JP2011005559A - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP2011005559A
JP2011005559A JP2009148916A JP2009148916A JP2011005559A JP 2011005559 A JP2011005559 A JP 2011005559A JP 2009148916 A JP2009148916 A JP 2009148916A JP 2009148916 A JP2009148916 A JP 2009148916A JP 2011005559 A JP2011005559 A JP 2011005559A
Authority
JP
Japan
Prior art keywords
residual stress
ray
base material
stress
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009148916A
Other languages
Japanese (ja)
Inventor
Mamoru Kobata
護 木幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2009148916A priority Critical patent/JP2011005559A/en
Publication of JP2011005559A publication Critical patent/JP2011005559A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coated tool capable of achieving long life in cutting processing under severe processing conditions such as high-speed processing, high-feed processing, and processing of a hard-to-cut material.SOLUTION: The coated tool is formed of a base material and a coating film coated on the surface thereof. The compressive residual stress σof the base material obtained by X-ray stress measurement using a Cr-Kα line is larger than the compressive residual stress σof the base material obtained by X-ray stress measurement using a Co-Kα line.

Description

本発明は、焼結合金、セラミックス、cBN焼結体、ダイヤモンド焼結体などの基材の表面に被膜を被覆した被覆工具に関する。 The present invention relates to a coated tool in which a surface of a base material such as a sintered alloy, ceramics, cBN sintered body, diamond sintered body, etc. is coated.

焼結合金、セラミックス、cBN焼結体などの基材の表面にTiC、TiCN、TiN、(Ti,Al)N、CrNなどの被膜を被覆した被覆工具の従来技術としては、第1被膜と、第2被膜とを含む被膜と、基材とを備える表面被覆切削工具であって、第1被膜は、α型酸化アルミニウムによって構成されるものであり、かつ0.2GPa未満の残留応力を有し、第2被膜は、周期律表のIVa族元素、Va族元素、VIa族元素、Al、およびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素、および硼素からなる群から選ばれる少なくとも1種によって構成されるものであり、かつ圧縮残留応力を有することを特徴とする表面被覆切削工具がある(例えば、特許文献1参照。)。しかしながら、この表面被覆切削工具は被膜と基材との密着性が悪いという問題がある。 As a conventional technique of a coated tool in which a coating of TiC, TiCN, TiN, (Ti, Al) N, CrN or the like is coated on the surface of a base material such as a sintered alloy, ceramic, or cBN sintered body, a first coating, A surface-coated cutting tool comprising a coating comprising a second coating and a substrate, wherein the first coating is composed of α-type aluminum oxide and has a residual stress of less than 0.2 GPa The second film is a group consisting of at least one element selected from the group consisting of group IVa elements, group Va elements, group VIa elements, Al and Si of the periodic table, and carbon, nitrogen, oxygen and boron. There is a surface-coated cutting tool characterized in that it is composed of at least one selected from the above and has a compressive residual stress (see, for example, Patent Document 1). However, this surface-coated cutting tool has a problem that the adhesion between the coating and the substrate is poor.

特開2006−192531号公報JP 2006-192531 A

近年、切削加工において高速度、高送りなどの過酷な切削条件や被削材の高硬度化など厳しい加工条件が増えている中で、被覆工具の長寿命化が求められている。本発明はこのような状況からなされたものであり、高速度加工、高送り加工、難削材の加工など加工条件が厳しい切削加工において、長寿命を実現する被覆工具の提供を目的とする。 In recent years, a long life of a coated tool is demanded in severe cutting conditions such as severe cutting conditions such as high speed and high feed and high hardness of a work material in cutting. The present invention has been made under such circumstances, and an object of the present invention is to provide a coated tool that achieves a long service life in cutting processing with severe processing conditions such as high-speed processing, high-feed processing, and processing of difficult-to-cut materials.

基材と被膜との密着性は、被覆工具の性能を左右する非常に重要な要因である。本発明者は、基材と被膜との密着性に及ぼす残留応力の影響について研究したところ、Co−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCoよりも、Cr−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCrを大きくすると、基材と被膜との密着性が向上するという知見が得られた。 Adhesion between the substrate and the coating is a very important factor that affects the performance of the coated tool. The inventor studied the influence of the residual stress on the adhesion between the base material and the coating, and more than the compressive residual stress σ bCo of the base material obtained by the X-ray stress measurement using Co-Kα rays. The knowledge that the adhesiveness of a base material and a film improves when the compression residual stress (sigma) bCr of the base material obtained by the X-ray-stress measurement using a Cr-K alpha ray was enlarged was acquired.

すなわち、本発明の被覆工具は、基材とその表面に被覆された被膜とからなり、Cr−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCrは、Co−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCoよりも大きい被覆工具である。 That is, the coated tool of the present invention comprises a substrate and a film coated on the surface thereof, and the compression residual stress σ bCr of the substrate obtained by X-ray stress measurement using Cr—Kα rays is Co— This is a coated tool that is larger than the compressive residual stress σ bCo of the base material obtained by X-ray stress measurement using Kα rays.

本発明の被覆工具の基材として、具体的には焼結合金、Si34系セラミックス、Al23系セラミックス、cBN焼結体、ダイヤモンド焼結体などを挙げることができる。その中でも焼結合金は耐欠損性と耐摩耗性に優れるため好ましく、その中でもサーメット、WC基超硬合金がさらに好ましく、その中でもWC基超硬合金がさらに好ましい。 Specific examples of the base material for the coated tool of the present invention include sintered alloys, Si 3 N 4 ceramics, Al 2 O 3 ceramics, cBN sintered bodies, and diamond sintered bodies. Of these, sintered alloys are preferable because they are excellent in fracture resistance and wear resistance. Among them, cermets and WC-based cemented carbides are more preferable, and among them, WC-based cemented carbides are more preferable.

本発明において残留応力とは、被膜および基材に残留する内部応力であり、圧縮残留応力と引張残留応力の両方を含む概念である。本発明において圧縮残留応力は「−」(マイナス)の数値で表される。また、本発明において圧縮残留応力が大きいとは、圧縮残留応力の絶対値が大きいことを意味する。逆に、本発明において圧縮残留応力が小さいとは、圧縮残留応力の絶対値が小さいことを意味する。なお、本発明において引張残留応力は「+」(プラス)の数値で表される。 In the present invention, the residual stress is an internal stress remaining in the coating and the substrate, and is a concept including both compressive residual stress and tensile residual stress. In the present invention, the compressive residual stress is represented by a numerical value “−” (minus). In the present invention, a large compressive residual stress means that the absolute value of the compressive residual stress is large. Conversely, in the present invention, the small compressive residual stress means that the absolute value of the compressive residual stress is small. In the present invention, the tensile residual stress is represented by a numerical value “+” (plus).

本発明の基材および被膜の残留応力σは、X線応力測定装置を用いて2θ−sin2Ψ法の(数1)から算出することができる。

Figure 2011005559

σ:残留応力
E:ヤング率
ν:ポアソン比
θ0:標準ブラッグ角
2θ:回折線の回折角度
Ψ:試料面法線と回折面法線のなす角

Figure 2011005559
ここで、(数2)におけるKは応力定数と呼ばれ、測定材料と測定波長によって決まる定数である。測定値(Ψ,2θ)から2θ-sin2Ψ図を書き、最小二乗法で勾配∂(2θ)/∂(sin2Ψ)を求め、Kを乗ずれば残留応力σが求められる。なお、X線出力(電圧、電流)は測定材料に応じて適宜調整するとよい。 The residual stress σ of the substrate and the coating of the present invention can be calculated from (Equation 1) of the 2θ-sin 2 Ψ method using an X-ray stress measuring device.
Figure 2011005559

σ: Residual stress E: Young's modulus ν: Poisson's ratio θ 0 : Standard Bragg angle
2θ: Diffraction angle of diffraction line Ψ: Angle between sample surface normal and diffraction surface normal

Figure 2011005559
Here, K in (Equation 2) is called a stress constant and is a constant determined by the measurement material and the measurement wavelength. A 2θ-sin 2 Ψ diagram is written from the measured values (Ψ, 2θ), the gradient ∂ (2θ) / ∂ (sin 2 Ψ) is obtained by the least square method, and the residual stress σ is obtained by multiplying by K. Note that the X-ray output (voltage, current) may be appropriately adjusted according to the measurement material.

X線応力測定に使用するX線の波長によりX線の侵入深さが異なる。X線の波長が短いほどX線の侵入深さが深く、X線の波長が長いほどX線の侵入深さが浅い。そこで、波長が1.54056ÅのCu−Kα線と、波長が1.78897ÅのCo−Kα線と、波長が2.2897ÅのCr−Kα線との中では、Cu−Kα線が最も深い内部の残留応力を測定でき、Co−Kα線がCu−Kα線よりも浅い内部の残留応力を測定でき、Cr−Kα線はCo−Kα線よりもさらに浅い内部の残留応力を測定できる。なおX線応力測定で得られる残留応力はX線の侵入深さまでの残留応力の平均値である。 The penetration depth of X-rays varies depending on the wavelength of X-rays used for X-ray stress measurement. The shorter the X-ray wavelength, the deeper the X-ray penetration depth, and the longer the X-ray wavelength, the shallower the X-ray penetration depth. Therefore, among the Cu-Kα ray having a wavelength of 1.54056Å, the Co-Kα ray having a wavelength of 1.78897Å, and the Cr-Kα ray having a wavelength of 2.28897Å, the Cu-Kα ray is the deepest inside. Residual stress can be measured, the residual stress in the Co-Kα line shallower than the Cu-Kα line can be measured, and the residual stress in the Cr-Kα line shallower than the Co-Kα line can be measured. The residual stress obtained by X-ray stress measurement is an average value of residual stress up to the penetration depth of X-rays.

Co−Kα線とCr−Kα線とを用いて、本発明の基材の残留応力を測定すると、Co−Kα線を用いて得られた圧縮残留応力σbCoよりもCr−Kα線を用いて得られた圧縮残留応力σbCrの方が大きい(|σbCr|>|σbCo|)。これは基材の深い内部の圧縮残留応力よりも基材の浅い内部の圧縮残留応力の方が大きいことを意味している。σbCrがσbCoよりも大きい(|σbCr|>|σbCo|)と、被膜と基材との密着性が向上する。逆に、σbCrがσbCo以下である(|σbCr|≦|σbCo|)と、被膜と基材との密着性は低下する。なお、本発明の基材についてCu−Kα線を用いた圧縮残留応力σbCuを測定したが、σbCuは被膜と基材との密着性に大きな影響を及ぼさなかった。 When the residual stress of the base material of the present invention is measured using the Co-Kα ray and the Cr-Kα ray, the Cr-Kα ray is used rather than the compressive residual stress σ bCo obtained using the Co-Kα ray. The obtained compressive residual stress σ bCr is larger (| σ bCr |> | σ bCo |). This means that the compressive residual stress in the shallow interior of the substrate is greater than the compressive residual stress in the deep interior of the substrate. When σ bCr is larger than σ bCo (| σ bCr |> | σ bCo |), the adhesion between the coating and the substrate is improved. Conversely, when σ bCr is equal to or less than σ bCo (| σ bCr | ≦ | σ bCo |), the adhesion between the coating film and the substrate decreases. In addition, although compressive residual stress (sigma) bCu using the Cu-K (alpha) ray was measured about the base material of this invention, (sigma) bCu did not have big influence on the adhesiveness of a film and a base material.

WC基超硬合金基材の残留応力は、主成分であるWCの残留応力を測定して得ることができる。cBN焼結体基材の残留応力は、主成分であるcBNの残留応力を測定して得ることができる。Si34系セラミックス基材の残留応力は、主成分であるSi34の残留応力を測定して得ることができる。なお、TiAlN膜、TiSiN膜、CrAlN膜などのように物性値(ポアソン比、ヤング率等)が分からない立方晶の被膜については、立方晶のTiNの物性値(ポアソン比、ヤング率等)で代用した。 The residual stress of the WC-based cemented carbide base material can be obtained by measuring the residual stress of WC which is the main component. The residual stress of the cBN sintered compact substrate can be obtained by measuring the residual stress of cBN which is the main component. The residual stress of the Si 3 N 4 based ceramic substrate can be obtained by measuring the residual stress of Si 3 N 4 as the main component. For cubic films such as TiAlN films, TiSiN films, CrAlN films, etc. whose physical properties (Poisson's ratio, Young's modulus, etc.) are not known, the physical properties of cubic TiN (Poisson's ratio, Young's modulus, etc.) Substituted.

本発明の基材に圧縮残留応力を付与する方法としては、ショットブラスト装置を用いて被覆前の基材表面に平均粒径50〜200μmのガラスビーズを30〜60秒間投射して基材表面に圧縮残留応力を付与する方法を挙げることができる。 As a method for imparting compressive residual stress to the base material of the present invention, glass beads having an average particle size of 50 to 200 μm are projected on the base material surface for 30 to 60 seconds on the base material surface before coating using a shot blasting device. The method of providing compressive residual stress can be mentioned.

本発明の基材に圧縮残留応力を付与する別の方法としては、PVD装置を用い被覆前の基材に対してAr、Kr、Xeなどの不活性ガス雰囲気で基材バイアス電圧を0.6kV以上とする高エネルギーのパルスイオンボンバードメント処理する方法を挙げることができる。不活性ガスや金属などのイオンを基材の表面に衝突させるイオンボンバードメント処理は、基材表面の異物を除去する効果がある。イオンボンバードメント処理には、基材表面を清浄化する効果以外に、基材の表面近傍に圧縮残留応力を付与する効果がある。従来の直流電位を基材バイアス電圧に用いる方法では、基材バイアス電圧をマイナス側に下げて(基材バイアス電圧の絶対値を大きくして)基材の表面近傍の圧縮残留応力を大きくしようとしても、基材の温度上昇による焼鈍効果で圧縮残留応力が緩和されるため、基材の表面近傍に大きな圧縮残留応力を付与することができなかった。しかしながら、本発明のようにパルス電位を基材バイアス電圧に用いるパルスイオンボンバードメント処理を行うと、基材バイアス電圧をマイナス側に下げても(基材バイアス電圧の絶対値を大きくしても)基材の温度上昇を抑えることができるので、基材の表面近傍に大きな圧縮残留応力を付与できる。 As another method for imparting compressive residual stress to the substrate of the present invention, the substrate bias voltage is set to 0.6 kV in an inert gas atmosphere such as Ar, Kr, and Xe with respect to the substrate before coating using a PVD apparatus. Examples of the high energy pulse ion bombardment treatment described above can be given. The ion bombardment treatment in which ions such as inert gas and metal collide with the surface of the substrate has an effect of removing foreign substances on the surface of the substrate. In addition to the effect of cleaning the substrate surface, the ion bombardment treatment has an effect of applying compressive residual stress in the vicinity of the surface of the substrate. In the conventional method of using a DC potential for the substrate bias voltage, the substrate bias voltage is lowered to the minus side (by increasing the absolute value of the substrate bias voltage) to increase the compressive residual stress near the surface of the substrate. However, since the compressive residual stress is relieved by the annealing effect due to the temperature rise of the base material, a large compressive residual stress cannot be applied in the vicinity of the surface of the base material. However, when the pulse ion bombardment process using the pulse potential as the substrate bias voltage is performed as in the present invention, the substrate bias voltage is reduced to the minus side (even if the absolute value of the substrate bias voltage is increased). Since the temperature rise of the base material can be suppressed, a large compressive residual stress can be applied in the vicinity of the surface of the base material.

本発明の被膜は、周期表4a、5a、6a族元素、Al、Si、Y、Bの中の少なくとも1種と、C、N、Oの中の少なくとも1種とからなる化合物層である。本発明の被膜は耐摩耗性を向上させる。本発明の被膜として具体的には、TiN、TiC、TiCN、(Ti,Al)N、(Cr,Al,Si)N、(Cr,Al)N、(Al,Zr)N、(Ti,Al,Si)N、(Ti,Cr,Al,Si)Nなどを挙げることができる。本発明の被膜は、1層からなる単層膜、2層以上からなる多層膜のいずれでもよく、多層膜の中でも組成の異なる厚さ1〜100nmの薄膜を交互に1層以上積層した交互積層膜であってもよい。 The coating of the present invention is a compound layer composed of at least one of the periodic table 4a, 5a, and 6a group elements, Al, Si, Y, and B and at least one of C, N, and O. The coating of the present invention improves wear resistance. Specifically, the coating of the present invention includes TiN, TiC, TiCN, (Ti, Al) N, (Cr, Al, Si) N, (Cr, Al) N, (Al, Zr) N, (Ti, Al , Si) N, (Ti, Cr, Al, Si) N, and the like. The film of the present invention may be either a single-layer film consisting of one layer or a multilayer film consisting of two or more layers. Among the multilayer films, one or more thin films having different compositions and having a thickness of 1 to 100 nm are alternately laminated. It may be a membrane.

本発明の被膜の残留応力を、Cr−Kα線、Co−Kα線、Cu−Kα線を用いて測定し、Cr−Kα線を用いたX線応力測定により得られた被膜の圧縮残留応力σcCr、Co−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σcCo、Cu−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σcCuの中で最も大きい圧縮残留応力をσbmaxとしたとき、本発明の基材の残留応力σbCr、σbCo、σbCuの中で最も小さい圧縮残留応力をσcminとしたとき、σbmaxはσcminよりも小さい(|σbmax|<|σcmin|)と、被膜と基材との密着性がさらに優れるので好ましい。その中でも、σcCuがσcCoよりも小さい(|σcCu|<|σcCo|)と、被膜と基材との密着性がさらに優れるので好ましい。 The residual stress of the coating of the present invention was measured using Cr-Kα, Co-Kα, and Cu-Kα rays, and the compressive residual stress σ of the coating obtained by X-ray stress measurement using Cr-Kα rays cCr, Co-Kα ray X-ray stress measurement by the resultant substrate compressive residual stress sigma CCO using, Cu-K [alpha line X-ray stress measurement by the resultant of the base compressive residual stress sigma CCU of using when the greatest compressive residual stress was sigma bmax a medium, when the residual stress sigma Bcr of the base material of the present invention, sigma BCO, the smallest compressive residual stress in a sigma BCU was sigma cmin, sigma bmax is sigma cmin Is smaller than (| σ bmax | <| σ cmin |), because the adhesion between the coating and the substrate is further excellent. Among them, it is preferable that σ cCu is smaller than σ cCo (| σ cCu | <| σ cCo |) because the adhesion between the coating and the substrate is further excellent.

本発明の被膜の製造方法としては、市販のアークイオンプレーティング装置(以下、AIP装置という。)内に基材を入れて、基材表面をイオンボンバードメント処理した後、AIP装置内温度を673〜923Kにして、反応ガスとしてアセチレン(C22)、メタン(CH4)、窒素、酸素またはこれらの混合ガスを導入し、AIP装置内の圧力を1〜6Paにしてアーク放電を行い、アーク電流を100〜150Aとし、基材バイアス電圧(直流電位)を−80〜−180Vとして、基材表面に被膜を被覆する方法を挙げることができる。なお、被膜の残留応力分布を所望の値にするために基材バイアス電圧を被覆開始時からさらにマイナス側に徐々に下げてもよい。 As a method for producing the coating film of the present invention, a substrate is put in a commercially available arc ion plating apparatus (hereinafter referred to as AIP apparatus), and the surface of the substrate is subjected to ion bombardment treatment. To 923 K, acetylene (C 2 H 2 ), methane (CH 4 ), nitrogen, oxygen or a mixed gas thereof is introduced as a reaction gas, and the arc discharge is performed with the pressure in the AIP apparatus set to 1 to 6 Pa. An example is a method in which an arc current is set to 100 to 150 A, a base material bias voltage (DC potential) is set to −80 to −180 V, and the base material surface is coated with a film. In order to make the residual stress distribution of the coating a desired value, the substrate bias voltage may be gradually lowered to the minus side from the start of coating.

本発明の被覆部材は耐摩耗性、耐欠損性および耐密着性に優れる。本発明の被覆部材を切削工具として用いると工具寿命が長くなるという効果が得られる。特に高速度加工、高送り加工、硬さの高い被削材の加工などの加工条件が厳しい切削加工において効果が高い。 The covering member of the present invention is excellent in wear resistance, chipping resistance and adhesion resistance. When the covering member of the present invention is used as a cutting tool, an effect that the tool life is extended is obtained. In particular, it is highly effective in cutting with severe processing conditions such as high-speed machining, high-feed machining, and machining of a hard material.

基材として、JIS規格SDKN1203AETN形状のK20相当WC基超硬合金製インサートを用意した。発明品1、2、5については、ショットブラスト装置により被覆前の基材の表面に平均粒径100μmのガラスビーズを表1に示すように30〜60秒間投射した。 As a base material, a JIS standard SDKN1203AETN-shaped K20 equivalent WC-based cemented carbide insert was prepared. For Inventions 1, 2, and 5, glass beads having an average particle diameter of 100 μm were projected on the surface of the base material before coating for 30 to 60 seconds as shown in Table 1 using a shot blasting apparatus.

Figure 2011005559
Figure 2011005559

ショットブラスト処理した発明品1、2、5の基材と、未処理の発明品3、4、比較品1〜6の基材をアセトンで洗浄した。アセトン洗浄後の基材をAIP装置内に入れ、表2に示すボンバードメント処理を行った。このとき、発明品3は基材バイアス電圧が1kVのArパルスイオンボンバードメント処理を行っている。発明品4は基材バイアス電圧が1kVのKrパルスイオンボンバードメント処理を行っている。発明品3、4以外の基材については直流電位を用いた従来のArイオンボンバードメント処理を行っている。これらのボンバードメント処理を行った後、加熱ヒーターによってAIP装置内温度が873Kになるまで昇温し、表2に示す条件で基材側から第1層、次に第2層を被覆した。なお基材バイアス電圧の矢印は矢印の左側の電圧から被膜の被覆を開始し、被覆終了時には矢印の右側の電圧になるように徐々に基材バイアス電圧を調整することを示している。 The base materials of invention products 1, 2, and 5 subjected to shot blast treatment and base materials of untreated invention products 3 and 4 and comparative products 1 to 6 were washed with acetone. The substrate after acetone cleaning was placed in an AIP apparatus, and bombardment treatment shown in Table 2 was performed. At this time, Invention 3 is subjected to Ar pulse ion bombardment treatment with a substrate bias voltage of 1 kV. Invention product 4 performs Kr pulse ion bombardment treatment with a substrate bias voltage of 1 kV. Conventional Ar ion bombardment treatment using a direct current potential is performed on the base materials other than the invention products 3 and 4. After performing these bombardment treatments, the temperature inside the AIP apparatus was raised by a heater until the temperature in the AIP apparatus reached 873 K, and the first layer and then the second layer were coated from the substrate side under the conditions shown in Table 2. The arrow of the substrate bias voltage indicates that the coating of the film starts from the voltage on the left side of the arrow, and the substrate bias voltage is gradually adjusted so as to become the voltage on the right side of the arrow at the end of the coating.

Figure 2011005559
Figure 2011005559

基材の表面に被覆された被膜の膜厚については、各試料を切断して、断面を鏡面仕上げし、得られた鏡面状の断面を光学顕微鏡や走査電子顕微鏡で観察して測定した。被膜の組成については鏡面状の断面を走査電子顕微鏡付属のEPMAを用いて測定した。これらの結果は表3に示した。 About the film thickness of the film coat | covered on the surface of the base material, each sample was cut | disconnected, the cross section was mirror-finished, and the obtained specular cross section was observed and measured with the optical microscope or the scanning electron microscope. About the composition of the film, a mirror-like cross section was measured using EPMA attached to a scanning electron microscope. These results are shown in Table 3.

Figure 2011005559
Figure 2011005559

[残留応力測定]
株式会社リガク製PSPC型微小部応力測定装置を用いて、WC基超硬合金基材の主成分であるWCの残留応力を測定した。
[Residual stress measurement]
The residual stress of WC, which is the main component of the WC-based cemented carbide base material, was measured using a PSPC micro-part stress measuring device manufactured by Rigaku Corporation.

[測定条件]
(1)測定装置:株式会社リガク製PSPC型微小部応力測定装置
(2)X線源:Cu、Co、Cr
(3)X線出力:電圧30kV、電流20mA
(4)コリメーター:φ2mm
(5)入射角度:0°、17°、24°、30°、35°、40°
[Measurement condition]
(1) Measuring device: PSPC micro-part stress measuring device manufactured by Rigaku Corporation (2) X-ray source: Cu, Co, Cr
(3) X-ray output: voltage 30 kV, current 20 mA
(4) Collimator: φ2mm
(5) Incident angle: 0 °, 17 °, 24 °, 30 °, 35 °, 40 °

WC基超硬合金基材については、X線源がCuであれば、WC(211)面を測定するため、測定角2θ:117.3°とし、X線源がCoであれば、WC(112)面を測定するために測定角2θ:123.5°とし、X線源がCrであれば、WC(102)面で測定するために測定角2θ:135.7°とした。WCの物性値から応力定数を計算し、その値を表4に示した。 For the WC-based cemented carbide substrate, if the X-ray source is Cu, the WC (211) plane is measured, so the measurement angle is 2θ: 117.3 °. If the X-ray source is Co, WC ( 112) The measurement angle 2θ is 123.5 ° for measuring the plane, and if the X-ray source is Cr, the measurement angle 2θ is 135.7 ° for measurement on the WC (102) plane. The stress constant was calculated from the physical property values of WC, and the values are shown in Table 4.

Figure 2011005559
Figure 2011005559

被膜の残留応力は、株式会社リガク製PSPC型微小部応力測定装置を用いて測定した。 The residual stress of the coating was measured using a PSPC micro-part stress measuring device manufactured by Rigaku Corporation.

[測定条件]
(1)測定装置:株式会社リガク製PSPC型微小部応力測定装置
(2)X線源:Cu、Co、Cr
(3)X線出力:電圧30kV、電流30mA
(4)コリメーター:φ2mm
(5)入射角度:0°、17°、24°、30°、35°、40°
[Measurement condition]
(1) Measuring device: PSPC micro-part stress measuring device manufactured by Rigaku Corporation (2) X-ray source: Cu, Co, Cr
(3) X-ray output: voltage 30 kV, current 30 mA
(4) Collimator: φ2mm
(5) Incident angle: 0 °, 17 °, 24 °, 30 °, 35 °, 40 °

被膜については、X線源がCuであれば、被膜(511)面を測定するため、2θ:131〜151°の中で最も回折線強度が高い角度を測定角2θとし、X線源がCoであれば、被膜(331)面を測定するために2θ:123〜143°の中で最も回折線強度が高い角度を測定角2θとし、X線源がCrであれば、被膜(222)面で測定するために測定角2θ:128〜148°の中で最も回折線強度が高い角度を測定角2θとした。TiN膜以外の被膜については物性値の既存データがないため、TiNの物性値で代用した。TiNの物性値から応力定数を計算し、その値を表5に示した。 With respect to the coating, if the X-ray source is Cu, the angle at which the diffraction line intensity is highest among 2θ: 131 to 151 ° is set as the measurement angle 2θ in order to measure the coating (511) plane, and the X-ray source is Co Then, in order to measure the coating (331) plane, the angle at which the diffraction line intensity is highest in 2θ: 123 to 143 ° is the measurement angle 2θ, and if the X-ray source is Cr, the coating (222) plane In order to perform measurement, the angle at which the diffraction line intensity is highest among the measurement angles 2θ: 128 to 148 ° is defined as the measurement angle 2θ. Since there is no existing physical property data for coatings other than the TiN film, the physical property value of TiN was used instead. The stress constant was calculated from the physical property values of TiN, and the values are shown in Table 5.

Figure 2011005559
Figure 2011005559

上記の応力定数と測定値(Ψ,2θ)とから求められた基材の残留応力と被膜の残留応力は、表6に示した。 Table 6 shows the residual stress of the base material and the residual stress of the coating obtained from the above stress constants and measured values (Ψ, 2θ).

Figure 2011005559
Figure 2011005559

[密着性評価試験]
試料表面にロックウエル圧子(先端の曲率半径0.2mmのダイヤモンド圧子)を押し込んで被膜の剥離状態を調べる押し込み法と、CSM Instruments製スクラッチ試験機を用いたスクラッチ試験法(先端の曲率半径0.2mmのダイヤモンド圧子を使用する)により、被膜と基材との密着性を評価した。
[Adhesion evaluation test]
An indentation method in which a Rockwell indenter (diamond indenter with a radius of curvature of 0.2 mm at the tip) is pushed into the sample surface to examine the peeled state of the coating, and a scratch test method using a scratch tester manufactured by CSM Instruments (a radius of curvature at the tip of 0.2 mm) The adhesion between the coating and the substrate was evaluated.

Figure 2011005559
Figure 2011005559

表7に示されるように、ロックウエル圧子による押し込み法では、発明品は被膜の剥離が見られないが、比較品は被膜の剥離が見られる。スクラッチ試験では、発明品の被膜が剥離する荷重は140N以上であるが、比較品の被膜が剥離する荷重は80N以下である。以上の結果から発明品は比較品よりも被膜と基材との密着性が優れていることが分かる。 As shown in Table 7, in the indentation method using the Rockwell indenter, peeling of the film is not seen in the inventive product, but peeling of the coating is seen in the comparative product. In the scratch test, the load at which the inventive film peels is 140 N or more, but the load at which the comparative film peels is 80 N or less. From the above results, it can be seen that the inventive product has better adhesion between the coating and the substrate than the comparative product.

[切削試験]
発明品1〜5、比較品1〜6の被覆超硬合金工具を用いて、被削材:大同特殊鋼(株)製プラスチック金型用鋼NAK80、切削速度:150m/min、切り込み:2.0mm、送り:0.15mm/toothの条件で乾式フライス試験を行った。工具寿命は、逃げ面摩耗量VB=0.30mmを目安とした。切削長6mまでに逃げ面摩耗量VB=0.3mmに達しない場合は、切削長6m時点の逃げ面摩耗量VBを測定した。これらの結果を表8に示す。
[Cutting test]
Using the coated cemented carbide tools of the inventive products 1 to 5 and the comparative products 1 to 6, the work material: Daikin Special Steel Co., Ltd. plastic mold steel NAK80, cutting speed: 150 m / min, cutting depth: 2. A dry milling test was performed under the conditions of 0 mm, feed: 0.15 mm / tooth. The tool life was estimated based on the flank wear amount VB = 0.30 mm. When the flank wear amount VB did not reach 0.3 mm by the cutting length 6 m, the flank wear amount VB at the cutting length 6 m was measured. These results are shown in Table 8.

Figure 2011005559
Figure 2011005559

表8に示されるように、発明品1〜5は、切削長6mまでの切削加工でも欠損せず、逃げ面摩耗量VBが0.18mm以下であり、優れた耐摩耗性と耐欠損性を有する。一方、比較品1、2、5、6は切削長6m時点の逃げ面摩耗量VBが0.24mm以上となっている。また、比較品3、4は切削長6m時点で欠損を生じていた。 As shown in Table 8, the inventive products 1 to 5 are not damaged even when the cutting length is 6 m, the flank wear amount VB is 0.18 mm or less, and have excellent wear resistance and fracture resistance. Have. On the other hand, the comparative products 1, 2, 5 and 6 have a flank wear amount VB of 0.24 mm or more at a cutting length of 6 m. Moreover, the comparative products 3 and 4 had a defect at the cutting length of 6 m.

基材として、JIS規格CNGA120408形状のcBN焼結体製インサートを用意した。発明品6、7については、ショットブラスト装置により被覆前の基材の表面に平均粒径100μmのガラスビーズを表9に示すように45〜60秒間投射した。 As a base material, an insert made of cBN sintered body having a JIS standard CNGA120408 shape was prepared. For Invention Products 6 and 7, glass beads having an average particle size of 100 μm were projected on the surface of the base material before coating by a shot blasting device as shown in Table 9 for 45 to 60 seconds.

Figure 2011005559
Figure 2011005559

ショットブラスト処理した発明品6、7の基材と、未処理の発明品8、比較品7、8の基材をアセトンで洗浄した。アセトン洗浄後の基材をAIP装置内に入れ、表10に示すボンバードメント処理を行った。このとき、発明品8は基材バイアス電圧が1kVのArパルスイオンボンバードメント処理を行っている。発明品8以外の基材については直流電位を用いた従来のArイオンボンバードメント処理を行っている。これらのボンバードメント処理を行った後、加熱ヒーターによってAIP装置内温度が873Kになるまで昇温し、表10に示す条件で基材側から第1層、次に第2層を被覆した。なお基材バイアス電圧の矢印は矢印の左側の電圧から被膜の被覆を開始し、被覆終了時には矢印の右側の電圧になるように徐々に基材バイアス電圧を調整することを示している。 The base materials of the invention products 6 and 7 subjected to the shot blast treatment and the base materials of the untreated invention product 8 and the comparative products 7 and 8 were washed with acetone. The substrate after acetone cleaning was placed in an AIP apparatus, and bombardment treatment shown in Table 10 was performed. At this time, Invention Product 8 is subjected to Ar pulse ion bombardment treatment with a substrate bias voltage of 1 kV. For base materials other than the invention product 8, conventional Ar ion bombardment treatment using a DC potential is performed. After performing these bombardment treatments, the temperature inside the AIP apparatus was raised by a heater until the temperature in the AIP apparatus reached 873 K, and the first layer and then the second layer were coated from the substrate side under the conditions shown in Table 10. The arrow of the substrate bias voltage indicates that the coating of the film starts from the voltage on the left side of the arrow, and the substrate bias voltage is gradually adjusted so as to become the voltage on the right side of the arrow at the end of the coating.

Figure 2011005559
Figure 2011005559

基材の表面に被覆された被膜の膜厚については、各試料を切断して、断面を鏡面仕上げし、得られた鏡面状の断面を光学顕微鏡や走査電子顕微鏡で観察して測定した。被膜の組成については鏡面状の断面を走査電子顕微鏡付属のEPMAを用いて測定した。これらの結果は表11に示した。 About the film thickness of the film coat | covered on the surface of the base material, each sample was cut | disconnected, the cross section was mirror-finished, and the obtained specular cross section was observed and measured with the optical microscope or the scanning electron microscope. About the composition of the film, a mirror-like cross section was measured using EPMA attached to a scanning electron microscope. These results are shown in Table 11.

Figure 2011005559
Figure 2011005559

[残留応力測定]
株式会社リガク製PSPC型微小部応力測定装置を用いて、cBN焼結体基材の主成分であるcBNの残留応力を測定した。
[Residual stress measurement]
The residual stress of cBN, which is the main component of the cBN sintered compact substrate, was measured using a PSPC micro-part stress measuring device manufactured by Rigaku Corporation.

[測定条件]
(1)測定装置:株式会社リガク製PSPC型微小部応力測定装置
(2)X線源:Cu、Co、Cr
(3)X線出力:電圧40kV、電流30mA
(4)コリメーター:φ2mm
(5)入射角度:0°、17°、24°、30°、35°、40°
[Measurement condition]
(1) Measuring device: PSPC micro-part stress measuring device manufactured by Rigaku Corporation (2) X-ray source: Cu, Co, Cr
(3) X-ray output: voltage 40 kV, current 30 mA
(4) Collimator: φ2mm
(5) Incident angle: 0 °, 17 °, 24 °, 30 °, 35 °, 40 °

cBN焼結体基材については、X線源がCuであれば、cBN(331)面を測定するため、測定角2θ:136.4°とし、X線源がCoであれば、cBN(311)面を測定するために測定角2θ:110.3°とし、X線源がCrであれば、cBN(220)面で測定するために測定角2θ:127.1°とした。cBNの物性値から応力定数を計算し、その値を表12に示した。 For the cBN sintered compact substrate, if the X-ray source is Cu, the cBN (331) plane is measured, so the measurement angle is 2θ: 136.4 °, and if the X-ray source is Co, cBN (311 ) To measure the surface, the measurement angle 2θ was 110.3 °, and when the X-ray source was Cr, the measurement angle 2θ was 127.1 ° to measure on the cBN (220) surface. The stress constant was calculated from the physical property values of cBN, and the values are shown in Table 12.

Figure 2011005559
Figure 2011005559

被膜の残留応力は、株式会社リガク製PSPC型微小部応力測定装置を用いて実施例1と同様な条件で測定した。上記の応力定数と測定値(Ψ,2θ)とから求められた基材の残留応力と被膜の残留応力は、表13に示した。 The residual stress of the film was measured under the same conditions as in Example 1 using a PSPC micro-part stress measuring device manufactured by Rigaku Corporation. Table 13 shows the residual stress of the base material and the residual stress of the coating film determined from the above stress constants and measured values (Ψ, 2θ).

Figure 2011005559
Figure 2011005559

[密着性評価試験]
試料表面にロックウエル圧子(先端の曲率半径0.2mmのダイヤモンド圧子)を押し込んで被膜の剥離状態を調べる押し込み法と、CSM Instruments製スクラッチ試験機を用いたスクラッチ試験法(先端の曲率半径0.2mmのダイヤモンド圧子を使用する)により、被膜と基材との密着性を評価した。
[Adhesion evaluation test]
An indentation method in which a Rockwell indenter (diamond indenter with a radius of curvature of 0.2 mm at the tip) is pushed into the sample surface to examine the peeled state of the coating, and a scratch test method using a scratch tester manufactured by CSM Instruments (a radius of curvature at the tip of 0.2 mm) The adhesion between the coating and the substrate was evaluated.

Figure 2011005559
Figure 2011005559

表14に示されるように、ロックウエル圧子による押し込み法では、発明品は被膜の剥離が見られないが、比較品は被膜の剥離が見られる。スクラッチ試験では、発明品の被膜が剥離する荷重は110N以上であるが、比較品の被膜が剥離する荷重は80N以下である。以上の結果から発明品は比較品よりも被膜と基材との密着性が優れていることが分かる。 As shown in Table 14, in the indentation method using the Rockwell indenter, the peel-off of the film is not seen in the inventive product, but the peel-off of the film is seen in the comparative product. In the scratch test, the load at which the inventive film peels is 110 N or more, but the load at which the comparative film peels is 80 N or less. From the above results, it can be seen that the inventive product has better adhesion between the coating and the substrate than the comparative product.

[切削試験]
発明品6〜8、比較品7、8の被覆cBN焼結体工具を用いて、被削材:SCM415H(浸炭処理品)、切削速度:250m/min、切り込み:0.25mm、送り:0.10mm/revの条件で最長20分間の乾式連続旋削試験を行った。なお、工具寿命については、すくい面のクレータ摩耗が刃先に達したときを工具寿命とした。発明品と比較品の工具寿命と損傷状態を表15に示す。
[Cutting test]
Using the coated cBN sintered body tools of invention products 6 to 8 and comparative products 7 and 8, work material: SCM415H (carburized product), cutting speed: 250 m / min, cutting: 0.25 mm, feed: 0. A dry continuous turning test of up to 20 minutes was performed under the condition of 10 mm / rev. The tool life was defined as the tool life when the crater wear on the rake face reached the cutting edge. Table 15 shows the tool life and the damage state of the invention and comparative products.

Figure 2011005559
Figure 2011005559

表15に示されるように、発明品6、8は切削時間20分まで、発明品7は切削時間15分まで正常に摩耗しており、比較品は切削時間10分以下で被膜の剥離が発生していた As shown in Table 15, the invention products 6 and 8 are normally worn up to a cutting time of 20 minutes, the invention product 7 is normally worn up to a cutting time of 15 minutes, and the comparative product is peeled off at a cutting time of 10 minutes or less Was

基材として、JIS規格CNMA120408形状のSi34系セラミックス製インサートを用意しアセトンで洗浄した。アセトン洗浄後の基材をAIP装置内に入れ、表16に示すボンバードメント処理を行った。このとき、発明品9は基材バイアス電圧が1kVのKrパルスイオンボンバードメント処理を行っている。発明品10は基材バイアス電圧が1.2kVのArパルスイオンボンバードメント処理を行っている。発明品10は基材バイアス電圧が1.5kVのKrパルスイオンボンバードメント処理を行っている。比較品9、10の基材については直流電位を用いた従来のArイオンボンバードメント処理を行っている。これらのボンバードメント処理を行った後、加熱ヒーターによってAIP装置内温度が873Kになるまで昇温し、表16に示す条件で基材側から第1層、次に第2層を被覆した。比較品9、10は基材バイアス電圧にパルス電位を用いて被膜を被覆し、発明品9〜11を基材バイアス電圧に直流電位を用いて被膜を被覆している。なお基材バイアス電圧の矢印は矢印の左側の電圧から被膜の被覆を開始し、被覆終了時には矢印の右側の電圧になるように徐々に基材バイアス電圧を調整することを示している。 As a base material, a JIS standard CNMA120408-shaped Si 3 N 4 ceramic insert was prepared and washed with acetone. The substrate after acetone cleaning was placed in an AIP apparatus, and bombardment treatment shown in Table 16 was performed. At this time, Invention Product 9 is subjected to Kr pulse ion bombardment treatment with a substrate bias voltage of 1 kV. Invention product 10 is subjected to Ar pulse ion bombardment treatment with a substrate bias voltage of 1.2 kV. Invention product 10 is subjected to Kr pulse ion bombardment treatment with a substrate bias voltage of 1.5 kV. The base materials of comparative products 9 and 10 are subjected to conventional Ar ion bombardment treatment using a direct current potential. After performing these bombardment treatments, the temperature inside the AIP apparatus was raised by a heater until the temperature in the AIP apparatus reached 873 K, and the first layer and then the second layer were coated from the substrate side under the conditions shown in Table 16. Comparative products 9 and 10 are coated with a film using a pulse potential as a substrate bias voltage, and Invention products 9 to 11 are coated with a film using a DC potential as a substrate bias voltage. The arrow of the substrate bias voltage indicates that the coating of the coating starts from the voltage on the left side of the arrow, and the substrate bias voltage is gradually adjusted so as to become the voltage on the right side of the arrow at the end of coating.

Figure 2011005559
Figure 2011005559

基材の表面に被覆された被膜の膜厚については、各試料を切断して、断面を鏡面仕上げし、得られた鏡面状の断面を光学顕微鏡や走査電子顕微鏡で観察して測定した。被膜の組成については鏡面状の断面を走査電子顕微鏡付属のEPMAを用いて測定した。これらの結果は表17に示した。 About the film thickness of the film coat | covered on the surface of the base material, each sample was cut | disconnected, the cross section was mirror-finished, and the obtained specular cross section was observed and measured with the optical microscope or the scanning electron microscope. About the composition of the film, a mirror-like cross section was measured using EPMA attached to a scanning electron microscope. These results are shown in Table 17.

Figure 2011005559
Figure 2011005559

[残留応力測定]
株式会社リガク製PSPC型微小部応力測定装置を用いて、Si34系セラミックス基材の主成分であるSi34の残留応力を測定した。
[Residual stress measurement]
Using Rigaku PSPC miniature unit stress measuring device was measured residual stress the Si 3 N 4 as the main component the Si 3 N 4 based ceramic substrate.

[測定条件]
(1)測定装置:株式会社リガク製PSPC型微小部応力測定装置
(2)X線源:Cu、Co、Cr
(3)X線出力:電圧40kV、電流30mA
(4)コリメーター:φ2mm
(5)入射角度:0°、17°、24°、30°、35°、40°
[Measurement condition]
(1) Measuring device: PSPC micro-part stress measuring device manufactured by Rigaku Corporation (2) X-ray source: Cu, Co, Cr
(3) X-ray output: voltage 40 kV, current 30 mA
(4) Collimator: φ2mm
(5) Incident angle: 0 °, 17 °, 24 °, 30 °, 35 °, 40 °

cBN焼結体基材については、X線源がCuであれば、Si34(441)面を測定するため、測定角2θ:117.0°とし、X線源がCoであれば、Si34(611)面を測定するために測定角2θ:140.9°とし、X線源がCrであれば、Si34(212)面で測定するために測定角2θ:131.5°とした。cBNの物性値から応力定数を計算し、その値を表18に示した。 For the cBN sintered body substrate, if the X-ray source is Cu, the measurement angle 2θ is 117.0 ° in order to measure the Si 3 N 4 (441) plane, and if the X-ray source is Co, In order to measure the Si 3 N 4 (611) plane, the measurement angle 2θ is 140.9 °. When the X-ray source is Cr, the measurement angle 2θ is 131 to measure on the Si 3 N 4 (212) plane. .5 °. The stress constant was calculated from the physical property values of cBN, and the values are shown in Table 18.

Figure 2011005559
Figure 2011005559

被膜の残留応力は、株式会社リガク製PSPC型微小部応力測定装置を用いて実施例1と同様な条件で測定した。上記の応力定数と測定値(Ψ,2θ)とから求められた基材の残留応力と被膜の残留応力は、表19に示した。 The residual stress of the film was measured under the same conditions as in Example 1 using a PSPC micro-part stress measuring device manufactured by Rigaku Corporation. Table 19 shows the residual stress of the base material and the residual stress of the coating film determined from the above stress constants and measured values (Ψ, 2θ).

Figure 2011005559
Figure 2011005559

[密着性評価試験]
試料表面にロックウエル圧子(先端の曲率半径0.2mmのダイヤモンド圧子)を押し込んで被膜の剥離状態を調べる押し込み法と、CSM Instruments製スクラッチ試験機を用いたスクラッチ試験法(先端の曲率半径0.2mmのダイヤモンド圧子を使用する)により、被膜と基材との密着性を評価した。
[Adhesion evaluation test]
An indentation method in which a Rockwell indenter (diamond indenter with a radius of curvature of 0.2 mm at the tip) is pushed into the sample surface to examine the peeled state of the coating, and a scratch test method using a scratch tester manufactured by CSM Instruments (a radius of curvature at the tip of 0.2 mm) The adhesion between the coating and the substrate was evaluated.

Figure 2011005559
Figure 2011005559

表20に示されるように、ロックウエル圧子による押し込み法では、発明品は被膜の剥離が見られないが、比較品は被膜の剥離が見られる。スクラッチ試験では、発明品の被膜が剥離する荷重は110N以上であるが、比較品の被膜が剥離する荷重は75N以下である。以上の結果から発明品は比較品よりも被膜と基材との密着性が優れていることが分かる。 As shown in Table 20, in the indentation method using the Rockwell indenter, peeling of the film is not seen in the inventive product, but peeling of the coating is seen in the comparative product. In the scratch test, the load at which the inventive film peels is 110 N or more, but the load at which the comparative film peels is 75 N or less. From the above results, it can be seen that the inventive product has better adhesion between the coating and the substrate than the comparative product.

[切削試験]
発明品9〜11、比較品9、10の被覆Si34系セラミックス工具を用いて、被削材:FCD250(黒皮付き)、切削速度:800m/min、切り込み:1.5〜2.0mm、送り:0.60mm/revの条件で切削長2000mまでの乾式連続旋削試験を行った。工具寿命は逃げ面摩耗量VB=0.50mmを目安とした。切削試験の結果を表21に示す。
[Cutting test]
Using the coated Si 3 N 4 ceramic tools of Inventions 9 to 11 and Comparative Products 9 and 10, work material: FCD250 (with black skin), cutting speed: 800 m / min, cutting: 1.5-2. A dry continuous turning test up to a cutting length of 2000 m was performed under the conditions of 0 mm, feed: 0.60 mm / rev. The tool life was estimated based on the flank wear amount VB = 0.50 mm. The results of the cutting test are shown in Table 21.

Figure 2011005559
Figure 2011005559

表21に示すように発明品9〜11は切削長2000mにおける逃げ面摩耗量VBが0.36mm以下であり切削可能であるが、比較品9、10は切削長2000mにおける逃げ面摩耗量VBが0.60mm以上であり寿命と判断された。 As shown in Table 21, invention products 9 to 11 have a flank wear amount VB at a cutting length of 2000 m of 0.36 mm or less and can be cut, but comparative products 9 and 10 have a flank wear amount VB at a cutting length of 2000 m. It was 0.60 mm or more, and was judged to be a lifetime.

Claims (2)

基材とその表面に被覆された被膜とからなり、Cr−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCrは、Co−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCoよりも大きい被覆工具。 The compressive residual stress σ bCr of the base material obtained by X-ray stress measurement using a Cr—Kα ray consisting of a base material and a film coated on the surface thereof is measured by X-ray stress using Co—Kα ray. A coated tool larger than the compressive residual stress σ bCo of the base material obtained by Cr−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCr、Co−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCoおよびCu−Kα線を用いたX線応力測定により得られた基材の圧縮残留応力σbCuの中で最も大きい基材の圧縮残留応力σbmaxは、Cr−Kα線を用いたX線応力測定により得られた被膜の圧縮残留応力σcCr、Co−Kα線を用いたX線応力測定により得られた被膜の圧縮残留応力σcCoおよびCu−Kα線を用いたX線応力測定により得られた被膜の圧縮残留応力σcCuの中で最も小さい基材の圧縮残留応力σcminよりも小さい請求項1に記載の被覆工具。 Cr-K [alpha line X-ray stress compressive residual stress sigma Bcr obtained substrate by the measurements, compressive residual stress of the base material obtained by the X-ray stress measurement using Co-K [alpha line sigma BCO and Cu- The largest compressive residual stress σ bmax of the base material among the compressive residual stress σ bCu of the base material obtained by the X-ray stress measurement using the Kα ray is obtained by the X-ray stress measurement using the Cr—Kα ray. compressive residual stress sigma cCr coating, compression coating obtained by X-ray stress measurement using the compressive residual stress sigma CCO and Cu-K [alpha line resulting coating by X-ray stress measurement using Co-K [alpha line The coated tool according to claim 1, which is smaller than the compressive residual stress σ cmin of the base material that is the smallest among the residual stress σ cCu .
JP2009148916A 2009-06-23 2009-06-23 Coated tool Pending JP2011005559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148916A JP2011005559A (en) 2009-06-23 2009-06-23 Coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148916A JP2011005559A (en) 2009-06-23 2009-06-23 Coated tool

Publications (1)

Publication Number Publication Date
JP2011005559A true JP2011005559A (en) 2011-01-13

Family

ID=43562832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148916A Pending JP2011005559A (en) 2009-06-23 2009-06-23 Coated tool

Country Status (1)

Country Link
JP (1) JP2011005559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158868A (en) * 2012-02-03 2013-08-19 Mitsubishi Materials Corp Surface-coated cutting tool
WO2015076401A1 (en) * 2013-11-25 2015-05-28 株式会社タンガロイ Coated tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587646A (en) * 1991-09-25 1993-04-06 Toshiba Corp Measuring method for residual stress of ceramic member
JPH0892685A (en) * 1994-09-27 1996-04-09 Toshiba Tungaloy Co Ltd High toughness coated sintered alloy
JP2006035383A (en) * 2004-07-28 2006-02-09 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2006043874A (en) * 2004-07-08 2006-02-16 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587646A (en) * 1991-09-25 1993-04-06 Toshiba Corp Measuring method for residual stress of ceramic member
JPH0892685A (en) * 1994-09-27 1996-04-09 Toshiba Tungaloy Co Ltd High toughness coated sintered alloy
JP2006043874A (en) * 2004-07-08 2006-02-16 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2006035383A (en) * 2004-07-28 2006-02-09 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158868A (en) * 2012-02-03 2013-08-19 Mitsubishi Materials Corp Surface-coated cutting tool
WO2015076401A1 (en) * 2013-11-25 2015-05-28 株式会社タンガロイ Coated tool
JPWO2015076401A1 (en) * 2013-11-25 2017-03-16 株式会社タンガロイ Coated tool

Similar Documents

Publication Publication Date Title
JP6139531B2 (en) Cutting insert and manufacturing method thereof
Long et al. Microstructure of TiAlN and CrAlN coatings and cutting performance of coated silicon nitride inserts in cast iron turning
EP3067133B1 (en) Coated cutting tool
JP6687390B2 (en) Tool with TiAlCrSiN coating by PVD
KR100669878B1 (en) Coated cutting tool insert
WO2013099752A1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
JP2018521862A (en) Tool with multilayer arc PVD coating
JP5527415B2 (en) Coated tool
JP2004238736A (en) Hard film, and hard film-coated tool
JP2001254187A (en) Hard film-coated member
JP6604553B2 (en) Surface coated cutting tool
JP2019520225A (en) CVD coated cutting tool
JP2008013852A (en) Hard film, and hard film-coated tool
JP4340579B2 (en) Surface coated cutting tool
Cai et al. Reduced delamination and improved cutting performance of TiAlSiN multilayer coated cutter by tailoring the adhesion layers and intermediate layers
JP5534765B2 (en) Surface covering member
KR20100126357A (en) Oxide coated cutting insert
JP2005297141A (en) Surface-coated throwaway tip
JP2011005559A (en) Coated tool
CN116162917B (en) Multilayer coating cutter and preparation method thereof
Singh et al. Physical and mechanical characterization of mechanically treated AlTiN coatings deposited using novel arc enhanced HIPIMS technique
Siow et al. Effect of carbon content in TiCxN1− x coating on the adhesivity of carbide cutting tools and machining performance
JP4936742B2 (en) Surface coating tools and cutting tools
RU2573845C1 (en) METHOD OF PRODUCTION OF ION-PLASMA VACUUM-ARC CERAMIC-METAL COATING TiN-Cu FOR CARBIDE CUTTING TOOL WITH EXTENDED APPLICATION SCOPE
JP2005138210A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029