5度以上では結晶性が低すぎてホウ化物層がもつ耐摩耗性が維持できない。そのため、クロムホウ化物の(0001)ピークの半価幅は、0.2〜0.5度とすることが好ましい。(Ti,Al)Nの(111)ピークの半価幅およびクロムホウ化物の(0001)ピークの半値幅は、各層の目標組成、成膜速度、および層厚を適切に調整することにより制御することが出来る。
Next, the reason for limiting the numerical range in the present invention will be described.
(A) The reason why the average thickness of the lower layer is limited to 1 to 5 μm is that if the thickness of the lower layer is less than 1 μm, the wear resistance cannot be maintained, and if it exceeds 5 μm, chipping tends to occur due to an increase in compressive stress. Because. The average thickness of the lower layer can be controlled within a predetermined range mainly by appropriately adjusting the film formation time.
The reason why the content ratio x of (Ti, Al) N in the lower layer is limited to x = 0 to 0.7 is that if it exceeds 0.7, a cubic crystal structure having high toughness is not taken. This is because it changes to a hexagonal crystal structure and the strength decreases, and at the same time, the content ratio of Ti relatively decreases, and the high temperature characteristics deteriorate. The Al content ratio x of (Ti, Al) N in the lower layer can be controlled by appropriately adjusting the composition of the alloy target to be used.
(B) The reason why the average layer thickness of the upper layer is limited to 0.5 to 3 μm is that the wear resistance is insufficient when the film thickness of the upper layer is less than 0.5 μm. This is because the increase causes chipping and the like. The average layer thickness of the upper layer can be controlled within a predetermined range mainly by appropriately adjusting the film formation time.
(C) When the angle difference between the (111) orientation of (Ti, Al) N and the (0001) orientation of chromium boride is 5 ° or more, the orientation consistency is low and the desired interface strength cannot be maintained. Therefore, the interface length existing in the range where the angle difference is 0 to 5 degrees is set to 50% or more of the total interface length. The line segment ratio of the interface length that exists in the range where the angle difference is 0 to 5 degrees mainly adjusts the film forming temperature, the target film composition, and the average sputtering power when forming the chromium boride layer. By doing so, it can be controlled within a predetermined range.
(D) When the half width of the (111) peak of (Ti, Al) N is less than 0.8 degrees, the crystallinity is too high and the defect resistance is poor, and when it is 1.5 degrees or more, the crystallinity is too low and nitriding The wear resistance of the material layer cannot be maintained. Therefore, the half width of the (111) peak of (Ti, Al) N is preferably 0.8 to 1.5 degrees.
In addition, when the half width of the (0001) peak of chromium boride is less than 0.2 degrees, the crystallinity is too high and the fracture resistance is poor, and when it is 0.5 degrees or more, the crystallinity is too low and the wear resistance of the boride layer. Sex cannot be maintained. Therefore, the half width of the (0001) peak of the chromium boride is preferably 0.2 to 0.5 degrees. The half width of the (111) peak of (Ti, Al) N and the half width of the (0001) peak of chromium boride should be controlled by appropriately adjusting the target composition, deposition rate, and layer thickness of each layer. I can do it.

本発明の被覆工具は、炭化タングステン基超硬合金焼結体または高速度鋼からなる工具基体の上に硬質被覆層を有する表面被覆切削工具において、硬質被覆層が、工具基体上に形成された、(Ti1−xAl)N(ただし、x=0〜0.7)の成分系からなる1〜5μmの平均層厚を有するTiとAlの複合窒化物層からなる下部層と該下部層の上に形成された0.5〜3μmの平均層厚を有するクロムホウ化物層からなる上部層とからなり、かつ、下部層と上部層の界面において隣り合う結晶粒の方位差を測定した時に、(Ti1−xAl)Nの(111)方位とクロムホウ化物の(0001)方位の角度差が0〜5度の範囲に存在する界面長が界面長全体の50線分%以上とすることによって、硬質被覆層中に含まれている金属ホウ化物がすぐれた耐熱性を発揮するとともに、過酷な高速切削加工においては、六方晶構造を有するホウ化物の(0001)配向組織を、耐摩耗性を維持する複合窒化物からなる下部層の(111)方位と同じ傾斜方向に存在させることで上部層と下部層とのすぐれた密着性を発揮し、工具の耐摩耗性を向上させることができる。
また、半価幅が所定の間に含まれる、すなわち、結晶性または結晶子サイズをバランスよく制御することで耐摩耗性を高めたまま耐クラック性を向上させ、すぐれた工具寿命を実現する表面被覆切削工具を提供することができる。
The coated tool of the present invention is a surface-coated cutting tool having a hard coating layer on a tool substrate made of a tungsten carbide-based cemented carbide sintered body or high-speed steel, and the hard coating layer is formed on the tool substrate. , (Ti 1-x Al x ) N (where x = 0 to 0.7) and a lower layer made of a composite nitride layer of Ti and Al having an average layer thickness of 1 to 5 μm and the lower part An upper layer composed of a chromium boride layer having an average layer thickness of 0.5 to 3 μm formed on the layer, and measuring the orientation difference between adjacent grains at the interface between the lower layer and the upper layer , (Ti 1-x Al x ) N (111) orientation and chromium boride (0001) orientation of the angle difference existing in the range of 0 to 5 degrees, the interface length is 50 line% or more of the total interface length The metal contained in the hard coating layer In the severe high-speed cutting process, the (0001) -oriented structure of a boride having a hexagonal crystal structure is used in the lower layer made of a composite nitride that maintains wear resistance. By being present in the same inclination direction as the 111) orientation, excellent adhesion between the upper layer and the lower layer can be exhibited, and the wear resistance of the tool can be improved.
In addition, the half width is included within a predetermined range, that is, the surface that improves the crack resistance while improving the wear resistance by controlling the crystallinity or crystallite size in a well-balanced manner and realizes an excellent tool life. A coated cutting tool can be provided.

本発明の表面被覆切削工具の硬質被覆層(改質硬質被覆層)を蒸着形成するための高出力パルススパッタ装置の概略図を示す。The schematic diagram of the high output pulse sputtering device for carrying out vapor deposition formation of the hard coating layer (modified hard coating layer) of the surface coating cutting tool of the present invention is shown. 従来の表面被覆切削工具の硬質被覆層(従来硬質被覆層)を蒸着形成するためのアークイオンプレーティング蒸着源およびスパッタリング蒸着源をもつ成膜装置の概略図を示す。The schematic diagram of the film-forming apparatus with the arc ion plating vapor deposition source and sputtering vapor deposition source for vapor-depositing and forming the hard coating layer (conventional hard coating layer) of the conventional surface coating cutting tool is shown. 改質硬質被覆層の垂直縦断面内における結晶組織を示す概略図を示す。The schematic which shows the crystal structure in the vertical longitudinal cross-section of a modified hard coating layer is shown. 本発明インサート6における改質硬質被覆層のX線回折チャートを示す。The X-ray diffraction chart of the modified hard coating layer in this invention insert 6 is shown. 改質硬質被覆層の垂直縦断面内における結晶粒子の結晶方位関係の概略図を示す。The schematic of the crystal orientation relationship of the crystal grain in the vertical vertical cross section of a modified hard coating layer is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、ここでは被覆インサートと被覆エンドミルを中心にして説明するが、本発明が対象とする被覆工具は、これらに限らず、被覆ドリル等の各種の被覆工具に適用できるものである。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In addition, although demonstrated centering on a covering insert and a covering end mill here, the covering tool which this invention makes object is not limited to these, but can be applied to various covering tools such as a covering drill.

原料粉末として、いずれも0.8〜3.0μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもった炭化タングステン基超硬合金焼結体製の工具基体A1〜A10を形成した。
同様に、原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.2μmのZrC粉末、同1.0μmの(Ti,W)C粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表2に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mmの基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて切刃部の直径×長さが6mm×15mmの寸法をもったスクエアタイプのエンドミル基体B1〜B6を製造した。
WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 0.8 to 3.0 μm are prepared as raw material powders. Were mixed in the composition shown in Table 1, wet-mixed with a ball mill for 72 hours, dried, and pressed into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa, temperature: 1400. Sintered under the condition of holding at 1 ° C. for 1 hour, and after sintering, the tungsten carbide base cemented carbide sintered body having an ISO standard / CNMG120408 insert shape by applying a honing process of R: 0.03 to the cutting edge portion Made tool bases A1 to A10 were formed.
Similarly, as a raw material powder, a medium coarse WC powder having an average particle size of 5.5 μm, a fine WC powder of 0.8 μm, a TaC powder of 1.3 μm, a NbC powder of 1.2 μm, and 2. Prepare 3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.2 μm ZrC powder, 1.0 μm (Ti, W) C powder, and 1.8 μm Co powder. Each raw material powder is blended in the composition shown in Table 2, and after adding wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then pressed into various green compacts of a predetermined shape at a pressure of 100 MPa. These green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a 6 Pa vacuum atmosphere, held at this temperature for 1 hour, and then cooled in the furnace. Sintering under conditions to form a substrate with a diameter of 8 mm A rod-sintered body was formed, and square type end mill bases B1 to B6 having a size of 6 mm × 15 mm in diameter × length of the cutting edge portion were manufactured by grinding from the round bar sintered body. .

ついで、前記工具基体A1〜A10およびエンドミル基体B1〜B6(以下、「工具基体」という)を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置に装着し、ターゲット電極として、TiAl合金およびCrBを装着し、まず、装置内を排気して6.0×10−3Pa以下の真空に保持しながらヒーターで装置内を400℃に加熱した後、工具基体に−1000Vの直流バイアス電圧を印加した状態で、TiAl合金にスパッタ電源から平均8kW、最大120kW、スパッタリング周期40Hzのパルス状のスパッタ電力を供給し、装置内に供給されたスパッタガスのプラズマを形成し、スパッタガスのイオンをTiAl合金に衝突させてTi粒子およびAl粒子を放出させ、これらの粒子をイオン化して、もって工具基体表面をTiおよびAlイオンによって、30分間ボンバード処理をした。
ついで、装置内を一旦1×10−3Pa程度の真空にした後、表3および表4に示す条件で、所定の温度に加熱した後、装置内に窒素ガスおよびArガスを導入し所定の圧力に保ち、TiAl合金にスパッタ電源から平均8〜9kW、最大120kW、スパッタリング周期40Hzのパルス状のスパッタ電力を供給し、装置内に供給されたスパッタガスのプラズマを形成し、スパッタガスのイオンをTiAl合金に衝突させてTi粒子およびAl粒子を放出させ、これらの粒子をイオン化して、工具基体に所定のバイアス電圧をかけながら工具基体表面に、表3および表4に示される所定のスパッタ時間、(Ti,Al)N層からなる下部層をスパッタ形成する。
引き続き、同じく表3および表4に示す条件で、装置内にArガスを導入し所定の圧力に保ち、CrBにスパッタ電源から平均2〜3kW、スパッタリング周期12Hzのパルス状のスパッタ電力を供給し、装置内に供給されたスパッタガスのプラズマを形成し、スパッタガスのイオンをCrBに衝突させてCrB粒子を放出させ、これらの粒子をイオン化して、工具基体に所定のバイアス電圧をかけながら工具基体表面に、表3および表4に示される所定のスパッタ時間、クロムホウ化物からなる上部層をスパッタ形成することにより、本発明被覆工具としての本発明インサート(以下、本発明インサートという)1〜14および本発明被覆工具としての本発明エンドミル(以下、本発明エンドミルという)1〜6を製造した。
なお、表3および表4に、本発明インサート1〜14および本発明エンドミル1〜6の改質硬質被覆層の形成条件である高出力パルススパッタリングの各種条件をそれぞれ示す。
Next, the tool bases A1 to A10 and the end mill bases B1 to B6 (hereinafter referred to as “tool base”) are ultrasonically cleaned in acetone and dried, and then mounted on the high-power pulse sputtering apparatus shown in FIG. Then, TiAl alloy and CrB are mounted as target electrodes, and first, the inside of the apparatus is evacuated and the inside of the apparatus is heated to 400 ° C. with a heater while maintaining a vacuum of 6.0 × 10 −3 Pa or less. With a DC bias voltage of -1000 V applied to the substrate, pulsed sputtering power with an average of 8 kW, a maximum of 120 kW, and a sputtering cycle of 40 Hz is supplied to the TiAl alloy from the sputtering power source, and the plasma of the sputtering gas supplied into the apparatus is supplied. The sputtering gas ions collide with the TiAl alloy to release Ti particles and Al particles. The particles were ionized and the tool substrate surface was bombarded with Ti and Al ions for 30 minutes.
Next, after the inside of the apparatus was once evacuated to about 1 × 10 −3 Pa, heated to a predetermined temperature under the conditions shown in Table 3 and Table 4, nitrogen gas and Ar gas were introduced into the apparatus and predetermined Maintaining the pressure, supply pulsed sputtering power with an average of 8-9 kW, maximum 120 kW, sputtering cycle 40 Hz from the sputtering power source to the TiAl alloy to form the plasma of the sputtering gas supplied into the apparatus, and sputter gas ions Ti particles and Al particles are released by colliding with the TiAl alloy, and these particles are ionized, and a predetermined sputtering time shown in Tables 3 and 4 is applied to the tool base surface while applying a predetermined bias voltage to the tool base. The lower layer composed of (Ti, Al) N layer is formed by sputtering.
Subsequently, Ar gas was introduced into the apparatus under the same conditions as shown in Tables 3 and 4 to maintain a predetermined pressure, and pulsed sputtering power having an average of 2 to 3 kW and a sputtering cycle of 12 Hz was supplied to CrB 2 from the sputtering power source. to form a plasma of the sputtering gas supplied into the apparatus, the ions of the sputtering gas collide with CrB 2 to release CrB 2 particles ionizes these particles, applying a predetermined bias voltage to the tool substrate However, the insert of the present invention as a coated tool of the present invention (hereinafter referred to as the present invention insert) 1 is formed by sputter-forming an upper layer made of chromium boride on the tool substrate surface for a predetermined sputtering time shown in Tables 3 and 4. To 14 and the present invention end mill (hereinafter referred to as the present invention end mill) 1 to 6 as the coated tool of the present invention.
Tables 3 and 4 show various conditions of high-power pulse sputtering, which are conditions for forming the modified hard coating layers of the present inserts 1 to 14 and the present end mills 1 to 6, respectively.

比較の目的で、前記工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、図2に示されるアークイオンプレーティング蒸着源およびスパッタリング蒸着源をもつ成膜装置に装着し、アークイオンプレーティング蒸着源のカソード電極としてTiAl合金を、また、スパッタリング蒸着源のカソード電極としてCrBを装着し、まず、装置内を排気して6.0×10−3Pa以下の真空に保持しながらヒーターで装置内を400℃に加熱した後、TiAl合金に100Aの放電電流を流しアーク放電させ装置内にTiおよびAlイオンを発生させ、工具基体に−1000Vのバイアス電圧を印加することによって、前記工具基体を10分間TiおよびAlボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、表5および表6に示す条件で、窒素ガスを導入し4Paに保ち、TiAl合金に100〜120Aのアーク電流を流しTiおよびAlのイオンを発生させ、工具基体に所定のバイアス電圧をかけながら工具基体表面に、表5および表6に示される所定の蒸着時間、(Ti,Al)N層からなる下部層を蒸着形成し、ついで、表5および表6に示す条件で、Arガスを導入し所定の圧力に保ち、CrBに4kWの直流の電力を投入しスパッタリングによりCrBのイオンを発生させ、工具基体に所定のバイアス電圧をかけながら工具基体表面に、表5および表6に示される所定の蒸着時間、クロムホウ化物からなる上部層を蒸着形成することにより、従来被覆工具としての従来表面被覆インサート(以下、従来インサートという)1〜10および従来表面被覆エンドミル(以下、従来エンドミルという)1〜6を製造した。
なお、表5および表6には、従来インサート1〜10および従来エンドミル1〜6の従来硬質被複層の形成条件であるアークイオンプレーティングの各種条件を示す。
For the purpose of comparison, the tool substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and the film forming apparatus having the arc ion plating deposition source and the sputtering deposition source shown in FIG. And mounted with TiAl alloy as the cathode electrode of the arc ion plating vapor deposition source and CrB 2 as the cathode electrode of the sputtering vapor deposition source. First, the inside of the apparatus is evacuated to 6.0 × 10 −3 Pa or less. The apparatus was heated to 400 ° C. with a heater while maintaining a vacuum of 100 ° C., and a discharge current of 100 A was passed through the TiAl alloy to cause arc discharge to generate Ti and Al ions in the apparatus, and a bias voltage of −1000 V was applied to the tool base. By applying, the tool base is treated with Ti and Al bombardment for 10 minutes, and then the inside of the apparatus is temporarily 1 × 1 After making a vacuum of about 0 −3 Pa, under the conditions shown in Table 5 and Table 6, nitrogen gas was introduced and maintained at 4 Pa, an arc current of 100 to 120 A was passed through the TiAl alloy to generate Ti and Al ions, While applying a predetermined bias voltage to the tool base, a lower layer composed of a (Ti, Al) N layer is formed by vapor deposition on the surface of the tool base for a predetermined deposition time shown in Table 5 and Table 6, and then Table 5 and Table under the conditions shown in 6, kept at a predetermined pressure by introducing Ar gas, to generate ions of CrB 2 by sputtering was charged power DC 4kW to CrB 2, tool substrate while applying a predetermined bias voltage to the tool substrate A conventional surface-coated insert (hereinafter referred to as a conventional coated tool) (hereinafter referred to as a conventional coated tool) is formed by vapor-depositing an upper layer made of chromium boride on the surface for a predetermined vapor deposition time shown in Table 5 and Table 6. 1 to 10) and conventional surface-coated end mills (hereinafter referred to as conventional end mills) 1 to 6 were produced.
Tables 5 and 6 show various conditions of arc ion plating, which are conditions for forming the conventional hard multi-layers of the conventional inserts 1 to 10 and the conventional end mills 1 to 6.

つぎに、本発明インサート1〜14および従来インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材: Ti−6Al−4V合金、縦方向2本溝入り材
切削速度: 80m/min.、
切り込み: 1.0mm、
送り: 0.15mm/rev.、
切削時間: 2分、
の条件(切削条件1という)でのチタン合金の高速断続切削加工試験(通常の切削速度は60m/min.)、
被削材: Ti−6Al−4V合金、縦方向2本溝入り材
切削速度: 70m/min.、
切り込み: 1.0mm、
送り: 0.2mm/rev.、
切削時間: 2分、
の条件(切削条件2という)でのチタン合金の高速高送り断続切削加工試験(通常の切削速度および送りは、それぞれ、60m/min.、0.15mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表11に示した。
Next, about this invention inserts 1-14 and conventional inserts 1-10, in the state where this was screwed to the tip of the tool steel tool with a fixing jig,
Work material: Ti-6Al-4V alloy, material with two grooves in the longitudinal direction Cutting speed: 80 m / min. ,
Cutting depth: 1.0mm,
Feed: 0.15 mm / rev. ,
Cutting time: 2 minutes
High-speed intermittent cutting test of titanium alloy under the above conditions (referred to as cutting condition 1) (normal cutting speed is 60 m / min.),
Work material: Ti-6Al-4V alloy, material with two grooves in the longitudinal direction Cutting speed: 70 m / min. ,
Cutting depth: 1.0mm,
Feed: 0.2 mm / rev. ,
Cutting time: 2 minutes
High-speed, high-feed, intermittent cutting test (normal cutting speed and feed are 60 m / min. And 0.15 mm / rev., Respectively)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 11.

同様に、本発明エンドミル1〜6および従来エンドミル1〜6については、
被削材: 平面寸法:150mm×250mm 厚さ:50mmのTi−6Al−4V合金の板材、
切削速度:230m/min.、
深さ切り込み:0.6mm、
横切り込み:1.0mm、
テーブル送り:0.15mm/min.、
の条件でのチタン合金の湿式高速切削加工試験(通常の切削速度は200m/min)を行い、切刃部逃げ面摩耗幅が使用寿命の目安とされる0.2mmに到達するまでの切削溝長を測定した。この測定結果を表12に示した。
Similarly, for the present invention end mills 1-6 and conventional end mills 1-6,
Work material: Plane dimension: 150 mm × 250 mm Thickness: 50 mm Ti-6Al-4V alloy plate,
Cutting speed: 230 m / min. ,
Depth cut: 0.6mm,
Horizontal cut: 1.0 mm,
Table feed: 0.15 mm / min. ,
Wet high-speed cutting test of titanium alloy under the above conditions (normal cutting speed is 200 m / min), and the cutting groove until the cutting edge flank wear width reaches 0.2 mm, which is the standard of service life The length was measured. The measurement results are shown in Table 12.

次に、本発明インサート1〜14および本発明エンドミル1〜6の改質硬質被覆層、ならびに、従来インサート1〜10および従来エンドミル1〜6の従来硬質被複層について、CuターゲットをX線源としたX線回折装置を用いて、θ−2θ法により、上部層および下部層において、(Ti,Al)Nの(111)ピークの半価幅およびクロムホウ化物の(0001)ピークの半価幅を測定した。
さらに、本発明インサート1〜14および本発明エンドミル1〜6の改質硬質被覆層、ならびに、従来インサート1〜10および従来エンドミル1〜6の従来硬質被複層の組成および各被覆層を構成する結晶粒子の結晶方位を測定する目的で、本発明インサート1〜12および従来インサート1〜10を工具先端から2mmの位置で切断し、また同様に、本発明エンドミル1〜6および従来エンドミル1〜6を工具先端から2mmの位置で切断し、得られた各工具の断面をArイオンによるイオンエッチングにより精密研磨した。さらに、得られた各被覆層の研磨面を断面方向から観察し各層膜厚を測定するとともに、エネルギー分散型X線分光分析装置(EDS装置)により各皮膜の化学組成を分析したところ、いずれの被覆層においても、目標膜厚および目標組成と実質的に同じ膜厚および化学組成を示した。
さらに、各被覆層の研磨面を断面方向から、電子線後方散乱回折装置(EBSD装置)を用いて(Ti,Al)N層とクロムホウ化物層の結晶方位を、上部層と下部層の間の界面の略平面線を中心として縦1μm×幅10μmの範囲に亘って測定し、隣接する(Ti,Al)Nとクロムホウ化物について、(Ti,Al)Nの<111>と、クロムホウ化物の<0001>がなす角度差のうち最小の数値が0〜5度となるよう形成された界面を抽出し、その合計長さが観察範囲に存在する界面長に対する割合を計測した。
その結果を表7、表8、表9、表10に示す。
Next, for the modified hard coating layers of the present invention inserts 1 to 14 and the present invention end mills 1 to 6 and the conventional hard coating layers of the conventional inserts 1 to 10 and the conventional end mills 1 to 6, the Cu target is converted into an X-ray source. Using the X-ray diffractometer, the half-width of the (111) peak of (Ti, Al) N and the half-width of the (0001) peak of chromium boride in the upper and lower layers by the θ-2θ method. Was measured.
Further, the modified hard coating layer of the present invention inserts 1 to 14 and the present invention end mills 1 to 6 and the composition and the respective coating layers of the conventional hard coating layers of the conventional inserts 1 to 10 and the conventional end mills 1 to 6 are configured. For the purpose of measuring the crystal orientation of crystal grains, the inserts 1 to 12 of the present invention and the conventional inserts 1 to 10 are cut at a position of 2 mm from the tool tip, and similarly, the end mills 1 to 6 and the conventional end mills 1 to 6 of the present invention are cut. Was cut at a position of 2 mm from the tool tip, and the cross section of each obtained tool was precisely polished by ion etching with Ar ions. Furthermore, while observing the grinding | polishing surface of each obtained coating layer from a cross-sectional direction and measuring each layer film thickness, when chemical composition of each membrane | film | coat was analyzed with the energy dispersive X-ray-spectral-analysis apparatus (EDS apparatus), The coating layer also showed substantially the same film thickness and chemical composition as the target film thickness and target composition.
Furthermore, from the cross-sectional direction of the polishing surface of each coating layer, the crystal orientation of the (Ti, Al) N layer and the chromium boride layer is determined between the upper layer and the lower layer using an electron beam backscatter diffraction device (EBSD device). Measured over a range of 1 μm in length and 10 μm in width centered on a substantially plane line of the interface, and for (Ti, Al) N and chromium boride adjacent to each other, <111> of (Ti, Al) N and < The interface formed so that the minimum numerical value of the angle difference formed by 0001> is 0 to 5 degrees was extracted, and the ratio of the total length to the interface length existing in the observation range was measured.
The results are shown in Table 7, Table 8, Table 9, and Table 10.

表7、表8、表11、表12に示される結果から、本発明インサート1〜14および本発明エンドミル1〜6は、硬質被複層の上部層を構成するクロムホウ化物層と下部層を構成する(Ti,Al)N層とが界面において結晶粒の方位が同じ傾斜方向に存在しているため、上部層と下部層とがすぐれた密着性を発揮し、被覆工具の耐摩耗性が向上していることが確認された。
さらに、(Ti,Al)Nの(111)ピークの半価幅HNが0.8〜1.5度およびクロムホウ化物の(0001)ピークの半価幅HBが0.2〜0.5度であるものは、結晶性および結晶子サイズがバランスよく制御されているため耐摩耗性を高めたまま耐クラック性を向上させることができ、一層すぐれた工具寿命が実現できることが確認された。
これに対して、表9、表10、表11、表12に示される結果から、従来インサート1〜10および従来エンドミル1〜6は、硬質被複層の上部層を構成するクロムホウ化物層と下部層を構成する(Ti,Al)N層との界面における結晶粒の方位が同じ傾斜方向に存在していないため、上部層と下部層との密着性が劣り、被覆工具が比較的短時間で寿命に至ることが確認された。
なお、前述の切削加工試験では、被削材としてチタン合金を用いたが、他の高硬度鋼においても同様の結果が得られることは、いうまでもない。
From the results shown in Table 7, Table 8, Table 11, and Table 12, the inserts 1 to 14 and the end mills 1 to 6 of the present invention constitute the chromium boride layer and the lower layer constituting the upper layer of the hard multilayer. The (Ti, Al) N layer is present in the same tilt direction at the interface, so the upper layer and the lower layer exhibit excellent adhesion and improve the wear resistance of the coated tool It was confirmed that
Furthermore, the half width HN of the (111) peak of (Ti, Al) N is 0.8 to 1.5 degrees and the half width HB of the (0001) peak of chromium boride is 0.2 to 0.5 degrees. For some, the crystallinity and crystallite size were controlled in a well-balanced manner, so that it was possible to improve the crack resistance while improving the wear resistance, and it was confirmed that a better tool life could be realized.
On the other hand, from the results shown in Table 9, Table 10, Table 11, and Table 12, the conventional inserts 1 to 10 and the conventional end mills 1 to 6 have a chromium boride layer and a lower portion constituting the upper layer of the hard multilayer. Since the orientation of crystal grains at the interface with the (Ti, Al) N layer constituting the layer does not exist in the same tilt direction, the adhesion between the upper layer and the lower layer is inferior, and the coated tool is relatively short It was confirmed that it would reach the end of its life.
In the cutting test described above, a titanium alloy was used as the work material, but it goes without saying that similar results can be obtained with other high-hardness steels.

前述のように、本発明の被覆工具は、硬質被覆層(改質硬質被覆層)がすぐれた熱伝導率と耐熱性を維持することにより、耐クラック性、耐摩耗性を有することから、被覆インサートばかりでなく、被覆エンドミル、被覆ドリル等の各種被覆工具として用いることができ、そして、これによって、靭性不足、強度不足等に起因する工具欠損の発生を防止し、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、低コスト化に十分満足に対応できるとともに、工具寿命の延命化を図ることができるものである。
As described above, the coated tool of the present invention has a hard coating layer (modified hard coating layer) that has excellent thermal conductivity and heat resistance, and thus has crack resistance and wear resistance. It can be used not only for inserts but also for various types of coated tools such as coated end mills and coated drills, etc., thereby preventing the occurrence of tool defects due to insufficient toughness, insufficient strength, etc. Therefore, it is possible to sufficiently satisfy the cost reduction and prolong the tool life.

Claims (2)

炭化タングステン基超硬合金焼結体、高速度鋼またはサーメットからなる工具基体の上に硬質被覆層を有する表面被覆切削工具において、
前記硬質被覆層が、工具基体上に形成された、(Ti1−xAl)N(ただし、x=0〜0.7)の成分系からなる1〜5μmの層厚を有するTiとAlの複合窒化物層からなる下部層と該下部層の上に形成された0.5〜3μmの平均層厚を有するクロムホウ化物層からなる上部層とからなり、
かつ、前記下部層と上部層の界面において隣り合う結晶粒の方位差を測定した時に、(Ti1−xAl)Nの(111)方位とクロムホウ化物の(0001)方位の角度差が0〜5度の範囲に存在する界面長が全観察界面長の50線分%以上であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool having a hard coating layer on a tool substrate made of a tungsten carbide-based cemented carbide sintered body, high-speed steel or cermet,
Ti and Al having a layer thickness of 1 to 5 μm formed of a component system of (Ti 1-x Al x ) N (where x = 0 to 0.7) is formed on the tool base. A lower layer made of a composite nitride layer and an upper layer made of a chromium boride layer having an average layer thickness of 0.5 to 3 μm formed on the lower layer,
In addition, when the orientation difference between adjacent grains at the interface between the lower layer and the upper layer is measured, the angle difference between the (111) orientation of (Ti 1-x Al x ) N and the (0001) orientation of chromium boride is 0. A surface-coated cutting tool characterized in that the interface length existing in a range of ˜5 ° is 50% or more of the total observation interface length.
X線回折により測定した前記クロムホウ化物層の(0001)ピークの半価幅HBが0.2〜0.5度であり、前記複合窒化物層の(111)ピークの半価幅HNが0.8〜1.5度であることを特徴とする請求項1に記載の表面被覆切削工具。   The half width HB of the (0001) peak of the chromium boride layer measured by X-ray diffraction is 0.2 to 0.5 degree, and the half width HN of the (111) peak of the composite nitride layer is 0.00. The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is 8 to 1.5 degrees.
JP2012010736A 2012-01-23 2012-01-23 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance Active JP5796778B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012010736A JP5796778B2 (en) 2012-01-23 2012-01-23 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
CN201310022345.2A CN103212728B (en) 2012-01-23 2013-01-22 Hard coating layer maintains excellent heat resistance and the surface-coated cutting tool of wearability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010736A JP5796778B2 (en) 2012-01-23 2012-01-23 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2013146839A JP2013146839A (en) 2013-08-01
JP5796778B2 true JP5796778B2 (en) 2015-10-21

Family

ID=48811064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010736A Active JP5796778B2 (en) 2012-01-23 2012-01-23 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance

Country Status (2)

Country Link
JP (1) JP5796778B2 (en)
CN (1) CN103212728B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052479A1 (en) * 2014-09-30 2016-04-07 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chip resistance
JP6620482B2 (en) * 2014-09-30 2019-12-18 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
WO2017057266A1 (en) * 2015-09-29 2017-04-06 京セラ株式会社 Bar stock and cutting tool
JP6931452B2 (en) 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
CN106180772A (en) * 2016-07-20 2016-12-07 西安理工大学 A kind of lathe tool blade and the preparation method of lathe tool blade
JP6999383B2 (en) * 2017-11-29 2022-01-18 株式会社タンガロイ Cover cutting tool
WO2020075355A1 (en) * 2018-10-10 2020-04-16 住友電工ハードメタル株式会社 Cutting tool and manufacturing method therefor
CN109848472B (en) * 2019-02-14 2020-06-05 合肥鼎鑫模具有限公司 Blade for vertical profiling milling machine and production process thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328811A (en) * 1994-06-06 1995-12-19 Mitsubishi Materials Corp Surface covered high-speed steel cutting tool superior in abrasion resistance
JP4120500B2 (en) * 2003-07-04 2008-07-16 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4697389B2 (en) * 2004-06-18 2011-06-08 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
EP1757388B1 (en) * 2004-06-18 2015-11-04 Mitsubishi Materials Corporation Surface-coated cutware and process for producing the same
DE102005032860B4 (en) * 2005-07-04 2007-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard material coated bodies and process for their production
JP2007136621A (en) * 2005-11-21 2007-06-07 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool having hard coating layer exerting excellent abrasion resistance in high-speed cutting of soft hard-to-cut-material
JP2007290065A (en) * 2006-04-24 2007-11-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
JP4844884B2 (en) * 2006-07-28 2011-12-28 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2008238281A (en) * 2007-03-26 2008-10-09 Hitachi Tool Engineering Ltd Coated tool
JP5094177B2 (en) * 2007-03-27 2012-12-12 京セラ株式会社 Cutting tool and cutting method
JP2010284787A (en) * 2009-06-15 2010-12-24 Hitachi Tool Engineering Ltd Hard film coated cutting tool
JP5447845B2 (en) * 2010-03-26 2014-03-19 三菱マテリアル株式会社 Surface coated cutting tool
JP5282911B2 (en) * 2010-03-26 2013-09-04 三菱マテリアル株式会社 Diamond coated cutting tool

Also Published As

Publication number Publication date
CN103212728A (en) 2013-07-24
JP2013146839A (en) 2013-08-01
CN103212728B (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5796778B2 (en) Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP5515806B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2012040615A (en) Surface coating cutting tool with hard coating layer exhibiting excellent peel resistance and wear resistance in high-speed cutting of difficult-to-cut material
JP5293330B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2014004665A (en) Surface coating cutting tool excellent in wear resistance and breakage resistance
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2013248674A (en) Surface-coated cutting tool having hard coated layer maintaining heat resistance and wear resistance
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5397690B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011104737A (en) Surface coated cutting tool
JP5464494B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP2013184271A (en) Surface-coated cutting tool with hard coating layer maintaining excellent abrasion resistance and chipping resistance
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP2011194536A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP5555834B2 (en) Surface-coated cutting tool for milling with excellent wear resistance and method for producing the same
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011156639A (en) Surface-coated cutting tool having hard coated layer that exhibits excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5796778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250