JP6602672B2 - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP6602672B2
JP6602672B2 JP2015549219A JP2015549219A JP6602672B2 JP 6602672 B2 JP6602672 B2 JP 6602672B2 JP 2015549219 A JP2015549219 A JP 2015549219A JP 2015549219 A JP2015549219 A JP 2015549219A JP 6602672 B2 JP6602672 B2 JP 6602672B2
Authority
JP
Japan
Prior art keywords
coating layer
cross
section
coated tool
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015549219A
Other languages
Japanese (ja)
Other versions
JPWO2015076401A1 (en
Inventor
司 城地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Publication of JPWO2015076401A1 publication Critical patent/JPWO2015076401A1/en
Application granted granted Critical
Publication of JP6602672B2 publication Critical patent/JP6602672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides

Description

本発明は、被覆工具に関する。  The present invention relates to a coated tool.

鋼、鋳鉄、ステンレス鋼、耐熱合金などの切削加工には、被覆工具が広く用いられている。例えば、超硬合金、サーメット、cBN焼結体などの基材の表面に、TiN層やTiAlN層などを形成した被覆工具が広く用いられている。  Coated tools are widely used for cutting of steel, cast iron, stainless steel, heat-resistant alloys and the like. For example, a coated tool in which a TiN layer or a TiAlN layer is formed on the surface of a base material such as cemented carbide, cermet, or cBN sintered body is widely used.

被覆工具の従来技術としては、特許文献1に記載された被覆工具が知られている。特許文献1に記載された被覆工具は、硬質粒子および結合相を含む基材と、被膜とを備えている。被膜と接する硬質粒子の表面には、凹凸が形成されている。基材のすくい面の表面の粗度Rzは、1.0μm以上30μm以下である。  As a conventional technique of a coated tool, a coated tool described in Patent Document 1 is known. The coated tool described in Patent Document 1 includes a substrate including hard particles and a binder phase, and a coating. Concavities and convexities are formed on the surface of the hard particles in contact with the coating. The surface roughness Rz of the rake face of the substrate is 1.0 μm or more and 30 μm or less.

また、被覆工具の従来技術としては、特許文献2に記載された被覆工具が知られている。特許文献2に記載された被覆工具は、WC基超硬合金、サーメット、セラミックス、高速度鋼等からなる母材と、母材の表面に形成された被膜とを備えている。被膜は、IVa、Va、VIa族金属元素およびAl、Siから選ばれる2種類以上の元素からなる合金の、窒化物、酸化物、炭化物、炭窒化物又はホウ化物を含む。被膜は、物理的蒸着法により、50nm以下の粒子径となるように形成される。  Moreover, the coating tool described in patent document 2 is known as a prior art of a coating tool. The coated tool described in Patent Document 2 includes a base material made of WC-base cemented carbide, cermet, ceramics, high-speed steel, and the like, and a coating formed on the surface of the base material. The coating contains a nitride, oxide, carbide, carbonitride, or boride of an alloy composed of a group IVa, Va, VIa group metal element and two or more elements selected from Al and Si. The coating is formed by physical vapor deposition so as to have a particle size of 50 nm or less.

特開2012−157915号公報JP 2012-157915 A 特許3341328号公報Japanese Patent No. 3341328

特許文献1に開示された被覆切削工具では、局所的に基材の表面から硬質粒子が突出しているため、高速加工および高能率加工で切削を行う場合に、その硬質粒子を起点とした欠損または剥離を生じるという問題があった。  In the coated cutting tool disclosed in Patent Document 1, since hard particles protrude locally from the surface of the substrate, when cutting is performed with high-speed machining and high-efficiency machining, There was a problem that peeling occurred.

特許文献2に開示された被覆工具は、細かい粒子で構成された被膜を備えており、切削加工中に被覆工具の刃先と被削材が擦過したときに、被膜を構成する粒子が脱落する。このため、特許文献2に開示された被覆工具は、耐摩耗性に劣るという問題があった。  The coated tool disclosed in Patent Document 2 includes a coating composed of fine particles, and when the cutting edge of the coated tool and the work material are abraded during cutting, the particles constituting the coating fall off. For this reason, the coated tool disclosed in Patent Document 2 has a problem of poor wear resistance.

近年、切削加工の高速化、高能率化が顕著となっており、従来よりも被覆工具に負荷がかかるため、工具寿命が低下する傾向がある。  In recent years, the speeding up and efficiency of cutting have become remarkable, and since the load is applied to the coated tool more than before, the tool life tends to be reduced.

本発明は、このような問題を解決するためになされたものであり、優れた耐摩耗性、耐剥離性および耐欠損性を持つ、寿命の長い被覆工具を提供することを目的とする。  The present invention has been made to solve such a problem, and an object thereof is to provide a long-life coated tool having excellent wear resistance, peeling resistance and fracture resistance.

本発明者は、上記の観点から、被覆工具の寿命の延長について研究を行い、本発明を完成させた。本発明によれば、優れた耐摩耗性、耐剥離性および耐欠損性を持つ、寿命の長い被覆工具を提供することができる。  The present inventor has studied the extension of the life of the coated tool from the above viewpoint and completed the present invention. ADVANTAGE OF THE INVENTION According to this invention, the long-life coated tool which has the outstanding abrasion resistance, peeling resistance, and chipping resistance can be provided.

本発明の要旨は以下の通りである。
[1]基材と、前記基材の表面に形成された被覆層とを含む被覆工具であって、
前記基材は、複数の硬質粒子と、前記複数の硬質粒子を結合する結合相とを含み、
前記被覆層は、1つ又は複数の化合物層を含み、
前記化合物層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiからなる群から選択される少なくとも1種の金属元素と、C、N、OおよびBからなる群から選択される少なくとも1種の非金属元素とを含む化合物の層であり、
以下の手順(1)〜(6)によって求められるB/Aの値が、0.2以上0.5未満である、被覆工具。
(1)前記基材の表面に垂直な断面を、前記基材の表面に平行な方向に基準長さSだけ抜き出す。
(2)抜き出された断面において、前記被覆層に接している前記硬質粒子の断面の合計面積Aを求める。
(3)前記被覆層と前記基材との境界面において、互いに隣接する硬質粒子の間に形成されている複数の境界部のうち、最も深い位置にある第1の境界部D1、及び、2番目に深い位置にある第2の境界部D2を決定する。
(4)前記第1の境界部D1及び前記第2の境界部D2を通る線分Lを引く。
(5)前記被覆層に接している前記硬質粒子の断面のうち、前記線分Lよりも被覆層側にある断面の合計面積Bを求める。
(6)B/Aの値を求める。
The gist of the present invention is as follows.
[1] A coated tool comprising a substrate and a coating layer formed on the surface of the substrate,
The substrate includes a plurality of hard particles and a binder phase that binds the plurality of hard particles,
The coating layer includes one or more compound layers,
The compound layer includes at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, Al, and Si, and C, N, O, and B. A layer of a compound comprising at least one nonmetallic element selected from the group consisting of:
The coated tool whose B / A value calculated | required by the following procedures (1)-(6) is 0.2-0.5.
(1) A cross section perpendicular to the surface of the substrate is extracted by a reference length S in a direction parallel to the surface of the substrate.
(2) In the extracted cross section, the total area A of the cross section of the hard particles in contact with the coating layer is obtained.
(3) At the boundary surface between the coating layer and the base material, the first boundary portion D1 at the deepest position among the plurality of boundary portions formed between the hard particles adjacent to each other, and 2 The second boundary portion D2 at the deepest position is determined.
(4) A line segment L passing through the first boundary portion D1 and the second boundary portion D2 is drawn.
(5) The total area B of the cross section which exists in the coating layer side rather than the said line segment L among the cross sections of the said hard particle which is in contact with the said coating layer is calculated | required.
(6) The value of B / A is obtained.

[2]前記基準長さSは、前記硬質粒子の平均粒径の5倍以上である、[1]の被覆工具。[2] The coated tool according to [1], wherein the reference length S is at least five times the average particle size of the hard particles.

[3]前記被覆層は、複数の粒子を含み、
前記被覆層に含まれる複数の粒子の個数基準の累積度数が50%となるときの粒径d50が、0.1μm以上0.2μm以下であり、
前記被覆層に含まれる複数の粒子の個数基準の累積度数が80%となるときの粒径d80が、0.25μm以上0.45μm以下である、[1]または[2]の被覆工具。
[3] The coating layer includes a plurality of particles,
The particle size d50 when the cumulative frequency based on the number of the plurality of particles contained in the coating layer is 50% is 0.1 μm or more and 0.2 μm or less,
The coated tool according to [1] or [2], wherein the particle size d80 when the cumulative frequency based on the number of the plurality of particles contained in the coating layer is 80% is 0.25 μm or more and 0.45 μm or less.

[4]前記被覆層の平均厚さは、0.6μm以上15μm以下である、[1]から[3]のうちいずれかの被覆工具。[4] The coated tool according to any one of [1] to [3], wherein an average thickness of the coating layer is 0.6 μm or more and 15 μm or less.

[5]前記基材に含まれる前記硬質粒子の平均粒径は、0.3μm以上5μm以下である、[1]から[4]のうちいずれかの被覆工具。[5] The coated tool according to any one of [1] to [4], wherein the hard particles included in the base material have an average particle diameter of 0.3 μm or more and 5 μm or less.

前記基材に含まれる前記硬質粒子は、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種の金属元素と、C、N、OおよびBからなる群から選択される少なくとも1種の非金属元素とを含む化合物の粒子である、[1]から[5]のうちいずれかの被覆工具。  The hard particles contained in the base material are at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and C, N, O and B The coated tool according to any one of [1] to [5], which is a particle of a compound containing at least one nonmetallic element selected from the group consisting of:

被覆層に接する硬質粒子の断面の合計面積A、および線分Lよりも被覆層側の硬質粒子の断面の合計面積Bを説明するための図。The figure for demonstrating the total area A of the cross section of the hard particle which touches a coating layer, and the total area B of the cross section of the hard particle from the line segment L to the coating layer side. 被覆層に接する硬質粒子の断面の合計面積A、および線分Lよりも被覆層側の硬質粒子の断面の合計面積Bを説明するための図。The figure for demonstrating the total area A of the cross section of the hard particle which touches a coating layer, and the total area B of the cross section of the hard particle from the line segment L to the coating layer side. 被覆層に接する硬質粒子の断面の合計面積A、および線分Lよりも被覆層側の硬質粒子の断面の合計面積Bを説明するための図。The figure for demonstrating the total area A of the cross section of the hard particle which touches a coating layer, and the total area B of the cross section of the hard particle from the line segment L to the coating layer side. 基材の表面に垂直な断面の模式図。The schematic diagram of a cross section perpendicular | vertical to the surface of a base material. 基材の表面に垂直な断面の模式図。The schematic diagram of a cross section perpendicular | vertical to the surface of a base material. 基材の表面に垂直な断面の模式図。The schematic diagram of a cross section perpendicular | vertical to the surface of a base material.

<被覆工具>
本発明の被覆工具は、基材と、その基材の表面に形成された被覆層とを含む。被覆工具は、例えば、フライス加工用インサートまたは旋削加工用インサート、ドリル、又はエンドミルなどである。
<Coated tool>
The coated tool of the present invention includes a substrate and a coating layer formed on the surface of the substrate. The coated tool is, for example, a milling insert or a turning insert, a drill, or an end mill.

<基材>
本発明の基材は、被覆工具の基材として用いられるものであれば特に限定されない。基材の例として、具体的には、超硬合金およびサーメットなどを挙げることができる。その中でも、基材は、耐摩耗性および耐欠損性に優れる超硬合金であることが好ましい。
<Base material>
The base material of the present invention is not particularly limited as long as it is used as a base material for a coated tool. Specific examples of the substrate include cemented carbide and cermet. Among these, it is preferable that the base material is a cemented carbide excellent in wear resistance and fracture resistance.

本発明の基材は、硬質粒子と硬質粒子を結合する結合相とを含む。硬質粒子は、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群より選択される少なくとも1種の金属元素と、C、N、OおよびBからなる群より選択される少なくとも1種の非金属元素とからなる化合物である。  The base material of the present invention includes hard particles and a binder phase that binds the hard particles. The hard particles are selected from the group consisting of at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and C, N, O and B It is a compound composed of at least one nonmetallic element.

<硬質粒子の粒径>
本発明の硬質粒子の粒径は、基材の表面に垂直な断面において、硬質粒子の断面の面積と等しい面積の円の直径(円相当径)として定義される。
<Particle size of hard particles>
The particle diameter of the hard particles of the present invention is defined as the diameter (equivalent circle diameter) of a circle having an area equal to the area of the cross section of the hard particles in a cross section perpendicular to the surface of the substrate.

<硬質粒子の平均粒径>
本発明の硬質粒子の平均粒径は、複数の硬質粒子の粒径の合計を、その硬質粒子の数で割った値として定義される。
硬質粒子の平均粒径は、例えば、基材の表面に垂直な断面の写真を見たときに、その断面内に存在する硬質粒子の粒径の合計を、その断面内に存在する硬質粒子の数で割ることによって求めることができる。このとき、断面内に存在する硬質粒子の数は、5個以上であることが好ましく、10個以上であることがより好ましい。
<Average particle size of hard particles>
The average particle size of the hard particles of the present invention is defined as a value obtained by dividing the sum of the particle sizes of a plurality of hard particles by the number of the hard particles.
The average particle size of the hard particles is, for example, the sum of the particle sizes of the hard particles existing in the cross section when the photograph of the cross section perpendicular to the surface of the substrate is viewed. It can be determined by dividing by a number. At this time, the number of hard particles present in the cross section is preferably 5 or more, and more preferably 10 or more.

硬質粒子の平均粒径が0.3μm未満である場合、工具の耐欠損性が低下する傾向がある。硬質粒子の平均粒径が5μmを超える場合、工具の耐摩耗性が低下する傾向がある。そのため、硬質粒子の平均粒径は、0.3μm以上5μm以下であることが好ましい。  When the average particle size of the hard particles is less than 0.3 μm, the fracture resistance of the tool tends to be reduced. When the average particle size of the hard particles exceeds 5 μm, the wear resistance of the tool tends to decrease. Therefore, the average particle diameter of the hard particles is preferably 0.3 μm or more and 5 μm or less.

図1は、基材の表面に垂直な断面研磨面の一例を示している。
図1に示すように、基材の表面には、被覆層が形成されている。基材は、複数の硬質粒子と、複数の硬質粒子を結合する結合相を含む。基材に含まれる複数の硬質粒子の一部は、被覆層に接している。被覆層と基材の境界面において、互いに隣接する硬質粒子の間には、複数の境界部が形成されている。
FIG. 1 shows an example of a cross-sectional polished surface perpendicular to the surface of the substrate.
As shown in FIG. 1, a coating layer is formed on the surface of the substrate. The substrate includes a plurality of hard particles and a binder phase that binds the plurality of hard particles. Some of the plurality of hard particles contained in the substrate are in contact with the coating layer. A plurality of boundary portions are formed between the hard particles adjacent to each other on the boundary surface between the coating layer and the substrate.

図2は、基材の表面に垂直な断面の模式図である。以下、図1及び図2を参照しながら、本発明の被覆工具の特徴であるB/Aの値の求め方について説明する。  FIG. 2 is a schematic view of a cross section perpendicular to the surface of the substrate. Hereinafter, with reference to FIG. 1 and FIG. 2, a method for obtaining the B / A value, which is a feature of the coated tool of the present invention, will be described.

(1)まず、基材の表面な垂直な断面を、基材の表面に平行な方向に基準長さSだけ抜き出す。基準長さSは、硬質粒子の平均粒径の5倍以上であることが好ましい。(1) First, a vertical section on the surface of the substrate is extracted by a reference length S in a direction parallel to the surface of the substrate. The reference length S is preferably at least 5 times the average particle size of the hard particles.

(2)つぎに、基準長さSだけ抜き出した断面において、被覆層に接している硬質粒子の断面の合計面積Aを求める。硬質粒子の断面の合計面積Aは、例えば、市販の画像処理ソフトウェアによって求めることができる。(2) Next, in the cross section extracted by the reference length S, the total area A of the cross section of the hard particles in contact with the coating layer is obtained. The total area A of the cross section of the hard particles can be determined by, for example, commercially available image processing software.

(3)被覆層と基材との境界面において、互いに隣接する硬質粒子の間に形成される複数の境界部のうち、最も深い位置にある第1の境界部D1、及び、2番目に深い位置にある第2の境界部D2を決定する。ここでいう「深い」とは、例えば図2の下方を意味しており、被覆層から基材に向かう方向を意味する。第1の境界部D1及び第2の境界部D2は、同じ深さに位置していてもよい。(3) The first boundary portion D1 at the deepest position among the plurality of boundary portions formed between adjacent hard particles at the boundary surface between the coating layer and the base material, and the second deepest The second boundary portion D2 at the position is determined. “Deep” here means, for example, the lower side of FIG. 2 and means the direction from the coating layer toward the substrate. The first boundary part D1 and the second boundary part D2 may be located at the same depth.

(4)第1の境界部D1及び第2の境界部D2を通る線分Lを引く。(4) A line segment L passing through the first boundary portion D1 and the second boundary portion D2 is drawn.

(5)基準長さSだけ抜き出した断面において、被覆層に接している硬質粒子の断面のうち、線分Lよりも上側にある断面の合計面積Bを求める。線分Lよりも上側にある断面の合計面積Bは、例えば、市販の画像処理ソフトウェアによって求めることができる。(5) In the cross section extracted by the reference length S, the total area B of the cross section above the line segment L among the cross sections of the hard particles in contact with the coating layer is obtained. The total area B of the cross section above the line segment L can be obtained by, for example, commercially available image processing software.

(6)B/Aの値を求める。(6) The value of B / A is obtained.

B/Aは、0.2以上0.5未満である。B/Aが0.2未満である場合、基材と被覆層との間のアンカー効果が低下するため、基材と被覆層との間の密着性が低下する。B/Aが0.5以上である場合、硬質粒子の凸部の面積が大きいため、被覆工具に異常な損傷が発生する場合がある。  B / A is 0.2 or more and less than 0.5. When B / A is less than 0.2, the anchor effect between the base material and the coating layer is lowered, so that the adhesion between the base material and the coating layer is lowered. When B / A is 0.5 or more, since the area of the convex portion of the hard particle is large, abnormal damage may occur in the coated tool.

本発明において、基準長さSは、硬質粒子の平均粒径の5倍以上であることが好ましい。基準長さSが硬質粒子の平均粒径の5倍未満である場合、基準長さSの範囲に含まれる硬質粒子の数が少ないため、測定誤差が大きくなる。  In the present invention, the reference length S is preferably at least 5 times the average particle size of the hard particles. When the reference length S is less than 5 times the average particle diameter of the hard particles, the number of hard particles included in the range of the reference length S is small, so that the measurement error increases.

本発明の被覆工具は、B/Aの値が0.2以上0.5未満であることを特徴とする。工具の表面の全部においてB/Aの値が0.2以上0.5未満である必要はなく、切削に関与する部位においてB/Aの値が0.2以上0.5未満であればよい。例えば、インサートを取り付けるためのねじ穴の断面において、B/Aの値が0.2以上0.5未満である必要はない。ねじ穴は、切削に関与する部位ではないからである。具体的には、切削に関与する部位の60%以上の断面において、B/Aの値が0.2以上0.5未満であることが好ましい。より好ましくは、70%以上の断面においてB/Aの値が0.2以上0.5未満であり、さらに好ましくは、80%以上の断面においてB/Aの値が0.2以上0.5未満である。切削に関与する部位の80%以上の断面において、B/Aの値が0.2以上0.5未満である場合には、非常に良好な切削性能が得られる。  The coated tool of the present invention is characterized in that the value of B / A is 0.2 or more and less than 0.5. It is not necessary that the B / A value is 0.2 or more and less than 0.5 on the entire surface of the tool. . For example, in the cross section of the screw hole for attaching the insert, the value of B / A does not have to be 0.2 or more and less than 0.5. This is because the screw hole is not a part involved in cutting. Specifically, it is preferable that the value of B / A is 0.2 or more and less than 0.5 in a cross section of 60% or more of a part involved in cutting. More preferably, the B / A value is 0.2 or more and less than 0.5 in a cross section of 70% or more, and more preferably, the B / A value is 0.2 or more and 0.5 in a cross section of 80% or more. Is less than. When the B / A value is 0.2 or more and less than 0.5 in a cross section of 80% or more of the part involved in cutting, very good cutting performance can be obtained.

例えば、5個の断面を検査した場合に、4個の断面(5視野中4視野)において上記の関係を満たす場合に、80%の断面において上記の関係を満たすと言うことができる。検査する断面数が多い方が好ましいが、少なくとも5個の断面を検査すれば、B/Aの値と切削性能との間の所定の相関が得られる。  For example, when 5 cross-sections are inspected, when the above relationship is satisfied in 4 cross-sections (4 visual fields out of 5 fields), it can be said that the above relationship is satisfied in 80% of cross-sections. It is preferable that the number of cross sections to be inspected is large, but if at least 5 cross sections are inspected, a predetermined correlation between the value of B / A and the cutting performance can be obtained.

<被覆層>
本発明の被覆層は、1つ又は複数の化合物層を含む。化合物層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Y、AlおよびSiからなる群より選択される少なくとも1種の金属元素と、C、N、OおよびBからなる群より選択される少なくとも1種の非金属元素とを含む化合物の層である。このような化合物層は、耐摩耗性に優れるので好ましい。化合物層は、組成が異なる複数の層を交互に積層させた構造を有することがさらに好ましい。
<Coating layer>
The coating layer of the present invention includes one or more compound layers. The compound layer includes at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Y, Al, and Si, and C, N, O, and B. It is a layer of a compound containing at least one nonmetallic element selected from the group consisting of: Such a compound layer is preferable because of its excellent wear resistance. More preferably, the compound layer has a structure in which a plurality of layers having different compositions are alternately laminated.

本発明の被覆層全体の平均厚さは、0.6μm以上15μm以下であることが好ましい。被覆層全体の平均厚さが0.6μm未満である場合、耐摩耗性が低下する傾向がある。被覆層全体の平均厚さが15μmを超える場合、耐欠損性が低下する傾向がある。  The average thickness of the entire coating layer of the present invention is preferably 0.6 μm or more and 15 μm or less. When the average thickness of the entire coating layer is less than 0.6 μm, the wear resistance tends to decrease. When the average thickness of the entire coating layer exceeds 15 μm, the chipping resistance tends to decrease.

被覆層の厚さは、被覆工具の断面の研磨面を、光学顕微鏡、走査電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE−SEM)、透過電子顕微鏡(TEM)などを用いて観察することで測定することができる。  The thickness of the coating layer is observed by using an optical microscope, a scanning electron microscope (SEM), a field emission scanning electron microscope (FE-SEM), a transmission electron microscope (TEM), etc. Can be measured.

なお、被覆層の各層の厚さは、金属蒸発源に対向する面の刃先から被覆工具の中心部に向かって50μmの位置の近傍において測定することができる。被覆層の各層の厚さを、各層の3箇所以上において測定することができる。各層の3箇所以上において測定された厚さ平均値を、各層の厚さの代表値として用いることができる。  In addition, the thickness of each layer of a coating layer can be measured in the vicinity of the position of 50 micrometers toward the center part of a coating tool from the blade edge of the surface facing a metal evaporation source. The thickness of each layer of the coating layer can be measured at three or more locations in each layer. Thickness average values measured at three or more locations of each layer can be used as representative values of the thickness of each layer.

各層の組成は、SEM、FE−SEM、TEMなどの電子顕微鏡に付属するエネルギー分散型X線分光器(EDS)や、波長分散型X線分光器(WDS)などを用いて測定することができる。  The composition of each layer can be measured using an energy dispersive X-ray spectrometer (EDS) attached to an electron microscope such as SEM, FE-SEM, or TEM, or a wavelength dispersive X-ray spectrometer (WDS). .

<被覆層に含まれる粒子の粒径>
本発明の被覆層は、結晶構造を有しており、複数の粒子(結晶粒子)を含んでいる。被覆層に含まれる粒子の粒径は、以下の手順で測定することができる。
まず、基材の表面に垂直な断面を研磨する。その研磨した断面の組織を、電子顕微鏡などを用いて観察する。
つぎに、観察された断面において、被覆層に含まれる複数の粒子を横切るようにして、基材の表面に平行な線分を引く。このとき、粒界によって切り取られる線分の長さが、粒子の粒径である。言い換えると、各粒子の外縁によって切り取られる線分の長さが、粒子の粒径であると定義される。
<Particle size of particles contained in coating layer>
The coating layer of the present invention has a crystal structure and includes a plurality of particles (crystal particles). The particle size of the particles contained in the coating layer can be measured by the following procedure.
First, a cross section perpendicular to the surface of the substrate is polished. The polished cross-sectional structure is observed using an electron microscope or the like.
Next, in the observed cross section, a line segment parallel to the surface of the substrate is drawn so as to cross a plurality of particles contained in the coating layer. At this time, the length of the line segment cut by the grain boundary is the particle size of the particle. In other words, the length of the line segment cut by the outer edge of each particle is defined as the particle size of the particle.

線分によって横切られる粒子の粒径をそれぞれ計測する。粒径の計測結果より、被覆層に含まれる粒子の累積度数のグラフを作成することができる。このグラフにおいて、横軸は粒径(μm)を表しており、縦軸は個数基準の累積度数(%)を表している。線分によって横切られる粒子の合計の個数が、累積度数100%に対応する。このグラフより、線分によって横切られる全ての粒子のうち、ある粒径以下(またはある粒径以上)の粒子が個数基準でどれくらいの割合を占めているのかを知ることができる。  The particle size of the particles traversed by the line segment is measured. From the measurement result of the particle size, a graph of the cumulative frequency of particles contained in the coating layer can be created. In this graph, the horizontal axis represents the particle size (μm), and the vertical axis represents the number-based cumulative frequency (%). The total number of particles traversed by the line segment corresponds to a cumulative frequency of 100%. From this graph, it is possible to know how much of particles that are less than a certain particle size (or more than a certain particle size) occupy on a number basis among all particles that are crossed by a line segment.

被覆層に含まれる粒子の個数基準の累積度数が50%となる粒径d50は、0.1μm以上0.2μm以下であることが好ましい。被覆層に含まれる粒子の個数基準の累積度数が80%となる粒径d80は、0.25μm以上0.45μm以下であることが好ましい。粒子の累積度数が50%となる粒径d50が0.1μm未満である場合、微細な粒子が多く存在するため、被覆層の耐摩耗性が低下する傾向がある。粒子の累積度数が50%となる粒径d50が0.2μmを超える場合、被覆層の耐剥離性が低下する傾向がある。粒子の累積度数が80%となる粒径d80が0.25μm未満である場合、被覆層が均一で微細な組織となるため、被覆層の耐摩耗性が低下する傾向がある。粒子の累積度数が80%となる粒径d80が0.45μmを超える場合、被覆層の耐剥離性及び耐欠損性が低下する傾向がある。  The particle diameter d50 at which the cumulative frequency based on the number of particles contained in the coating layer is 50% is preferably 0.1 μm or more and 0.2 μm or less. The particle diameter d80 at which the cumulative frequency based on the number of particles contained in the coating layer is 80% is preferably 0.25 μm or more and 0.45 μm or less. When the particle diameter d50 at which the cumulative frequency of particles is 50% is less than 0.1 μm, there are many fine particles, and thus the wear resistance of the coating layer tends to be reduced. When the particle diameter d50 at which the cumulative frequency of particles is 50% exceeds 0.2 μm, the peel resistance of the coating layer tends to be reduced. When the particle diameter d80 at which the cumulative frequency of particles is 80% is less than 0.25 μm, the coating layer has a uniform and fine structure, and thus the wear resistance of the coating layer tends to be reduced. When the particle diameter d80 at which the cumulative frequency of particles is 80% exceeds 0.45 μm, the peel resistance and fracture resistance of the coating layer tend to decrease.

被覆層の粒子の粒径を求めるためには、被覆工具の断面を鏡面研磨し、この研磨した断面の組織を観察する。この断面は、基材の表面に対し、垂直である。
被覆層の粒子の粒径を求めるためには、例えば、被覆層の表面近傍の断面を観察してもよいが、被覆層と基材との界面近傍の断面を観察してもよい。
In order to obtain the particle size of the particles of the coating layer, the section of the coated tool is mirror-polished and the structure of the polished section is observed. This cross section is perpendicular to the surface of the substrate.
In order to determine the particle size of the particles of the coating layer, for example, a cross section near the surface of the coating layer may be observed, but a cross section near the interface between the coating layer and the substrate may be observed.

被覆層を鏡面研磨する方法としては、ダイヤモンドペーストまたはコロイダルシリカを用いて研磨する方法や、イオンミリングなどを挙げることができる。
直径100nm以上のドロップレットを除いた断面研磨面を、FE−SEMなどによる電子線後方散乱回折(EBSD)法を用いて観察することができる。観察は、研磨した面において任意の複数の視野を選択して、視野毎に行う。各視野中に存在する被覆層の粒子について、結晶方位毎に色別(マッピング)して被覆層の粒子を視覚的に確認できるようにする。マッピングした像を撮影する。撮影したマッピング像の被覆層に、所定の長さの基材表面と平行な直線を引き、この直線によって横切られる各粒子の粒径を測定する。
なお、被覆層の断面研磨面において、直径100nm以上のドロップレットと、ドロップレット以外の断面組織は、容易に区別できる。断面研磨面を観察すると、ドロップレットの周りには厚さ数nm〜数十nmの空隙ができている。そのため、被覆層において、直径100nm以上のドロップレットとドロップレット以外の断面研磨面は、容易に区別することができる。
Examples of the method of mirror polishing the coating layer include a method of polishing using diamond paste or colloidal silica, ion milling, and the like.
The cross-section polished surface excluding droplets having a diameter of 100 nm or more can be observed using an electron beam backscatter diffraction (EBSD) method using FE-SEM or the like. Observation is performed for each field of view by selecting a plurality of fields of view on the polished surface. The particles of the coating layer existing in each visual field are color-coded (mapped) for each crystal orientation so that the particles of the coating layer can be visually confirmed. Take a mapped image. A straight line parallel to the surface of the substrate having a predetermined length is drawn on the coating layer of the photographed mapping image, and the particle diameter of each particle traversed by the straight line is measured.
In addition, on the cross-section polished surface of the coating layer, a droplet having a diameter of 100 nm or more and a cross-sectional structure other than the droplet can be easily distinguished. When the cross-section polished surface is observed, voids having a thickness of several nanometers to several tens of nanometers are formed around the droplets. Therefore, in the coating layer, a droplet having a diameter of 100 nm or more and a cross-sectional polished surface other than the droplet can be easily distinguished.

基材に含まれる硬質粒子の粒径を求めるためには、被覆工具の断面研磨面を観察する。具体的には、被覆工具の任意の断面を鏡面研磨し、この研磨した断面の組織を観察する。  In order to determine the particle size of the hard particles contained in the substrate, the cross-section polished surface of the coated tool is observed. Specifically, an arbitrary cross section of the coated tool is mirror-polished, and the structure of the polished cross section is observed.

基材を鏡面研磨する方法としては、ダイヤモンドペーストまたはコロイダルシリカを用いて研磨する方法や、イオンミリングなどを挙げることができる。
断面研磨面を、FE−SEMなどによる、EBSD法を用いて観察することができる。観察は、研磨した面において任意の複数の視野を選択して、視野毎に行う。各視野中に存在する基材の硬質粒子について、結晶方位毎に色別(マッピング)して基材の硬質粒子を視覚的に確認できるようにする。マッピングした像を撮影する。次に、撮影したマッピング像を、市販の画像解析ソフトを用いて解析する。この解析結果より、基材に含まれる硬質粒子の断面の面積と等しい面積の円の直径を求める。この直径は、基材の硬質粒子の粒径として求められる。撮影したマッピング像内に存在するすべての硬質粒子の粒径を求める。これらの粒径の平均値を求める。
Examples of the method of mirror polishing the substrate include a method of polishing using diamond paste or colloidal silica, ion milling, and the like.
The cross-section polished surface can be observed using an EBSD method such as FE-SEM. Observation is performed for each field of view by selecting a plurality of fields of view on the polished surface. The hard particles of the substrate existing in each visual field are color-coded (mapped) for each crystal orientation so that the hard particles of the substrate can be visually confirmed. Take a mapped image. Next, the photographed mapping image is analyzed using commercially available image analysis software. From this analysis result, the diameter of a circle having an area equal to the area of the cross section of the hard particles contained in the substrate is obtained. This diameter is calculated | required as a particle size of the hard particle | grains of a base material. The particle diameters of all hard particles present in the photographed mapping image are obtained. The average value of these particle sizes is determined.

被覆層に接する硬質粒子の断面の合計面積Aを求めるためには、被覆工具の断面研磨面を観察する。線分Lよりも上方の断面の合計面積Bを求めるためには、被覆工具の断面研磨面を観察する。  In order to obtain the total area A of the cross section of the hard particles in contact with the coating layer, the cross-section polished surface of the coated tool is observed. In order to obtain the total area B of the cross section above the line segment L, the cross-section polished surface of the coated tool is observed.

具体的には、基材の硬質粒子の平均粒径の5倍の値を求め、この値を基準長さSとして決定する。FE−SEMなどを用いて、基材と被覆層との界面付近の断面研磨面の反射電子像を撮影する。撮影した断面研磨面の反射電子像を、基材の表面に対し平行な方向に、基準長さSだけ抜き出す。撮影した反射電子像を、市販の画像解析ソフトを用いて解析する。この解析結果より、被覆層に接している硬質粒子の断面の合計面積Aを求める(図1(b)参照)。次に、被覆層と基材の境界面において、互いに隣接する硬質粒子によって形成される複数の境界部を決定する。複数の境界部のうち、最も深い位置にある第1の境界部D1、及び、2番目に深い位置にある第2の境界部D2を決定する。第1の境界部D1、及び、第2の境界部D2を通る線分Lを引く(図1(a)参照)。市販の画像解析ソフトを用いて、被覆層に接している硬質粒子の断面のうち、線分Lよりも被覆層側の(上方の)断面の合計面積Bを求める(図1(c)参照)。以上のようにして求められた合計面積Aおよび合計面積Bから、B/Aの値を算出することができる。  Specifically, a value five times the average particle diameter of the hard particles of the base material is obtained, and this value is determined as the reference length S. Using a FE-SEM or the like, a reflected electron image of the cross-section polished surface near the interface between the base material and the coating layer is taken. A reflected electron image of the photographed cross-section polished surface is extracted by a reference length S in a direction parallel to the surface of the substrate. The captured backscattered electron image is analyzed using commercially available image analysis software. From this analysis result, the total area A of the cross section of the hard particles in contact with the coating layer is obtained (see FIG. 1B). Next, a plurality of boundary portions formed by the hard particles adjacent to each other are determined on the boundary surface between the coating layer and the substrate. Among the plurality of boundary portions, the first boundary portion D1 at the deepest position and the second boundary portion D2 at the second deepest position are determined. A line segment L passing through the first boundary portion D1 and the second boundary portion D2 is drawn (see FIG. 1A). Using a commercially available image analysis software, among the cross sections of the hard particles in contact with the coating layer, the total area B of the cross section on the coating layer side (upward) from the line segment L is obtained (see FIG. 1C). . From the total area A and the total area B determined as described above, the value of B / A can be calculated.

被覆層の粒子の粒径および基材の硬質粒子の粒径は、例えば、EBSDを用いて測定することができる。EBSDは、粒子の粒界を明瞭に観察できるため、好ましく用いることができる。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定が好ましい。  The particle diameter of the particles of the coating layer and the particle diameter of the hard particles of the substrate can be measured using, for example, EBSD. EBSD can be preferably used because the grain boundaries of the particles can be clearly observed. The EBSD is preferably set so that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more is regarded as a grain boundary.

次に、本発明の被覆工具の製造方法について、具体例を用いて説明する。なお、本発明の被覆工具の製造方法は、当該被覆工具の構成を達成し得る限り特に制限されるものではない。  Next, the manufacturing method of the coated tool of this invention is demonstrated using a specific example. In addition, the manufacturing method of the coated tool of this invention is not restrict | limited especially as long as the structure of the said coated tool can be achieved.

例えば、本発明の被覆工具の製造方法では、硬質粒子と硬質粒子を結合する結合相とを含む工具形状の基材を準備する。続いて、この基材に対して、ブラシなどを用いてホーニング処理する。基材の表面は、焼結肌面でもよいが、研削加工を施した研削面であることが好ましい。基材の表面が研削面である場合、基材の表面がより平滑となる。  For example, in the method for manufacturing a coated tool of the present invention, a tool-shaped base material including hard particles and a binder phase that binds the hard particles is prepared. Subsequently, honing is performed on the base material using a brush or the like. The surface of the substrate may be a sintered skin surface, but is preferably a ground surface subjected to grinding. When the surface of a base material is a grinding surface, the surface of a base material becomes smoother.

次いで、第1工程として、基材に対して低い投射エネルギーで乾式ショットブラストを施す。これにより、硬質粒子の粒界に凹凸を形成する。例えば、乾式ショットブラストの条件は、被覆層の表面に対して投射角度が30〜90°、投射圧力0.02〜0.05MPa、処理時間2〜5分である。乾式ショットブラストの投射材の平均粒径は、80〜100μmであることが好ましい。投射材の材質は、例えば、AlまたはZrOであることが好ましい。Next, as a first step, dry shot blasting is performed on the substrate with low projection energy. Thereby, irregularities are formed at the grain boundaries of the hard particles. For example, the dry shot blasting conditions are a projection angle of 30 to 90 ° with respect to the surface of the coating layer, a projection pressure of 0.02 to 0.05 MPa, and a treatment time of 2 to 5 minutes. The average particle size of the projection material for dry shot blasting is preferably 80 to 100 μm. The material of the projection material is preferably, for example, Al 2 O 3 or ZrO 2 .

第1工程において、基材に対して低い投射エネルギーで乾式ショットブラストを施す。第1工程の後、第2工程として、基材に対して高い投射エネルギーで乾式ショットブラストを施す。これにより、硬質粒子の表面に凹凸を形成することができる。例えば、乾式ショットブラストの条件は、被覆層の表面に対して投射角度が30〜90°、投射圧力0.1〜0.3MPa、処理時間10〜30秒である。第2工程の処理時間は、第1工程の処理時間よりも短くてもよい。乾式ショットブラストの投射材の平均粒径は、120〜150μmであることが好ましい。投射材の材質は、例えば、AlまたはZrOであることが好ましい。In the first step, dry shot blasting is performed on the substrate with low projection energy. After the first step, as a second step, dry shot blasting is performed on the substrate with high projection energy. Thereby, unevenness | corrugation can be formed in the surface of a hard particle. For example, the dry shot blasting conditions are a projection angle of 30 to 90 ° with respect to the surface of the coating layer, a projection pressure of 0.1 to 0.3 MPa, and a treatment time of 10 to 30 seconds. The processing time of the second step may be shorter than the processing time of the first step. The average particle size of the projection material for dry shot blasting is preferably 120 to 150 μm. The material of the projection material is preferably, for example, Al 2 O 3 or ZrO 2 .

次に、第3工程として、イオンボンバードメント処理により、乾式ショットブラスト処理で基材に発生した脆弱な層を除去する。脆弱な層を除去することによって、基材と被覆層との密着性を向上させることができる。  Next, as a third step, a fragile layer generated on the substrate by dry shot blasting is removed by ion bombardment. By removing the fragile layer, the adhesion between the substrate and the coating layer can be improved.

イオンボンバードメント処理は、例えば、以下の手順で実施する。
反応容器内に、基材を導入する。
反応容器内のヒーターで、基材を200〜800℃の温度に加熱する。
基材を加熱した後、反応容器内にArガスを導入する。
反応容器内を、圧力3.0Pa〜7.0PaのArガス雰囲気に調整する。
基材に印加されるバイアス電圧−300V〜−600Vの条件でイオンボンバードメント処理を実施する。
The ion bombardment process is performed, for example, according to the following procedure.
A substrate is introduced into the reaction vessel.
The substrate is heated to a temperature of 200 to 800 ° C. with a heater in the reaction vessel.
After heating the substrate, Ar gas is introduced into the reaction vessel.
The inside of the reaction vessel is adjusted to an Ar gas atmosphere with a pressure of 3.0 Pa to 7.0 Pa.
Ion bombardment treatment is performed under the condition of a bias voltage of −300 V to −600 V applied to the substrate.

上記のようにして基材表面にイオンボンバードメント処理を施した後、この基材上に、物理蒸着法により被覆層を形成することができる。物理蒸着法として、例えば、アークイオンプレーティング法、イオンプレーティング法、スパッタ法、イオンミキシング法などを挙げることができる。その中でもアークイオンプレーティング法は、基材と被覆層との密着性が優れるので、さらに好ましい。  After the ion bombardment treatment is performed on the substrate surface as described above, a coating layer can be formed on the substrate by physical vapor deposition. Examples of the physical vapor deposition method include an arc ion plating method, an ion plating method, a sputtering method, and an ion mixing method. Among these, the arc ion plating method is more preferable because of excellent adhesion between the base material and the coating layer.

本発明の被覆工具は、例えば、以下の方法で製造することもできる。  The coated tool of this invention can also be manufactured with the following method, for example.

アークイオンプレーティング装置の反応容器内に基材を入れる。被覆層の原料となる窒素ガスを、反応容器内に導入する。反応容器内の雰囲気を、窒素雰囲気とする。続いて、反応容器内の圧力を、2〜5Paとする。炉内ヒーターで、基材を400〜800℃の温度に加熱する。基材に印加されるバイアス電圧−150〜−50Vとし、アーク電流100〜180Aという条件で、基材の表面に被覆層を形成する。  A base material is put in a reaction vessel of an arc ion plating apparatus. Nitrogen gas as a raw material for the coating layer is introduced into the reaction vessel. The atmosphere in the reaction vessel is a nitrogen atmosphere. Subsequently, the pressure in the reaction vessel is set to 2 to 5 Pa. The substrate is heated to a temperature of 400 to 800 ° C. with an in-furnace heater. A coating layer is formed on the surface of the base material under the conditions of a bias voltage of −150 to −50 V applied to the base material and an arc current of 100 to 180 A.

[発明の効果]
本発明の被覆工具は、耐摩耗性、耐剥離性および耐欠損性に優れており、従来よりも工具寿命が長くなるという効果を奏する。
[The invention's effect]
The coated tool of the present invention is excellent in wear resistance, peel resistance and fracture resistance, and has an effect that the tool life is longer than that in the prior art.

基材として、ISO規格SEKN1203AGTNインサート形状のP20相当の超硬合金を用意した。発明品1〜10、及び比較品9の基材に対して、表1に示す条件で乾式ショットブラスト処理を施した。  As a base material, an ISO standard SEKN1203AGTN insert-shaped cemented carbide equivalent to P20 was prepared. A dry shot blasting treatment was performed on the base materials of Invention Products 1 to 10 and Comparative Product 9 under the conditions shown in Table 1.

次に、アークイオンプレーティング装置の反応容器内に、表3に示す被覆層の組成からなる金属蒸発源を配置した。用意した基材を、反応容器内の回転テーブルの固定金具に固定した。  Next, a metal evaporation source having a coating layer composition shown in Table 3 was placed in the reaction vessel of the arc ion plating apparatus. The prepared base material was fixed to the fixture of the turntable in the reaction vessel.

その後、反応容器内の圧力が5.0×10−3Pa以下の真空になるまで真空引きした。真空引き後、反応容器内のヒーターで、基材の温度が500℃になるまで加熱した。加熱後、反応容器内の圧力が5.0Paになるように、反応容器内にArガスを導入した。次に、表2に示す条件で基材に対してイオンボンバードメント処理を施した。Then, it was evacuated until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. After evacuation, the substrate was heated with a heater in the reaction vessel until the temperature of the substrate reached 500 ° C. After heating, Ar gas was introduced into the reaction vessel so that the pressure in the reaction vessel was 5.0 Pa. Next, ion bombardment treatment was performed on the base material under the conditions shown in Table 2.

イオンボンバードメント処理後、発明品1、3〜10および比較品1〜10については、反応容器内の圧力が5.0×10−3Pa以下の真空になるまで真空引きした。真空引き後、窒素ガスを反応容器内に導入し、圧力2.7Paの窒素ガス雰囲気にした。基材には−50Vのバイアス電圧を印加して、アーク電流150Aのアーク放電により金属蒸発源を蒸発させて被覆層を形成した。被覆層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。After the ion bombardment treatment, the inventive products 1, 3 to 10 and the comparative products 1 to 10 were evacuated until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. After evacuation, nitrogen gas was introduced into the reaction vessel to create a nitrogen gas atmosphere at a pressure of 2.7 Pa. A bias voltage of −50 V was applied to the substrate, and the metal evaporation source was evaporated by arc discharge with an arc current of 150 A to form a coating layer. After forming the coating layer, the heater was turned off, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.

イオンボンバードメント処理後、発明品2については、反応容器内の圧力が5.0×10−3Pa以下の真空になるまで真空引きした。真空引き後、窒素ガスとメタンガスとを反応容器内に導入し、圧力2.7Paの窒素ガスとメタンガスの分圧比が窒素ガス:メタンガス=1:1となるように混合した。基材には−50Vのバイアス電圧を印加して、アーク電流150Aのアーク放電により、金属蒸発源を蒸発させて被覆層を形成した。被覆層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。After the ion bombardment treatment, the invention 2 was evacuated until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. After evacuation, nitrogen gas and methane gas were introduced into the reaction vessel and mixed so that the partial pressure ratio of nitrogen gas and methane gas at a pressure of 2.7 Pa was nitrogen gas: methane gas = 1: 1. A bias voltage of −50 V was applied to the base material, and the metal evaporation source was evaporated by arc discharge with an arc current of 150 A to form a coating layer. After forming the coating layer, the heater was turned off, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.

得られた試料の被覆層に含まれる各層の平均厚さを、SEMを用いて測定した。具体的には、金属蒸発源に対向する側の試料の断面を、ダイヤモンドペーストで鏡面研磨した。SEMを用いて、研磨された試料の断面を観察した。観察された試料の断面において、被覆層の厚さを5箇所で測定した。5箇所で測定された被覆層の厚さの平均値を求めた。試料の被覆層の組成を、各試料の製造に使用したアークイオンプレーティング装置の反応容器内で測定した。具体的には、金属蒸発源に対向する側の試料の断面を、EDSを用いて測定した。これらの測定結果を、表3に示す。  The average thickness of each layer included in the coating layer of the obtained sample was measured using SEM. Specifically, the cross section of the sample facing the metal evaporation source was mirror-polished with diamond paste. The cross section of the polished sample was observed using SEM. In the cross section of the observed sample, the thickness of the coating layer was measured at five locations. The average value of the thickness of the coating layer measured in five places was calculated. The composition of the coating layer of the sample was measured in the reaction vessel of the arc ion plating apparatus used for manufacturing each sample. Specifically, the cross section of the sample facing the metal evaporation source was measured using EDS. These measurement results are shown in Table 3.

被覆層の平均厚さを測定した後、被覆工具の断面研磨面をFE−SEMによるEBSD法で観察し、基材の硬質粒子の平均粒径を求めた。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。次に、基材の硬質粒子の平均粒径の5倍の値を求め、この値を基準長さSとして決定した。FE−SEMを用いて、基準長さSが含まれる範囲の基材と被覆層との界面における断面研磨面の反射電子像を撮影した。市販の画像解析ソフトを用いて、撮影した反射電子像から、被覆層と接する硬質粒子の合計面積Aおよび合計面積Bを求めた。表4に、基材の硬質粒子の平均粒径およびB/Aを示す。  After measuring the average thickness of the coating layer, the cross-section polished surface of the coated tool was observed by the EBSD method using FE-SEM, and the average particle size of the hard particles of the substrate was determined. The EBSD was set such that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more was regarded as a grain boundary. Next, a value five times the average particle size of the hard particles of the base material was determined, and this value was determined as the reference length S. Using a FE-SEM, a backscattered electron image of the cross-section polished surface at the interface between the base material and the coating layer in the range including the reference length S was taken. Using a commercially available image analysis software, the total area A and the total area B of the hard particles in contact with the coating layer were determined from the photographed reflected electron image. Table 4 shows the average particle size and B / A of the hard particles of the substrate.

その後、被覆層の断面研磨面から直径100nm以上のドロップレットを除いた組織をFE−SEMによるEBSD法で観察して、被覆層の粒子の粒径を求めた。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。観察された被覆層の粒子の個数全体を100%としたときの、被覆層の粒子の平均粒径に対する、被覆層の粒子の個数の累積度数を求めた。この累積度数が50%および80%となる平均粒径をそれぞれ求めた。累積度数が50%および80%となる平均粒径を表5に示す。  Then, the structure | tissue which remove | eliminated the droplet of diameter 100nm or more from the cross-section grinding | polishing surface of the coating layer was observed by the EBSD method by FE-SEM, and the particle size of the particle | grains of the coating layer was calculated | required. The EBSD was set such that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more was regarded as a grain boundary. The cumulative frequency of the number of particles in the coating layer with respect to the average particle size of the particles in the coating layer was determined when the total number of particles in the coating layer observed was 100%. Average particle diameters at which the cumulative frequency was 50% and 80% were determined. Table 5 shows the average particle diameter at which the cumulative frequency becomes 50% and 80%.

表4および表5から、発明品1〜10は、基材の硬質粒子に関するB/Aが0.2以上0.5未満の範囲にあり、被覆層の粒子の累積度数が50%となる粒径が0.1μm以上0.2μm以下の範囲にあり、被覆層の粒子の累積度数が80%となる粒径が0.25μm以上0.45μm以下の範囲にあることがわかる。  From Tables 4 and 5, Inventions 1 to 10 are particles in which the B / A relating to the hard particles of the base material is in the range of 0.2 or more and less than 0.5, and the cumulative frequency of the particles of the coating layer is 50%. It can be seen that the diameter is in the range of 0.1 μm or more and 0.2 μm or less, and the particle diameter at which the cumulative frequency of particles in the coating layer is 80% is in the range of 0.25 μm or more and 0.45 μm or less.

得られた試料を用いて、以下の試験条件1、2で正面フライス加工を行い、耐剥離性、耐摩耗性および耐欠損性を評価した。  Using the obtained sample, face milling was performed under the following test conditions 1 and 2, and peeling resistance, wear resistance, and fracture resistance were evaluated.

[試験条件1]
被削材:FCD600、
被削材形状:50mm×200mm×150mmの直方体(但し、105mm×200mmの面に正面フライス加工を行う)、
切削速度:150m/min、
送り:0.2mm/tooth、
切り込み:2.0mm、
切削幅:46mm、
クーラント:不使用(ドライ加工)、
カッター有効径:φ80mm、
評価項目:加工長が2.0mの時における剥離面積を確認した。
[Test condition 1]
Work material: FCD600,
Work material shape: 50 mm × 200 mm × 150 mm rectangular parallelepiped (however, face milling is performed on a 105 mm × 200 mm surface),
Cutting speed: 150 m / min,
Feed: 0.2mm / tooth,
Cutting depth: 2.0 mm
Cutting width: 46 mm
Coolant: Not used (dry processing)
Effective cutter diameter: φ80mm,
Evaluation item: The peeled area when the processing length was 2.0 m was confirmed.

試験条件1における加工長が2.0mの時における剥離面積を表6に示す。Table 6 shows the peeled area when the processing length in Test Condition 1 is 2.0 m.

表6より、発明品は、比較品よりも被覆層の剥離面積が小さいことが確認された。以上の結果から、発明品は、比較品よりも耐剥離性に優れていることが確認された。  From Table 6, it was confirmed that the inventive product had a smaller peeled area of the coating layer than the comparative product. From the above results, it was confirmed that the inventive product is superior in peel resistance to the comparative product.

[試験条件2]
被削材:S45C、
被削材形状:105mm×200mm×60mmの直方体(但し、正面フライス加工を行う直方体の105mm×200mmの面に、直径φ30mmの穴が6箇所開けられている)、
切削速度:250m/min、
送り:0.1mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
クーラント:不使用(ドライ加工)、
カッター有効径:φ125mm、
評価項目:試料が欠損したとき、または試料の最大逃げ面摩耗幅が0.2mmに至ったときを工具寿命とし、工具寿命までの加工長を測定した。
[Test condition 2]
Work material: S45C,
Work material shape: 105 mm × 200 mm × 60 mm cuboid (however, six holes with a diameter of 30 mm are drilled on the 105 mm × 200 mm surface of the cuboid to be face milled),
Cutting speed: 250 m / min,
Feed: 0.1 mm / tooth,
Cutting depth: 2.0 mm
Cutting width: 50 mm
Coolant: Not used (dry processing)
Effective cutter diameter: φ125mm,
Evaluation item: When the sample was missing or when the maximum flank wear width of the sample reached 0.2 mm, the tool life was measured, and the machining length up to the tool life was measured.

試験条件2における工具寿命までの加工長を表7に示す。Table 7 shows the machining lengths up to the tool life under test condition 2.

表7に示されるように、発明品は全ての試料において、損傷形態が正常摩耗であり、比較品よりも耐欠損性が優れることが分かる。発明品と、損傷形態が正常摩耗であった比較品とを比較すると、発明品の加工長は、5.1m以上であり、比較品の4.0mよりも加工長が長い。この結果より、発明品の方が比較品よりも工具寿命が長いことが分かる。  As shown in Table 7, it can be seen that the invention products have normal wear in all the samples, and the fracture resistance is superior to the comparative products. When the invention product is compared with a comparative product in which the damage form is normal wear, the processing length of the invention product is 5.1 m or more, and the processing length is longer than 4.0 m of the comparison product. From this result, it can be seen that the inventive product has a longer tool life than the comparative product.

基材として、ISO規格SEKN1203AGTNインサート形状のサーメットを用意した。発明品11、12および比較品11の基材に対して、表8に示す条件で、乾式ショットブラスト処理を施した。  As a base material, an ISO standard SEKN1203AGTN insert-shaped cermet was prepared. Dry shot blasting was performed on the base materials of Invention Products 11 and 12 and Comparative Product 11 under the conditions shown in Table 8.

次に、アークイオンプレーティング装置の反応容器内に、表10に示す被覆層の組成からなる金属蒸発源を配置した。用意した基材を、反応容器内の回転テーブルの固定金具に固定した。  Next, a metal evaporation source having a coating layer composition shown in Table 10 was placed in the reaction vessel of the arc ion plating apparatus. The prepared base material was fixed to the fixture of the turntable in the reaction vessel.

その後、反応容器内の圧力が5.0×10−3Pa以下の真空になるまで真空引きした。真空引き後、反応容器内のヒーターで、基材の温度が500℃になるまで加熱した。加熱後、反応容器内の圧力が5.0Paになるように、Arガスを導入した。次に、表9に示す条件で、基材に対してイオンボンバードメント処理を施した。Then, it evacuated until the pressure in reaction container was set to the vacuum of 5.0 * 10 < -3 > Pa or less. After evacuation, the substrate was heated with a heater in the reaction vessel until the temperature of the substrate reached 500 ° C. After heating, Ar gas was introduced so that the pressure in the reaction vessel was 5.0 Pa. Next, ion bombardment treatment was performed on the base material under the conditions shown in Table 9.

得られた試料について、イオンボンバードメント処理後、反応容器内の圧力が5.0×10−3Pa以下の真空になるまで真空引きした。真空引き後、窒素ガスを反応容器内に導入し、圧力2.7Paの窒素ガス雰囲気にした。基材には−50Vのバイアス電圧を印加して、アーク電流150Aのアーク放電により、金属蒸発源を蒸発させて基材の表面に被覆層を形成した。被覆層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。The obtained sample was evacuated after the ion bombardment treatment until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. After evacuation, nitrogen gas was introduced into the reaction vessel to create a nitrogen gas atmosphere at a pressure of 2.7 Pa. A bias voltage of −50 V was applied to the substrate, and the metal evaporation source was evaporated by arc discharge with an arc current of 150 A to form a coating layer on the surface of the substrate. After forming the coating layer, the heater was turned off, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.

得られた試料の被覆層に含まれる各層の平均厚さを測定した。具体的には、金属蒸発源に対向する側の試料の断面を、ダイヤモンドペーストで鏡面研磨した。SEMを用いて、研磨された断面を観察した。観察された断面において、被覆層の厚さを5箇所で測定した。5箇所で測定された被覆層の厚さの平均値を求めた。また、得られた試料の被覆層の組成を測定した。具体的には、金属蒸発源に対向する側の試料の断面を、EDSを用いて測定した。これらの測定結果を、表10に示す。  The average thickness of each layer included in the coating layer of the obtained sample was measured. Specifically, the cross section of the sample facing the metal evaporation source was mirror-polished with diamond paste. The polished cross section was observed using SEM. In the observed cross section, the thickness of the coating layer was measured at five locations. The average value of the thickness of the coating layer measured in five places was calculated. Moreover, the composition of the coating layer of the obtained sample was measured. Specifically, the cross section of the sample facing the metal evaporation source was measured using EDS. These measurement results are shown in Table 10.

被覆層の平均厚さを測定した後、被覆工具の断面研磨面をFE−SEMによるEBSD法で観察し、基材の硬質粒子の平均粒径を求めた。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。次に、基材の硬質粒子の平均粒径の5倍の値を求め、この値を基準長さSとして決定した。FE−SEMを用いて、基準長さS以上の長さが含まれる範囲の基材と被覆層との界面における断面研磨面の反射電子像を撮影した。市販の画像解析ソフトを用いて、撮影した反射電子像から被覆層と接する硬質粒子の合計面積Aおよび合計面積Bを求めた。表11に、基材の硬質粒子の平均粒径およびB/Aを示す。  After measuring the average thickness of the coating layer, the cross-section polished surface of the coated tool was observed by the EBSD method using FE-SEM, and the average particle size of the hard particles of the substrate was determined. The EBSD was set such that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more was regarded as a grain boundary. Next, a value five times the average particle size of the hard particles of the base material was determined, and this value was determined as the reference length S. Using a FE-SEM, a reflected electron image of the cross-section polished surface at the interface between the base material and the coating layer in a range including a length equal to or greater than the reference length S was taken. Using a commercially available image analysis software, the total area A and the total area B of the hard particles in contact with the coating layer were determined from the photographed reflected electron image. Table 11 shows the average particle size and B / A of the hard particles of the substrate.

その後、被覆層の断面研磨面から直径100nm以上のドロップレットを除いた組織を、FE−SEMによるEBSD法で観察して、被覆層の粒子の粒径を求めた。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。観察された被覆層の粒子の個数全体を100%としたときの、被覆層の粒子の平均粒径に対する、被覆層の粒子の個数の累積度数を求めた。この累積度数が、50%および80%となる平均粒径をそれぞれ求めた。累積度数が50%および80%となる平均粒径を表12に示す。  Then, the structure | tissue which removed the droplet of diameter 100nm or more from the cross-section grinding | polishing surface of the coating layer was observed by the EBSD method by FE-SEM, and the particle size of the particle | grains of the coating layer was calculated | required. The EBSD was set such that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more was regarded as a grain boundary. The cumulative frequency of the number of particles in the coating layer with respect to the average particle size of the particles in the coating layer was determined when the total number of particles in the coating layer observed was 100%. Average particle diameters at which the cumulative frequency was 50% and 80% were obtained. Table 12 shows the average particle diameters with cumulative frequencies of 50% and 80%.

表11および表12から、発明品11、12は、基材の硬質粒子に関するB/Aが0.2以上0.5未満の範囲にあり、被覆層の粒子の累積度数が50%となる粒径が0.1μm以上0.2μm以下の範囲にあり、被覆層の粒子の累積度数が80%となる粒径が0.25μm以上0.45μm以下の範囲にあることがわかる。  From Table 11 and Table 12, invention products 11 and 12 are particles in which the B / A relating to the hard particles of the base material is in the range of 0.2 or more and less than 0.5, and the cumulative frequency of the particles of the coating layer is 50%. It can be seen that the diameter is in the range of 0.1 μm or more and 0.2 μm or less, and the particle diameter at which the cumulative frequency of particles in the coating layer is 80% is in the range of 0.25 μm or more and 0.45 μm or less.

得られた試料を用いて、実施例1と同様に、試験条件1、2で正面フライス加工を行った。試験条件1で耐剥離性を評価し、試験条件2で耐摩耗性および耐欠損性を評価した。  Using the obtained sample, face milling was performed in the same manner as in Example 1 under test conditions 1 and 2. Peel resistance was evaluated under test condition 1, and wear resistance and fracture resistance were evaluated under test condition 2.

試験条件1における、加工長が2.0mの時における剥離面積を表13に示す。  Table 13 shows the peeled area when the processing length is 2.0 m under Test Condition 1.

表13より、発明品は、比較品よりも被覆層の剥離面積が小さいことが確認された。以上の結果から、発明品は、比較品よりも耐剥離性に優れていることが確認された。  From Table 13, it was confirmed that the inventive product had a smaller peeled area of the coating layer than the comparative product. From the above results, it was confirmed that the inventive product is superior in peel resistance to the comparative product.

試験条件2における工具寿命までの加工長を表14に示す。  Table 14 shows the machining lengths up to the tool life under Test Condition 2.

表14に示されるように、発明品は、全ての試料において、損傷形態が正常摩耗であり、比較品よりも耐欠損性が優れることが分かる。発明品と、損傷形態が正常摩耗であった比較品とを比較すると、発明品の加工長は、4.9m以上であり、比較品の3.9mよりも加工長が長いことが分かる。この結果より、発明品の方が、比較品よりも工具寿命が長いことが分かる。  As shown in Table 14, it can be seen that the invention products are normally worn in all samples, and have better fracture resistance than the comparative products. When the invention product is compared with a comparative product whose damage form is normal wear, it can be seen that the processing length of the invention product is 4.9 m or more, which is longer than the comparison product of 3.9 m. From this result, it can be seen that the inventive product has a longer tool life than the comparative product.

本発明の被覆工具は、耐摩耗性、耐剥離性および耐欠損性に優れ、従来の工具よりも寿命が長いので、産業上の利用可能性が高い。  The coated tool of the present invention is excellent in wear resistance, peel resistance and chipping resistance, and has a longer life than conventional tools, and therefore has high industrial applicability.

Claims (7)

基材と、前記基材の表面に形成された被覆層とを含む被覆工具であって、
前記基材は、複数の硬質粒子と、前記複数の硬質粒子を結合する結合相とを含み、
前記被覆層は、1つ又は複数の化合物層を含み、
前記化合物層は、TiとNを含む化合物の層であり、
前記被覆層の平均厚さは、0.6μm以上8.0μm以下であり、
切削に関与する部位の60%以上の断面において、以下の手順(1)〜(6)によって求められるB/Aの値が、0.27以上0.5未満である、被覆工具。
(1)前記基材の表面に垂直な断面を、前記基材の表面に平行な方向に、前記硬質粒子の平均粒径の5倍以上である基準長さSだけ抜き出す。
(2)抜き出された断面において、前記被覆層に接している前記硬質粒子の断面の合計面積Aを求める。
(3)前記被覆層と前記基材との境界面において、互いに隣接する硬質粒子の間に形成されている複数の境界部のうち、最も深い位置にある第1の境界部D1、及び、2番目に深い位置にある第2の境界部D2を決定する。
(4)前記第1の境界部D1及び前記第2の境界部D2を通る線分Lを引く。
(5)前記被覆層に接している前記硬質粒子の断面のうち、前記線分Lよりも被覆層側にある断面の合計面積Bを求める。
(6)B/Aの値を求める。
A coated tool comprising a substrate and a coating layer formed on the surface of the substrate,
The substrate includes a plurality of hard particles and a binder phase that binds the plurality of hard particles,
The coating layer includes one or more compound layers,
The compound layer is a layer of a compound containing Ti and N,
The average thickness of the coating layer is 0.6 μm or more and 8.0 μm or less,
A coated tool having a B / A value determined by the following procedures (1) to (6) of 0.27 or more and less than 0.5 in a cross section of 60% or more of a part involved in cutting .
(1) A cross section perpendicular to the surface of the substrate is extracted in a direction parallel to the surface of the substrate by a reference length S that is 5 times or more the average particle diameter of the hard particles.
(2) In the extracted cross section, the total area A of the cross section of the hard particles in contact with the coating layer is obtained.
(3) At the boundary surface between the coating layer and the base material, the first boundary portion D1 at the deepest position among the plurality of boundary portions formed between the hard particles adjacent to each other, and 2 The second boundary portion D2 at the deepest position is determined.
(4) A line segment L passing through the first boundary portion D1 and the second boundary portion D2 is drawn.
(5) The total area B of the cross section which exists in the coating layer side rather than the said line segment L among the cross sections of the said hard particle which is in contact with the said coating layer is calculated | required.
(6) The value of B / A is obtained.
前記被覆層は、複数の粒子を含み、
前記被覆層に含まれる複数の粒子の個数基準の累積度数が50%となるときの粒径d50が、0.1μm以上0.2μm以下であり、
前記被覆層に含まれる複数の粒子の個数基準の累積度数が80%となるときの粒径d80が、0.25μm以上0.45μm以下である、請求項1に記載の被覆工具。
The coating layer includes a plurality of particles,
The particle size d50 when the cumulative frequency based on the number of the plurality of particles contained in the coating layer is 50% is 0.1 μm or more and 0.2 μm or less,
The coated tool according to claim 1, wherein the particle size d80 when the cumulative frequency based on the number of the plurality of particles contained in the coating layer is 80% is 0.25 µm or more and 0.45 µm or less.
前記基材に含まれる前記硬質粒子の平均粒径は、0.3μm以上5μm以下である、請求項1または請求項2に記載の被覆工具。   The coated tool according to claim 1 or 2, wherein an average particle diameter of the hard particles contained in the substrate is 0.3 µm or more and 5 µm or less. 前記基材に含まれる前記硬質粒子は、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWからなる群から選択される少なくとも1種の金属元素と、C、N、OおよびBからなる群から選択される少なくとも1種の非金属元素とを含む化合物の粒子である、請求項1から請求項3のうちいずれか1項に記載の被覆工具。   The hard particles contained in the base material are at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and C, N, O and B The coated tool according to any one of claims 1 to 3, wherein the coated tool is a particle of a compound containing at least one nonmetallic element selected from the group consisting of: 前記切削に関与する部位は、前記被覆工具のねじ穴以外の部位である、請求項1から請求項4のうちいずれか1項に記載の被覆工具。The coated tool according to any one of claims 1 to 4, wherein the part involved in the cutting is a part other than a screw hole of the coated tool. 前記切削に関与する部位の70%以上の断面において、B/Aの値が、0.27以上0.5未満である、請求項1から請求項5のうちいずれか1項に記載の被覆工具。The coated tool according to any one of claims 1 to 5, wherein a value of B / A is 0.27 or more and less than 0.5 in a cross-section of 70% or more of a portion involved in the cutting. . 前記切削に関与する部位の80%以上の断面において、B/Aの値が、0.27以上0.5未満である、請求項1から請求項5のうちいずれか1項に記載の被覆工具。The coated tool according to any one of claims 1 to 5, wherein a value of B / A is not less than 0.27 and less than 0.5 in a cross section of 80% or more of a portion involved in the cutting. .
JP2015549219A 2013-11-25 2014-11-25 Coated tool Active JP6602672B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013243079 2013-11-25
JP2013243079 2013-11-25
PCT/JP2014/081014 WO2015076401A1 (en) 2013-11-25 2014-11-25 Coated tool

Publications (2)

Publication Number Publication Date
JPWO2015076401A1 JPWO2015076401A1 (en) 2017-03-16
JP6602672B2 true JP6602672B2 (en) 2019-11-06

Family

ID=53179660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015549219A Active JP6602672B2 (en) 2013-11-25 2014-11-25 Coated tool

Country Status (3)

Country Link
JP (1) JP6602672B2 (en)
CN (1) CN105764638B (en)
WO (1) WO2015076401A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030206A (en) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 Surface coated cutting tool and method for manufacturing the same
CN107150139A (en) * 2017-05-26 2017-09-12 苏州市汇峰机械设备有限公司 A kind of high rigidity anticorrosion milling cutter
KR102362495B1 (en) * 2017-09-28 2022-02-14 히다찌긴조꾸가부시끼가이사 Cutting tool and manufacturing method thereof
JP2019063937A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool excellent in deposition chipping resistance
JP6770692B2 (en) * 2017-12-27 2020-10-21 株式会社タンガロイ Carbide and coated cemented carbide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0416824B2 (en) * 1989-09-04 1998-08-12 Nippon Steel Corporation Ceramics coated cemented carbide tool with high fracture resistance
JP3021742B2 (en) * 1991-03-28 2000-03-15 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool
JP3402849B2 (en) * 1995-05-26 2003-05-06 松下電工株式会社 Blade and blade manufacturing method
EP1245699B1 (en) * 2001-03-30 2011-05-11 Hitachi Metals, Ltd. Coated tool for warm and/or hot working
JP3996809B2 (en) * 2002-07-11 2007-10-24 住友電工ハードメタル株式会社 Coated cutting tool
JP5094177B2 (en) * 2007-03-27 2012-12-12 京セラ株式会社 Cutting tool and cutting method
KR101130454B1 (en) * 2007-04-27 2012-04-12 대구텍 유한회사 Coated cemented carbide cutting tools and method for pre-treating and coating to produce cemented carbide cutting tools
WO2010050374A1 (en) * 2008-10-28 2010-05-06 京セラ株式会社 Surface covered tool
JP2011005559A (en) * 2009-06-23 2011-01-13 Tungaloy Corp Coated tool
JP5286625B2 (en) * 2011-01-31 2013-09-11 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
DE102011053705A1 (en) * 2011-09-16 2013-03-21 Walter Ag Cutting insert and method for its production

Also Published As

Publication number Publication date
JPWO2015076401A1 (en) 2017-03-16
CN105764638B (en) 2017-12-26
CN105764638A (en) 2016-07-13
WO2015076401A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP6602672B2 (en) Coated tool
JP6390706B2 (en) Coated cutting tool
JP6226077B2 (en) Coated cutting tool
JP5994948B2 (en) Coated cutting tool
JP5879664B2 (en) Cutting tools
WO2015025903A1 (en) Coated cutting tool
JP6355124B2 (en) Surface coated boron nitride sintered body tool
JP6459391B2 (en) Surface coated cutting tool with excellent chipping resistance
EP2965842A1 (en) Coated cutting tool
JP2019209439A (en) drill
JP2019038097A (en) Coated cutting tool
JP6206695B1 (en) tool
JP6635347B2 (en) Coated cutting tool
JP5839289B2 (en) Surface coated cutting tool
JP6296058B2 (en) Coated cutting tool
JPWO2014034923A1 (en) Coated cutting tool
CN109952169A (en) Coated cutting tool
JP5983878B2 (en) Coated cutting tool
JPWO2017204141A1 (en) Coated cutting tool
JP6191873B2 (en) Surface coated cutting tool with excellent chipping resistance
JPWO2019155749A1 (en) Super-abrasive grain and super-abrasive wheel
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2017024136A (en) Coated cutting tool
JP2011167829A (en) Cutting tool for machining titanium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180910

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250