JP5094177B2 - Cutting tool and cutting method - Google Patents

Cutting tool and cutting method Download PDF

Info

Publication number
JP5094177B2
JP5094177B2 JP2007080786A JP2007080786A JP5094177B2 JP 5094177 B2 JP5094177 B2 JP 5094177B2 JP 2007080786 A JP2007080786 A JP 2007080786A JP 2007080786 A JP2007080786 A JP 2007080786A JP 5094177 B2 JP5094177 B2 JP 5094177B2
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
coating layer
substrate
work material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007080786A
Other languages
Japanese (ja)
Other versions
JP2008238314A (en
Inventor
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007080786A priority Critical patent/JP5094177B2/en
Publication of JP2008238314A publication Critical patent/JP2008238314A/en
Application granted granted Critical
Publication of JP5094177B2 publication Critical patent/JP5094177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基体の表面に被覆層を形成した切削工具および切削方法に関する。
The present invention relates to a beauty switching cutting method Oyo cutting tool to form a coating layer on the surface of the substrate.

従来から、炭化タングステン基超硬合金や、炭窒化チタン基サーメットなどの硬質合金からなる基体の表面に、炭化チタン、窒化チタン、炭窒化チタンなどのチタン系化合物からなり、耐摩耗性、機械的強度に優れる被覆層を形成してなる切削工具が広く用いられている。   Conventionally, the surface of a substrate made of a hard alloy such as tungsten carbide-based cemented carbide or titanium carbonitride-based cermet is made of a titanium-based compound such as titanium carbide, titanium nitride, or titanium carbonitride, and has wear resistance and mechanical properties. A cutting tool formed with a coating layer having excellent strength is widely used.

中でも、(Ti,Al)Nからなる被覆層は、硬度が高く、かつ高温に晒された場合での耐酸化性に優れており、被覆層として好適に使用されている。かかる(Ti,Al)Nからなる被覆層の性能向上のために種々の提案がなされている。   Among them, the coating layer made of (Ti, Al) N has high hardness and excellent oxidation resistance when exposed to high temperatures, and is suitably used as the coating layer. Various proposals have been made to improve the performance of such a coating layer made of (Ti, Al) N.

例えば、Al濃度が異なる3層以上の(Ti,Al)Nからなる積層構造を有し、Al濃度が高い層の間にAl濃度が低い層を挟持してなる被覆層が提案されている(例えば特許文献1参照)。また、低硬度の(Ti,Al)N層と高硬度の(Ti,Al)N層とを交互に積層した多層(Ti,Al)N層が提案されている(例えば特許文献2)。これらの技術は、靭性が高くかつ耐酸化性の低い層を、靭性が低くかつ耐酸化性の高い層で挟むことにより、被覆層での歪みおよび残留圧縮内部応力を分散させて緩和し、Alの添加による耐欠損性の低下を抑制することができる。
特開平6−316756号公報 特開平11−61380号公報
For example, a coating layer has been proposed that has a laminated structure composed of (Ti, Al) N having three or more layers with different Al concentrations, and a layer with a low Al concentration sandwiched between layers with a high Al concentration ( For example, see Patent Document 1). A multilayer (Ti, Al) N layer in which a low hardness (Ti, Al) N layer and a high hardness (Ti, Al) N layer are alternately laminated has been proposed (for example, Patent Document 2). These techniques are used to disperse and relax strain and residual compressive internal stress in the coating layer by sandwiching a layer with high toughness and low oxidation resistance between layers with low toughness and high oxidation resistance. It is possible to suppress a decrease in fracture resistance due to the addition of.
JP-A-6-316756 JP-A-11-61380

しかしながら、Al濃度の低い層はAl濃度が高い層と比べて耐酸化性に劣るため、切削加工中に上層が摩耗して露出すると急激に酸化が進んで当該箇所が劣化し摩耗が進んでしまい、被覆層全体としての耐摩耗性が十分でないといった問題がある。   However, a layer with a low Al concentration is inferior in oxidation resistance as compared with a layer with a high Al concentration. Therefore, if the upper layer is worn and exposed during cutting, the oxidation progresses rapidly and the part deteriorates and wears. There is a problem that the wear resistance of the entire coating layer is not sufficient.

また、特許文献1および特許文献2に記載のような異なる組成からなる複数の(Ti,Al)N層が積層された多層構造を有する被覆層は、TiとAlとの組成比率等を適宜調整するために反応系内に組成が異なる複数のターゲットを設置する必要があり、設備、条件設定などにおいて大幅な制限が課される恐れがあり、工業規模での実施が困難であるとの問題がある。   In addition, the coating layer having a multilayer structure in which a plurality of (Ti, Al) N layers having different compositions as described in Patent Document 1 and Patent Document 2 are laminated is appropriately adjusted in the composition ratio of Ti and Al. In order to do so, it is necessary to install multiple targets with different compositions in the reaction system, which may impose significant restrictions on equipment and condition settings, and is difficult to implement on an industrial scale. is there.

本発明は、上記問題点に鑑み、耐摩耗性に優れた(Ti,Al)N層からなる被覆層を備える切削工具を提供することを目的とする
An object of this invention is to provide the cutting tool provided with the coating layer which consists of a (Ti, Al) N layer excellent in abrasion resistance in view of the said problem .

本発明者は、上記課題を解決するため鋭意研究を重ねた結果、被覆層の結晶面配向性および結晶化度を考慮し、適正な状態で基体表面に被覆することにより優れた切削工具を提供できることを見出した。   As a result of intensive research to solve the above problems, the present inventor provides an excellent cutting tool by coating the substrate surface in an appropriate state in consideration of the crystal plane orientation and crystallinity of the coating layer. I found out that I can do it.

即ち、本発明の切削工具は、基体と、該基体の表面に形成されたTiおよびAlを含む被覆層とを備え、前記基体は、上面にすくい面、側面に逃げ面を有し、前記すくい面と逃げ面との交差稜線の少なくとも一部に切刃を備える切削工具において、前記逃げ面における被覆層のX線解析パターンのうち(111)面に帰属するピークの半価幅Bfが0.6
°以上であるとともに、前記すくい面における被覆層のX線解析パターンのうち、(111)面に帰属するピークの半価幅Brが0.9°以上であり、前記半価幅Bfおよび前記半価幅Brが、Bf/Br=0.6〜0.85の範囲内であることを特徴とするものである。
That is, the cutting tool of the present invention includes a base and a coating layer containing Ti and Al formed on the surface of the base. The base has a rake face on an upper surface and a flank on a side face. In a cutting tool provided with a cutting edge on at least a part of the intersecting ridge line between the surface and the flank, the half width Bf of the peak belonging to the (111) plane in the X-ray analysis pattern of the coating layer on the flank is 0. 6
° with at least, of the X-ray diffraction pattern of the coating layer in the rake face, (111) Ri der FWHM Br is 0.9 ° or more peaks attributable to surface, the half width Bf and the The half-value width Br is in the range of Bf / Br = 0.6 to 0.85 .

また、上記発明において、前記半価幅Bfおよび前記半価幅Brは、2θ=36.5〜38.0の範囲内にX線解析パターンのピークを有することを特徴とする。   In the above invention, the half-value width Bf and the half-value width Br have an X-ray analysis pattern peak in a range of 2θ = 36.5 to 38.0.

上記請求項1にかかる発明においては、被覆層におけるTiとAlとの組成比率の異なるターゲットを使用することなく、切削工具のうち最も耐摩耗性および耐欠損性が求められる切刃近傍における被覆層の逃げ面における結晶化度を制御することにより、被覆層全体として優れた耐摩耗性を備えることができる。そのため、高寿命の切削工具を提供することができる。   In the invention according to the first aspect, the coating layer in the vicinity of the cutting edge where the most wear resistance and fracture resistance are required among the cutting tools without using targets having different composition ratios of Ti and Al in the coating layer. By controlling the degree of crystallinity on the flank face, it is possible to provide excellent wear resistance as a whole coating layer. Therefore, a long-life cutting tool can be provided.

また、請求項2にかかる発明においては、耐摩耗性が重視される逃げ面と比較して、靭性が重視される被覆層のすくい面における結晶化度を制御することより、被覆層のすくい面、逃げ面の各箇所で求められる機能を十分に備えることができる。そのため、さらに高寿命の切削工具を提供することができる。   Further, in the invention according to claim 2, the rake face of the coating layer is controlled by controlling the crystallinity of the rake face of the coating layer on which toughness is important compared to the flank face on which wear resistance is important. The functions required at each part of the flank can be sufficiently provided. Therefore, it is possible to provide a cutting tool having a longer life.

本発明の切削工具の一実施例を、切削工具の概略斜視図である図1、本発明の一実施例にかかる切削工具の概略断面図である図2、及び、図2の基体と被覆層の界面部分(E部分)の拡大図である図3を用いて説明する。   1 is a schematic perspective view of a cutting tool, FIG. 2 is a schematic cross-sectional view of a cutting tool according to an embodiment of the present invention, and the base body and the coating layer of FIG. This will be described with reference to FIG. 3 which is an enlarged view of the interface portion (E portion).

なお、上記切削工具としては、ろう付けタイプ又はスローアウェイタイプの旋削バイトに用いられる切削インサートや、ソリッドタイプのドリル又はエンドミル等、切削に寄与する切刃部分を備えるもののことを指す。なお、以下に記載の実施例においては切削工具としてホルダに取り付けられる切削インサートを例示して説明する。   In addition, as said cutting tool, the thing provided with the cutting blade part which contributes to cutting, such as the cutting insert used for a brazing type or a throw away type turning tool, a solid type drill, or an end mill, is pointed out. In addition, in the Example described below, the cutting insert attached to a holder is illustrated and demonstrated as a cutting tool.

図1によれば、本発明の切削工具(以下、単に工具と略す。)1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有し、基体2の表面に被覆層6を成膜した構成となっている。   According to FIG. 1, a cutting tool (hereinafter simply referred to as “tool”) 1 of the present invention has a rake face 3 as a main surface, a flank face 4 on a side surface, and a cross ridge line between the rake face 3 and the flank face 4. The cutting edge 5 is provided, and the coating layer 6 is formed on the surface of the substrate 2.

本発明の被覆層6は、硬度や靭性、耐酸化性等の切削加工に必要な特性に優れている少なくともチタン元素(Ti)およびアルミニウム元素(Al)を含む複合化合物よりなる材質にて構成される。具体的には、(Ti,Al,Cr)N、(Ti,Al,W,Nb,Si)N、(Ti,Al)N等が挙げられる。中でも、(Ti,Al)Nは、硬度が高く、かつ高温に晒された場合での耐酸化性に優れているため、特に好ましい。   The coating layer 6 of the present invention is composed of a material made of a composite compound containing at least titanium element (Ti) and aluminum element (Al), which is excellent in properties necessary for cutting such as hardness, toughness, and oxidation resistance. The Specific examples include (Ti, Al, Cr) N, (Ti, Al, W, Nb, Si) N, and (Ti, Al) N. Among these, (Ti, Al) N is particularly preferable because of its high hardness and excellent oxidation resistance when exposed to high temperatures.

ここで本発明によれば、逃げ面4における被覆層6のX線解析パターンのうち(111)面に帰属するピークの半価幅Bfが0.6°以上となっている。即ち、被覆層6を構成する粒子のうち、(111)面の粒子が微粒化されているとともに粒子の成長方向が均一となっている。これにより、逃げ面4の耐摩耗性を向上させることができる。   Here, according to the present invention, the half-value width Bf of the peak attributed to the (111) plane in the X-ray analysis pattern of the covering layer 6 on the flank 4 is 0.6 ° or more. That is, among the particles constituting the coating layer 6, the (111) plane particles are atomized and the growth direction of the particles is uniform. Thereby, the abrasion resistance of the flank 4 can be improved.

また、半価幅Bfを0.6°〜0.8°の範囲内とすることが好ましい。これによって被覆層6を構成する粒子が基体2と略垂直に均一に成長する柱状結晶となり、かつ、ほぼ均一な結晶幅を持つようになるため、膜内に応力集中がかかりにくくなる。すなわち、均一に整列した構造を持つことによって、衝撃や摩擦によって粒子の脱落を起こしにくい構造となるため、特に擦れ摩耗によって摩耗が進行していく逃げ面において耐摩耗性を向上させることができる。   Further, the half width Bf is preferably in the range of 0.6 ° to 0.8 °. As a result, the particles constituting the coating layer 6 become columnar crystals that uniformly grow substantially perpendicular to the substrate 2 and have a substantially uniform crystal width, so that stress concentration is less likely to occur in the film. That is, by having a structure that is uniformly aligned, a structure in which particles are not easily dropped by impact or friction can be obtained, and therefore, wear resistance can be improved especially on a flank where wear progresses due to frictional wear.

ここで、半価幅Bfを測定する方法としては、X線回折分析(XRD)によって測定することができる。分析の条件としては、例えばCuKα線を用い、X線の出力を40kV、40mAとし、ステップ幅0.02°で測定可能である。   Here, as a method of measuring the half width Bf, it can be measured by X-ray diffraction analysis (XRD). As analysis conditions, for example, CuKα rays can be used, the X-ray output can be 40 kV, 40 mA, and the step width can be 0.02 °.

また、すくい面3における被覆層6のX線解析パターンのうち、(111)面に帰属するピークの半価幅Brを0.9°以上、特に0.9°〜1.2°の範囲内とし、かつ、半価幅Bfおよび半価幅Brが、Bf/Br=0.6〜0.85、特に0.7〜0.8の範囲内であることが好ましい。被覆層6を当該範囲に調整することによって、すくい面における被覆層の靭性を向上させることができる。   Further, in the X-ray analysis pattern of the coating layer 6 on the rake face 3, the half-value width Br of the peak attributed to the (111) plane is 0.9 ° or more, particularly in the range of 0.9 ° to 1.2 °. In addition, it is preferable that the half-value width Bf and the half-value width Br are in the range of Bf / Br = 0.6 to 0.85, particularly 0.7 to 0.8. By adjusting the coating layer 6 to the said range, the toughness of the coating layer in a rake face can be improved.

即ち、半価幅Brを0.9以上とすることによってすくい面に成膜される被覆層6の結晶がランダムに成長するため、粒子と粒子との界面を進むクラックの進展が偏向されやすくなる結果、大きな衝撃がかかりやすいすくい面での被覆層6の靭性が向上する。   That is, by setting the half-value width Br to 0.9 or more, the crystal of the coating layer 6 formed on the rake face grows at random, so that the progress of cracks that progress through the interface between the particles is easily deflected. As a result, the toughness of the coating layer 6 on the rake face where a large impact is easily applied is improved.

また、Bf/Brを0.6以上0.85以下とすることで逃げ面において十分な耐摩耗性を発揮することができるとともに、すくい面において十分な耐欠損性を発揮させることができ、耐摩耗性と耐欠損性のバランスを最適化させることができる。   In addition, by setting Bf / Br to be 0.6 or more and 0.85 or less, sufficient wear resistance can be exhibited on the flank surface, and sufficient chipping resistance can be exhibited on the rake surface. The balance between wear and fracture resistance can be optimized.

このとき、半価幅Bfおよび半価幅Brが、2θ=36.5〜38.0°の範囲内に(111)面のX線解析パターンのピークを有することが好ましい。これより、成膜時に発生する残留圧縮応力を最適化することができる。つまり、半価幅Bfおよび半価幅Brの2θを36.5°以上38.0°以下の範囲内に調整することで圧縮応力による被覆層の剥離やチッピングを抑制することができるとともに、圧縮応力の低下による膜の剥離を抑制することができる。   At this time, it is preferable that the half-value width Bf and the half-value width Br have a peak of the (111) plane X-ray analysis pattern in the range of 2θ = 36.5-38.0 °. Thereby, the residual compressive stress generated at the time of film formation can be optimized. That is, by adjusting 2θ of the half width Bf and the half width Br within the range of 36.5 ° or more and 38.0 ° or less, peeling and chipping of the coating layer due to compressive stress can be suppressed and compression can be performed. The peeling of the film due to the decrease in stress can be suppressed.

なお、すくい面におけるX線解析パターンのピークの測定方法は、半価幅Bfを測定する方法と同様の条件のX線回折分析によって測定できるが、切削工具のすくい面はホルダの載地面に取り付けたときに、がたつきが発生することを抑えるため、研磨を施している部分があり、その部分のX線回折分析を行ってしまうと正確な値が得られにくくなってしまう。そのため、研磨部にマスクをしたり、研磨部を加工によって取り除いた状態でX線回折分析を行うことが望ましい。   The peak of the X-ray analysis pattern on the rake face can be measured by X-ray diffraction analysis under the same conditions as the method for measuring the half-value width Bf, but the rake face of the cutting tool is attached to the mounting surface of the holder. In order to prevent the occurrence of rattling, there is a portion that is polished, and if an X-ray diffraction analysis of that portion is performed, it is difficult to obtain an accurate value. For this reason, it is desirable to perform X-ray diffraction analysis in a state where the polishing portion is masked or the polishing portion is removed by processing.

[製造方法]
次に、本発明の切削工具の製造方法の一例として、炭化タングステン基超硬合金を基体とした切削工具用スローアウェイチップの製造方法について説明する。
[Production method]
Next, as an example of the method for manufacturing a cutting tool of the present invention, a method for manufacturing a throw-away tip for a cutting tool using a tungsten carbide base cemented carbide as a base will be described.

まず、原料として炭化タングステン(WC)粉末と、コバルト(Co)又はニッケル(Ni)の鉄族金属粉末を用い、さらに添加物として、周期表の4、5、6族金属、Si、Alから選ばれる元素の炭化物、窒化物、酸化物、炭窒化物等の化合物粉末、又は、複合化合物粉末、白金族元素粉末等を加えたものを混合、粉砕して混合粉末を作製する。   First, tungsten carbide (WC) powder and cobalt (Co) or nickel (Ni) iron group metal powder are used as raw materials, and the additive is selected from Group 4, 5, 6 metal, Si, Al in the periodic table A mixed powder is prepared by mixing and pulverizing a compound powder of elemental carbide, nitride, oxide, carbonitride, or the like, or a compound compound powder, platinum group element powder or the like.

作製した混合粉末を一般的な成形法にて成形し、真空焼成、窒素雰囲気焼成等の還元雰囲気で焼成し、焼結体からなる基体を作製する。   The prepared mixed powder is formed by a general forming method and fired in a reducing atmosphere such as vacuum firing or nitrogen atmosphere firing to produce a substrate made of a sintered body.

当該基体の切削工具のすくい面となる第1面と、該第1面に連なるとともに切削工具の逃げ面となる少なくとも1つ第2面を備えており、前記すくい面と逃げ面との交差稜線が、切削工具の切刃として機能する。   A first surface that is a rake face of the cutting tool of the base body, and at least one second surface that is continuous with the first surface and that is a flank face of the cutting tool, and the ridge line between the rake face and the flank face However, it functions as a cutting edge of a cutting tool.

なお、得られた基体に、所望によりR面ホーニングや、C面ホーニング等の刃先処理を施してもよい。   The obtained substrate may be subjected to blade edge processing such as R-plane honing or C-plane honing as desired.

ここで、本発明によれば、被覆層6を成膜する前処理としてすくい面3となる基体の上面(第1面)の平均算術表面粗さ(Ra)が0.03〜0.2μm、逃げ面となる基体の側面(第2面)の平均算術表面粗さ(Ra)が0.01〜0.15μmとなるように表面処理を施すことによって、被覆層6の半価幅Bf、Brを本発明の範囲内に容易に調整することができる。   Here, according to the present invention, the average arithmetic surface roughness (Ra) of the upper surface (first surface) of the substrate that becomes the rake face 3 as the pretreatment for forming the coating layer 6 is 0.03 to 0.2 μm, By applying a surface treatment so that the average arithmetic surface roughness (Ra) of the side surface (second surface) of the substrate serving as a flank surface is 0.01 to 0.15 μm, the half widths Bf and Br of the coating layer 6 are obtained. Can be easily adjusted within the scope of the present invention.

表面処理方法としては、ショットブラスト、ブラシ等の加工方法によって加工することが、切屑処理のためのブレーカ溝等の窪みにも均一に加工を施すことができるため望ましい。   As the surface treatment method, it is desirable to perform the processing by a processing method such as shot blasting or a brush because the processing can be evenly performed on the recesses such as the breaker groove for chip disposal.

このとき、逃げ面4の表面粗さをRf、すくい面3の表面粗さをRrとしたとき、Rf<Rrとなるように加工することによって、被覆層6を成膜したときに逃げ面4とすくい面3の耐摩耗性および耐欠損性が最適化されるため望ましい。   At this time, when the surface roughness of the flank 4 is Rf and the surface roughness of the rake face 3 is Rr, the flank 4 is formed when the coating layer 6 is formed by processing so that Rf <Rr. This is desirable because the wear resistance and fracture resistance of the rake face 3 are optimized.

ここで、基体2の表面粗さの測定方法は、触針式の表面粗さ測定器にて、JIS B0601’01に準拠して触針式表面粗さ測定器を用い、カットオフ値0.25mm、基準長さ:0.8mm、走査速度:0.1mm/秒にて測定することができる。   Here, the measurement method of the surface roughness of the substrate 2 is a stylus type surface roughness measuring device using a stylus type surface roughness measuring device in accordance with JIS B0601'01, with a cutoff value of 0. It can be measured at 25 mm, reference length: 0.8 mm, and scanning speed: 0.1 mm / second.

また、被覆層を成膜した後に測定する場合は、基体と被覆層との界面9を走査型電子顕微鏡(SEM)にて15000倍で観察し、基体の面粗さを測定する。具体的には、図2及び図3に示すように、基体と被覆層との界面9での最も基体が突出している最高点を通る基体と略平行な直線Aと最も基体がへこんでいる最低点を通り、基体と略平行な直線Bを形成する。そのAとBの最短距離の中点を通り、基体と略平行な直線を基準線Cとした。次に、基体と被覆層との界面の起伏の山の最高部および谷の最深部と基準線との最短距離をそれぞれの山と谷ごとに測定し、その距離の平均の値を基体の面粗さとした。上記方法にて基体の面粗さをすくい面と逃げ面でそれぞれ5箇所ずつ測定し、その平均を算出することによって擬似的に測定することができる。   When the measurement is performed after forming the coating layer, the interface 9 between the substrate and the coating layer is observed with a scanning electron microscope (SEM) at a magnification of 15000 to measure the surface roughness of the substrate. Specifically, as shown in FIGS. 2 and 3, at the interface 9 between the substrate and the coating layer, the straight line A that is substantially parallel to the substrate passing through the highest point at which the substrate protrudes most and the lowest indented substrate. A straight line B passing through the point and substantially parallel to the substrate is formed. A straight line that passed through the midpoint of the shortest distance between A and B and was substantially parallel to the substrate was defined as a reference line C. Next, the shortest distance between the highest part of the undulating mountain and the deepest part of the valley at the interface between the substrate and the coating layer and the reference line is measured for each mountain and valley, and the average value of the distances is measured on the surface of the substrate. It was rough. The surface roughness of the substrate can be measured in a pseudo manner by measuring the surface roughness of the substrate on each of the rake face and the flank face by the above method and calculating the average.

表面処理を行った後、被覆層6を物理蒸着法(PVD)によって以下の条件で成膜する。   After performing the surface treatment, the coating layer 6 is formed under the following conditions by physical vapor deposition (PVD).

例えば(Ti、Al)N膜を成膜する基本的な条件は、成膜時のガス圧力2〜5Pa、バイアス電圧15〜300V、成膜温度500〜600℃に制御する。   For example, the basic conditions for forming a (Ti, Al) N film are controlled such that the gas pressure during film formation is 2 to 5 Pa, the bias voltage is 15 to 300 V, and the film formation temperature is 500 to 600 ° C.

ここで、本発明によれば、成膜時の基体に加えるバイアス電圧を、初期1分間程度のみ15〜50Vとし、その後、100〜300Vへと変化させることによって、膜中の不活性ガス含有量を所定の範囲内に制御することができるとともに、被覆層のX線回折法で検出されたピークのうち、結晶の(111)面に起因するピークの強度を最大とすることができる。   Here, according to the present invention, the bias voltage applied to the substrate at the time of film formation is set to 15 to 50 V only for an initial period of about 1 minute, and then changed to 100 to 300 V, whereby the inert gas content in the film is set. Can be controlled within a predetermined range, and the peak intensity due to the (111) plane of the crystal among the peaks detected by the X-ray diffraction method of the coating layer can be maximized.

また、特に、成膜時に導入する反応ガスとして窒素と不活性ガスとの流量比率が、不活性ガス/窒素=1〜3とすることでより微細な結晶構造と成り、かつ、異常成長した粒子を少なくすることができるため望ましい。   In particular, the flow rate ratio of nitrogen and inert gas as the reaction gas introduced during film formation is such that the inert gas / nitrogen = 1 to 3 has a finer crystal structure and abnormally grown particles. Can be reduced, which is desirable.

ここで、不活性ガスを複数の種類使用する場合は、窒素の流量と不活性ガスの合計流量の比率を上記比率に調整する。   Here, when a plurality of types of inert gas are used, the ratio of the flow rate of nitrogen and the total flow rate of the inert gas is adjusted to the above ratio.

さらに、使用するターゲットは、(Ti,Al1−x)からなる組成(x:0.4〜0.7)のチタンアルミ合金を用いることがよい。 Furthermore, the target to be used is preferably a titanium aluminum alloy having a composition (x: 0.4 to 0.7) made of (Ti x , Al 1-x ).

また、本発明の被覆層6の表面や基体2と被覆層6との間に、窒化チタン(TiN)や炭窒化チタン(TiCN)、酸化アルミニウム(Al2O3)等からなる硬質層を成膜してもよい。   Further, a hard layer made of titanium nitride (TiN), titanium carbonitride (TiCN), aluminum oxide (Al 2 O 3) or the like is formed on the surface of the coating layer 6 of the present invention or between the substrate 2 and the coating layer 6. Also good.

[切削方法]
図4から図6に本発明の切削方法の工程図を示す。まず、図4に示すように、前記切削工具11(図においては、例としてホルダに切削インサートを取り付けた旋削工具を記載する)を被削材10に近づける。なお、切削工具11と被削材10は、相対的に近づけば良く、例えば、被削材10を切削工具1に近づけても良い。
[Cutting method]
4 to 6 show process diagrams of the cutting method of the present invention. First, as shown in FIG. 4, the cutting tool 11 (in the drawing, a turning tool in which a cutting insert is attached to a holder is described as an example) is brought close to the work material 10. Note that the cutting tool 11 and the work material 10 may be relatively close to each other. For example, the work material 10 may be close to the cutting tool 1.

その後、被削材10と切削工具11の少なくとも一方を回転させる。なお、図においては、被削材10が回転するものを例示している。次いで、図5に示すように前記切削インサートの切刃部分を被削材10に接触させて被削材10を切削する。その後、図6に示すように前記被削材10から切削工具11を離間させる。なお、切削加工を継続する場合は、切削工具11と被削材10を相対的に回転させた状態を保持して、被削材10となる箇所に切削工具11の切刃を接触させる工程を繰り返す。   Thereafter, at least one of the work material 10 and the cutting tool 11 is rotated. In addition, in the figure, what the workpiece 10 rotates is illustrated. Next, as shown in FIG. 5, the work piece 10 is cut by bringing the cutting edge portion of the cutting insert into contact with the work material 10. Thereafter, the cutting tool 11 is separated from the work material 10 as shown in FIG. In addition, when continuing a cutting process, the state which rotated the cutting tool 11 and the cut material 10 relatively is hold | maintained, and the process which makes the cutting blade of the cutting tool 11 contact the location used as the cut material 10 repeat.

以下に発明の実施例について説明する。   Examples of the invention will be described below.

(実施例1)
平均粒径0.7μmのWC粉末87質量%、Co粉末10質量%、TiC粉末2質量%、NbC粉末1質量%を粉砕、混合し、得られた混合粉末をプレス成形にてCNMG120408形状に成形し、真空雰囲気で焼成して超硬合金基体を作成した。
Example 1
Crushing and mixing 87% by mass of WC powder with an average particle size of 0.7 μm, 10% by mass of Co powder, 2% by mass of TiC powder, and 1% by mass of NbC powder, and forming the resulting mixed powder into CNMG120408 shape by press molding Then, it was fired in a vacuum atmosphere to prepare a cemented carbide substrate.

得られた超硬合金基体のすくい面と逃げ面をショットブラストにて表2の表面粗さになるように表面処理をしたあと、アークイオンプレーティング法を用いて表1に記載の成膜条件にて(Ti,Al)N膜を成膜した。

Figure 0005094177
The rake face and flank face of the obtained cemented carbide substrate were subjected to surface treatment by shot blasting so as to have the surface roughness shown in Table 2, and then the film formation conditions shown in Table 1 using the arc ion plating method. (Ti, Al) N film was formed at
Figure 0005094177

次に、得られた試料の逃げ面における(111)面のX線解析ピークの半価幅Bfと、すくい面における(111)面のX線解析ピークの半価幅Brを、CuKα線を用い、X線の出力を40kV、40mAとし、ステップ幅0.02°の条件のX線回折分析によって測定し、Bf、Br、Bf/Brをそれぞれ表2に示した
また、基体と被覆層との界面9を走査型電子顕微鏡(SEM)にて15000倍で観察し、基体の面粗さを測定した。具体的には、基体と被覆層との界面9での最も基体が突出している最高点を通る基体と略平行な直線Aと最も基体がへこんでいる最低点を通り、基体と略平行な直線Bを形成する。そのAとBの最短距離の中点を通り、基体と略平行な直線を基準線Cとした。次に、基体と被覆層との界面9の起伏の山の最高部および谷の最深部と基準線との最短距離をそれぞれの山と谷ごとに測定し、その距離の平均の値を基体の面粗さとした。上記方法にて基体の面粗さをすくい面と逃げ面でそれぞれ5箇所ずつ測定し、その平均を各試料について算出した。結果は表2に示した。

Figure 0005094177
Next, the half-value width Bf of the (111) plane X-ray analysis peak on the flank of the obtained sample and the half-value width Br of the (111) plane X-ray analysis peak on the rake face are calculated using CuKα rays. The X-ray output was 40 kV, 40 mA, and X-ray diffraction analysis was performed under the condition of a step width of 0.02 °. Bf, Br, and Bf / Br are shown in Table 2, respectively. The interface 9 was observed with a scanning electron microscope (SEM) at 15000 times, and the surface roughness of the substrate was measured. Specifically, at the interface 9 between the substrate and the coating layer, a straight line A that is substantially parallel to the substrate passing through the highest point from which the substrate protrudes and a straight line that is substantially parallel to the substrate through the lowest point where the substrate is most recessed. B is formed. A straight line that passed through the midpoint of the shortest distance between A and B and was substantially parallel to the substrate was defined as a reference line C. Next, the shortest distance between the highest part of the undulating mountain and the deepest part of the valley of the interface 9 between the substrate and the coating layer and the reference line is measured for each mountain and valley, and an average value of the distances is measured. The surface was rough. According to the above method, the surface roughness of the substrate was measured at five points on each of the rake face and the flank face, and the average was calculated for each sample. The results are shown in Table 2.
Figure 0005094177

また、作製した試料を以下の条件にて切削試験を行った。   Further, a cutting test was performed on the prepared sample under the following conditions.

(連続切削条件)
被削材 :SUS304 円柱材
工具形状:CNMG120408
切削速度:200m/分
送り速度:0.25mm/rev
切り込み:1.5mm
切削時間:15分
切削状態:エマルジョン15%+水85%混合液による湿式
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(断続切削条件)
被削材 :SUS304 4本溝入円柱材
工具形状:CNMG120408
切削速度:120m/分
送り速度:0.2mm/rev
切り込み:1mm
切削状態:エマルジョン15%+水85%混合液による湿式
評価項目:欠損に至る衝撃回数、衝撃回数1000回到達時における刃先の状態観察

Figure 0005094177
(Continuous cutting conditions)
Work material: SUS304 Cylindrical tool shape: CNMG120408
Cutting speed: 200 m / min Feed speed: 0.25 mm / rev
Cutting depth: 1.5mm
Cutting time: 15 minutes Cutting state: Wet evaluation with a mixture of emulsion 15% + water 85% Item: Observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (intermittent cutting conditions)
Work material: SUS304 Four grooved cylindrical material Tool shape: CNMG120408
Cutting speed: 120 m / min Feed speed: 0.2 mm / rev
Cutting depth: 1mm
Cutting state: Wet evaluation item with a mixture of 15% emulsion + 85% water: Observation of the state of the cutting edge when the number of impacts leading to the defect and the number of impacts reached 1000 times
Figure 0005094177

表3より、半価幅Bfが本発明の範囲外である試料No.15〜18では、フランク摩耗や先端摩耗の進行が早く、また、摩耗の急激な進行によって刃先の強度が低下してしまい、耐摩耗性および耐欠損性が共に低い性能であった。   From Table 3, Sample No. whose half width Bf is outside the range of the present invention is shown. In Nos. 15 to 18, the progress of flank wear and tip wear was rapid, and the strength of the blade edge was lowered by the rapid progress of wear, and both the wear resistance and fracture resistance were low.

一方、半価幅Bfを本発明の範囲内とした試料No.1〜14では、耐摩耗性、耐欠損性共に高い性能を発揮した。特に、すくい面の半価幅Brを調節した試料において特に高い性能を発揮した。   On the other hand, sample Nos. With half width Bf within the scope of the present invention. 1 to 14 exhibited high performance in both wear resistance and fracture resistance. In particular, a particularly high performance was exhibited in a sample in which the half-value width Br of the rake face was adjusted.

以上、本発明の実施形態を例示したが、本発明は前記実施形態に限定されるものではなく、発明の目的を逸脱しない限り任意のものとすることができることは言うまでもない。
As mentioned above, although embodiment of this invention was illustrated, this invention is not limited to the said embodiment, It cannot be overemphasized that it can be made arbitrary, unless it deviates from the objective of invention.

一実施例にかかる切削工具の概略斜視図である。It is a schematic perspective view of the cutting tool concerning one Example. 一実施例にかかる切削工具の概略断面図である。It is a schematic sectional drawing of the cutting tool concerning one Example. 図2の基体と被覆層の界面部分(E部分)の拡大図である。It is an enlarged view of the interface part (E part) of the base | substrate and coating layer of FIG. 本発明の切削方法の工程図である。It is process drawing of the cutting method of this invention. 本発明の切削方法の工程図である。It is process drawing of the cutting method of this invention. 本発明の切削方法の工程図である。It is process drawing of the cutting method of this invention.

符号の説明Explanation of symbols

1、11 切削工具
2 基体
3 すくい面
4 逃げ面
5 切刃
6 被覆層
9 基体表面(基体と被覆層との界面)
10 被削材
DESCRIPTION OF SYMBOLS 1,11 Cutting tool 2 Base | substrate 3 Rake face 4 Relief face 5 Cutting edge 6 Covering layer 9 Base | substrate surface (interface of base | substrate and coating layer)
10 Work material

Claims (4)

基体と、該基体の表面に形成されたTiおよびAlを含む被覆層とを備え、
前記基体は、上面にすくい面、側面に逃げ面を有し、前記すくい面と逃げ面との交差稜線の少なくとも一部に切刃を備える切削工具において、
前記逃げ面における被覆層のX線解析パターンのうち(111)面に帰属するピークの半価幅Bfが0.6°以上であるとともに、前記すくい面における被覆層のX線解析パターンのうち、(111)面に帰属するピークの半価幅Brが0.9°以上であり、前記半価幅Bfおよび前記半価幅Brが、Bf/Br=0.6〜0.85の範囲内であることを特徴とする切削工具。
A substrate and a coating layer containing Ti and Al formed on the surface of the substrate;
In the cutting tool, the base body has a rake face on an upper surface, a flank face on a side surface, and a cutting edge on at least a part of an intersecting ridge line between the rake face and the flank face.
Among the X-ray analysis patterns of the coating layer on the flank, the half width Bf of the peak attributed to the (111) plane is 0.6 ° or more, and among the X-ray analysis patterns of the coating layer on the rake surface, The half-value width Br of the peak attributed to the (111) plane is 0.9 ° or more, and the half-value width Bf and the half-value width Br are within the range of Bf / Br = 0.6 to 0.85. A cutting tool characterized by being.
前記半価幅Bfおよび前記半価幅Brは、2θ=36.5〜38.0の範囲内にX線解析パターンのピークを有することを特徴とする請求項に記載の切削工具。 2. The cutting tool according to claim 1 , wherein the half-value width Bf and the half-value width Br have a peak of an X-ray analysis pattern in a range of 2θ = 36.5 to 38.0. 前記被覆層が、(Ti,Al)Nからなることを特徴とする請求項1または2に記載の切削工具。 The coating layer, cutting tool according to claim 1 or 2, characterized in that it consists of (Ti, Al) N. 請求項1乃至のいずれかに記載の切削工具を用いて被削材を切削する切削方法であって、
前記切削工具と前記被削材とを相対的に近づける近接工程と、
前記切削工具および前記被削材の少なくとも一方を回転させ、前記切削工具の切刃を被削材に接触させて、被削材を切削する切削工程と、
前記被削材と前記切削工具とを相対的に離間させる離間工程とを、備えることを特徴とする切削方法。
A cutting method of cutting a work material using the cutting tool according to any one of claims 1 to 3,
A proximity process for relatively bringing the cutting tool and the work material close together;
A cutting step of cutting the work material by rotating at least one of the cutting tool and the work material, bringing the cutting blade of the cutting tool into contact with the work material; and
A cutting method comprising: a separation step of relatively separating the work material and the cutting tool.
JP2007080786A 2007-03-27 2007-03-27 Cutting tool and cutting method Active JP5094177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080786A JP5094177B2 (en) 2007-03-27 2007-03-27 Cutting tool and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080786A JP5094177B2 (en) 2007-03-27 2007-03-27 Cutting tool and cutting method

Publications (2)

Publication Number Publication Date
JP2008238314A JP2008238314A (en) 2008-10-09
JP5094177B2 true JP5094177B2 (en) 2012-12-12

Family

ID=39910262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080786A Active JP5094177B2 (en) 2007-03-27 2007-03-27 Cutting tool and cutting method

Country Status (1)

Country Link
JP (1) JP5094177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425256B2 (en) 2020-07-13 2024-01-30 甸碩水産科技(化州)有限公司 shrimp peeling device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495735B2 (en) * 2009-11-27 2014-05-21 京セラ株式会社 Cutting tools
JP5796778B2 (en) * 2012-01-23 2015-10-21 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
JP6510771B2 (en) * 2013-06-26 2019-05-08 日立金属株式会社 Coated cutting tool for milling titanium or titanium alloy and method of manufacturing the same
JP6602672B2 (en) * 2013-11-25 2019-11-06 株式会社タンガロイ Coated tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758288B2 (en) * 2000-12-28 2011-08-24 株式会社神戸製鋼所 Manufacturing method of hard coating
JP3931325B2 (en) * 2001-10-03 2007-06-13 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425256B2 (en) 2020-07-13 2024-01-30 甸碩水産科技(化州)有限公司 shrimp peeling device

Also Published As

Publication number Publication date
JP2008238314A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP6037255B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6037256B1 (en) Surface-coated cutting tool and manufacturing method thereof
KR101386856B1 (en) Surface-coated cutting tool
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4854359B2 (en) Surface coated cutting tool
KR101801660B1 (en) Coated tool
JP2015163423A (en) Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
WO2016047584A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
KR20160088351A (en) Coated tool
CN104789938A (en) Surface coating cutting tool hard coating layer of which gives play to excellent anti-tipping performance
CN110191777A (en) Hard coating layer plays the surface-coated cutting tool of excellent wear resistance, wearability
JP5094177B2 (en) Cutting tool and cutting method
KR20180128822A (en) Surface-coated cutting tool and method of producing the same
CN109641286A (en) Hard coating layer plays the surface-coated cutting tool of excellent chipping resistance and peel resistance
CN104816141B (en) Surface-coated cutting tool
JP6556246B2 (en) Coated tool
JP6617917B2 (en) Surface coated cutting tool
JP2008238344A (en) Cutting tool, its manufacturing method, and cutting method
CN107614167A (en) Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife
JP6794604B1 (en) Cutting tools
JP7453616B2 (en) surface coated cutting tools
JP6522985B2 (en) Coated tools
KR101894313B1 (en) Coated tool and cutting tool
JP5495735B2 (en) Cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3